1
|
Alamri R, Migel K, Cain MS, Song K, Pietrosimone B, Blackburn JT, Franz JR, Jang J, Lin FC, Wikstrom EA. Plantar massage or ankle mobilization do not alter gait biomechanics in those with chronic ankle instability: a randomized controlled trial. J Man Manip Ther 2024:1-8. [PMID: 39392285 DOI: 10.1080/10669817.2024.2410048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
OBJECTIVES Chronic ankle instability (CAI) is characterized by persistent neuromechanical impairments following an initial lateral ankle sprain. Ankle joint mobilization and plantar massage have improved the range of motion and static postural control in those with CAI. This study aimed to determine the impact of two-week joint mobilization and plantar massage interventions on gait kinematics and kinetics in individuals with CAI. METHODS A single-blind randomized trial was conducted with 60 participants with CAI, randomized into three groups: joint mobilization (n = 20), plantar massage (n = 20), and control (n = 20). The two treatment groups received six 5-min sessions manual therapy over a 2-week, while the control group received no intervention. Gait biomechanics were assessed on an instrumented treadmill before and after the intervention using 3D kinematics and kinetics analysis. Analyses compared biomechanical outcomes from each treatment group to the control group individually using a 1-dimensional statistical parametric mapping. The alpha level was set at p < 0.05. RESULTS Eighteen participants per group were part of the final analysis. No significant main or interactions effects were found for ankle sagittal or frontal plane positions following either intervention (p > 0.05 for all comparisons). COP location relative to the lateral border of the foot also did not change (p > 0.05). CONCLUSION The findings suggest that two-week joint mobilization and plantar massage interventions do not significantly alter gait biomechanics in individuals with CAI. These results support the need for gait-specific interventions to modify biomechanics in this population.
Collapse
|
2
|
Dewig DR, Lepley AS, Nilius A, Padua DA, Pietrosimone BG, Wikstrom EA, Blackburn JT. An Acute Bout of Whole-Body Vibration Does Not Improve Jumping Performance in Those With Anterior Cruciate Ligament Reconstruction. J Athl Train 2024; 59:948-954. [PMID: 39320953 PMCID: PMC11440823 DOI: 10.4085/1062-6050-0446.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
CONTEXT Individuals with anterior cruciate ligament reconstruction (ACLR) often fail to return to their previous level of sport performance. Although multifaceted, this inability to regain preinjury performance may be influenced by impaired plyometric ability attributable to chronic quadriceps dysfunction. Whole-body vibration (WBV) acutely improves quadriceps function and biomechanics after ACLR, but its effects on jumping performance outcomes such as jump height, the reactive strength index (RSI), and knee work and power are unknown. OBJECTIVE To evaluate the acute effects of WBV on measures of jumping performance in those with ACLR. DESIGN Crossover study design. SETTING Research laboratory. PATIENTS OR OTHER PARTICIPANTS Thirty-six individuals with primary, unilateral ACLR. INTERVENTION(S) Participants stood on a WBV platform in a mini-squat position while vibration or no vibration (control) was applied during six 60-second bouts with 2 minutes of rest between bouts. MAIN OUTCOME MEASURE(S) Double-leg jumping tasks were completed preintervention and postintervention (WBV or control) and consisted of jumping off a 30-cm box to 2 force plates half the participant's height away. The jumping task required participants to maximally jump vertically upon striking the force plates. RESULTS Whole-body vibration did not produce significant improvements in any of the study outcomes (ie, jump height, RSI, and knee work and power) in either limb (P = .053-.839). CONCLUSIONS These results suggest that a single bout of WBV is insufficient for improving jumping performance in individuals with ACLR. As such, using WBV to acutely improve jumping performance post-ACLR is likely not warranted. Future research should evaluate the effects of repeated exposure to WBV in combination with other plyometric interventions on jumping performance.
Collapse
|
3
|
Migel KG, Blackburn JT, Gross MT, Pietrosimone B, Thoma LM, Wikstrom EA. Effect of sensor location for modifying center of pressure during gait using haptic feedback in people with chronic ankle instability. Gait Posture 2024; 110:71-76. [PMID: 38537341 DOI: 10.1016/j.gaitpost.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/23/2024] [Accepted: 03/14/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Gait retraining using haptic biofeedback medially shifts the center of pressure (COP) while walking in orthopedic populations. However, the ideal sensor location needed to effectively shift COP medially has not been identified in people with chronic ankle instability (CAI). RESEARCH QUESTIONS Can a heel sensor location feasibly be employed in people with CAI without negatively altering kinematics? Does a heel sensor placement relative to the 5th metatarsal head (5MH) impact COP location while walking in people with CAI? METHODS In this exploratory crossover study, 10 participants with CAI walked on a treadmill with vibration feedback for 10 minutes with a plantar pressure sensor under the heel and 5MH. Separate 2×2 repeated measures analyses of covariances (rmANCOVAs) were used to compare the averaged COP location and 3-D lower extremity kinematics from the first 10% of stance before and after training and between sensor locations. Baseline measures served as covariates to adjust for baseline differences. RESULTS Feedback triggered by a heel sensor resulted in 40% of participants avoiding a heel strike. There were no significant main effects or interactions between time and sensor location on COP location when controlling for baseline COP (p>0.05). However, with the 5MH placement, participants displayed less ankle internal rotation(IR) (5MH/Heel: -4.12±0.00º/ -6.43±0.62º), less forefoot abduction (-4.29±0.00º/ -5.14±1.01º), more knee flexion (3.40±0.32º/ 0.14±0.57º), less knee external rotation (-10.95±0.00º/-11.24±1.48º), less hip extension (-0.20±0.00º/-1.42±1.05º), and less hip external rotation (3.12±0.00º/3.75±1.98º). SIGNIFICANCE A 5MH location may be more feasible based on difficulties maintaining heel strike when the sensor was under the heel. While no sensor location was statistically better at changing the COP, the 5MH location decreased proximal transverse plane motions making participants' gait more like controls. Individual response variations support comprehensive lower extremity assessments and the need to identify responder profiles using sensory feedback in people with CAI.
Collapse
|
4
|
Bjornsen E, Berkoff D, Blackburn JT, Davis-Wilson H, Evans-Pickett A, Franz JR, Harkey MS, Horton WZ, Lisee C, Luc-Harkey B, Munsch AE, Nissman D, Pfeiffer S, Pietrosimone B. Sustained Limb-Level Loading: A Ground Reaction Force Phenotype Common to Individuals at High Risk for and Those With Knee Osteoarthritis. Arthritis Rheumatol 2024; 76:566-576. [PMID: 37961759 DOI: 10.1002/art.42744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/08/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE The objective of this study was to compare the vertical (vGRF), anterior-posterior (apGRF), and medial-lateral (mlGRF) ground reaction force (GRF) profiles throughout the stance phase of gait (1) between individuals 6 to 12 months post-anterior cruciate ligament reconstruction (ACLR) and uninjured matched controls and (2) between ACLR and individuals with differing radiographic severities of knee osteoarthritis (KOA), defined as Kellgren and Lawrence (KL) grades KL2, KL3, and KL4. METHODS A total of 196 participants were included in this retrospective cross-sectional analysis. Gait biomechanics were collected from individuals 6 to 12 months post-ACLR (n = 36), uninjured controls matched to the ACLR group (n = 36), and individuals with KL2 (n = 31), KL3 (n = 67), and KL4 osteoarthritis (OA) (n = 26). Between-group differences in vGRF, apGRF, and mlGRF were assessed in reference to the ACLR group throughout each percentage of stance phase using a functional linear model. RESULTS The ACLR group demonstrated lower vGRF and apGRF in early and late stance compared to the uninjured controls, with large effects (Cohen's d range: 1.35-1.66). Conversely, the ACLR group exhibited greater vGRF (87%-90%; 4.88% body weight [BW]; d = 0.75) and apGRF (84%-94%; 2.41% BW; d = 0.79) than the KL2 group in a small portion of late stance. No differences in mlGRF profiles were observed between the ACLR and either the uninjured controls or the KL2 group. The magnitude of difference in GRF profiles between the ACLR and OA groups increased with OA disease severity. CONCLUSION Individuals 6 to 12 months post-ACLR exhibit strikingly similar GRF profiles as individuals with KL2 KOA, suggesting both patient groups may benefit from targeted interventions to address aberrant GRF profiles.
Collapse
|
5
|
Giuliani-Dewig HK, Gerstner GR, Register-Mihalik JK, Blackburn JT, Padua DA, Staley JA, Ryan ED. The feasibility of workload monitoring among law enforcement officers: A multi-methodological approach. APPLIED ERGONOMICS 2024; 116:104212. [PMID: 38154228 DOI: 10.1016/j.apergo.2023.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023]
Abstract
This study examined the feasibility of workload monitoring to assess internal workload in law enforcement officers (LEO) using a multi-methodological approach. Fifty front-line LEO completed workload surveys on workdays for eight weeks. Retention and adherence were assessed across the survey period. LEO completed usability and likelihood to continue questionnaires, while departmental administrators (n = 8) received workload reports and completed utility and sustainability questionnaires. A subsample of LEO and administrators participated in semi-structured interviews, following consensual qualitative research design. LEO retention (96%), survey adherence (94%), and usability scores (88.3/100) were high, with a moderate likelihood to continue to use the survey. Administration reported high utility and sustainability. The high adherence rates and usability scores, coupled with strong administrative support, suggest that workload monitoring may be a feasible strategy among LEO to monitor occupational workloads. The LEO and administration feedback highlight areas of improvement (e.g., data transparency, departmental collaboration) to inform future implementation.
Collapse
|
6
|
Nilius A, Dewig DR, Johnston CD, Pietrosimone BG, Blackburn JT. Quadriceps composition and function influence downhill gait biomechanics >1 year following anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon) 2024; 114:106229. [PMID: 38490072 DOI: 10.1016/j.clinbiomech.2024.106229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Quadriceps dysfunction is common following anterior cruciate ligament reconstruction and contributes to aberrant gait biomechanics. Changes in quadriceps composition also occur in these patients including greater concentrations of non-contractile tissue. The purpose of this study was to evaluate associations between quadriceps composition, function, and gait biomechanics in individuals with anterior cruciate ligament reconstruction. METHODS Forty-eight volunteers with anterior cruciate ligament reconstruction completed gait biomechanics and quadriceps function and composition assessments. Gait biomechanics were sampled during downhill walking (-10° slope) on an instrumented treadmill. Quadriceps function (peak torque and rate of torque development) was assessed via maximal isometric contractions, while composition was evaluated via ultrasound echo intensity. FINDINGS Greater quadriceps peak torque was associated with a greater peak knee extension moment (r = 0.365, p = 0.015). Greater vastus lateralis echo intensity (i.e. poorer muscle quality) was associated with less knee flexion displacement (r = -0.316, p = 0.032). Greater echo intensity of the vastus lateralis (r = -0.298, p = 0.044) and rectus femoris (r = -0.322, p = 0.029) was associated with a more abducted knee angle at heel strike. Quadriceps peak torque explained 11-16% of the variance in echo intensity. INTERPRETATION Both quadriceps function and composition influence aberrant gait biomechanics following anterior cruciate ligament reconstruction. Quadriceps composition appears to provide insight into quadriceps dysfunction independent of muscle strength, as they associated with different gait biomechanics outcomes and shared minimal variance. Future research is necessary to determine the influence of changes in quadriceps composition on joint health outcomes.
Collapse
|
7
|
Buck AN, Lisee CM, Bjornsen ES, Schwartz TA, Spang JT, Franz JR, Blackburn JT, Pietrosimone BG. Biomechanical Threshold Values for Identifying Clinically Significant Knee-Related Symptoms Six Months Following Anterior Cruciate Ligament Reconstruction. J Athl Train 2024:499456. [PMID: 38477136 DOI: 10.4085/1062-6050-0562.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
CONTEXT Slower habitual walking speed and aberrant gait biomechanics are linked to clinically significant knee-related symptoms and articular cartilage composition changes linked to posttraumatic osteoarthritis (PTOA) following anterior cruciate ligament reconstruction (ACLR). OBJECTIVE To determine specific gait biomechanical variables that can accurately identify individuals with clinically significant knee-related symptoms post-ACLR, and the corresponding threshold values, sensitivity, specificity, and odds ratios for each biomechanical variable. DESIGN Cross-sectional analysis. SETTING Laboratory. PATIENTS OR OTHER PARTICIPANTS Seventy-one individuals (n=38 female; age=21±4 years; height=1.76±0.11 m; mass=75.38±13.79 kg) who were 6 months post-primary unilateral ACLR (6.2±0.4 months). MAIN OUTCOME MEASURES 3D motion capture of 5 overground walking trials was used to calculate discrete gait biomechanical variables of interest during stance phase (1st and 2nd peak vertical ground reaction force [vGRF]; midstance minimum vGRF; peak internal knee abduction and extension moments; and peak knee flexion angle), along with habitual walking speed. Knee Injury and Osteoarthritis Outcome Scores (KOOS) was used to dichotomize patients as symptomatic (n=51) or asymptomatic (n=20) using the Englund et al. 2003 KOOS guidelines for defining clinically significant knee-related symptoms. Separate receiver operating characteristic (ROC) curves and respective areas under the curve (AUC) were used to evaluate the capability of each biomechanical variable of interest for identifying individuals with clinically significant knee-related symptoms. RESULTS Habitual walking speed (AUC=0.66), vGRF at midstance (AUC=0.69), and 2nd peak vGRF (AUC=0.76), demonstrated low-to-moderate accuracy for identifying individuals with clinically significant knee-related symptoms. Individuals who exhibited habitual walking speeds ≤1.27 m/s, midstance vGRF ≥0.82 BW, and 2nd peak vGRF ≤1.11 BW, demonstrated 3.13, 6.36, and 9.57 times higher odds of experiencing clinically significant knee-related symptoms, respectively. CONCLUSIONS Critical thresholds for gait variables may be utilized to identify individuals with increased odds of clinically significant knee-related symptoms and potential targets for future interventions.
Collapse
|
8
|
Davis-Wilson HC, Thoma LM, Franz JR, Blackburn JT, Longobardi L, Schwartz TA, Hackney AC, Pietrosimone B. Physical Activity Associates with T1rho MRI of Femoral Cartilage After Anterior Cruciate Ligament Reconstruction. Med Sci Sports Exerc 2024; 56:411-417. [PMID: 37796166 PMCID: PMC10922225 DOI: 10.1249/mss.0000000000003318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
PURPOSE Less physical activity has been associated with systemic biomarkers of cartilage breakdown after anterior cruciate ligament reconstruction (ACLR). However, previous research lacks analysis of deleterious cartilage compositional changes and objective physical activity after ACLR. The purpose of this study was to determine the association between physical activity quantified via accelerometer-based measures of daily steps and time in moderate-to-vigorous physical activity (MVPA), and T1rho magnetic resonance imaging (MRI) of the femoral articular cartilage, a marker of proteoglycan density in individuals with ACLR. METHODS Daily steps and MVPA were assessed over 7 d using an accelerometer worn on the hip in 26 individuals between 6 and 12 months after primary unilateral ACLR. Resting T1rho MRI was collected bilaterally, and T1rho MRI interlimb ratios (ILR: ACLR limb/contralateral limb) were calculated for lateral and medial femoral condyle regions of interest. We conducted univariate linear regression analyses to determine associations between T1rho MRI ILRs and daily steps and MVPA with and without controlling for sex. RESULTS Greater T1rho MRI ILR of the central lateral femoral condyle, indicative of less proteoglycan density in the ACLR limb, was associated with greater time in MVPA ( R2 = 0.178, P = 0.032). Sex-adjusted models showed significant interaction terms between daily steps and sex in the anterior ( P = 0.025), central ( P = 0.002), and posterior ( P = 0.002) medial femoral condyle. CONCLUSIONS Lesser physical activity may be a risk factor for maintaining cartilage health after ACLR; additionally, the relationship between physical activity and cartilage health may be different between males and females.
Collapse
|
9
|
Evans-Pickett A, Davis-Wilson HC, Johnston CD, Blackburn JT, Hackney AC, Pietrosimone B. Immediate Effects of Walking With a Knee Brace After Anterior Cruciate Ligament Reconstruction: A Biomechanical, Biochemical, and Structural Approach. J Athl Train 2023; 58:542-553. [PMID: 35119477 PMCID: PMC10496450 DOI: 10.4085/1062-6050-0700.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Individuals who undergo anterior cruciate ligament reconstruction (ACLR) are at higher risk of posttraumatic osteoarthritis. Altered joint tissue loading caused by aberrant gait biomechanics leads to deleterious changes in joint health linked to the onset of posttraumatic osteoarthritis. Knee braces have been used to modify joint tissue loading in individuals with joint injury, yet the effects of walking with a brace after ACLR on biomechanical, biochemical, and structural cartilage outcomes are unknown. OBJECTIVE To compare biomechanical, biochemical, and structural outcomes between braced and nonbraced walking in individuals with ACLR. DESIGN Crossover study. SETTING Research laboratory. PATIENTS OR OTHER PARTICIPANTS A total of 34 individuals with unilateral ACLR (18 females, 16 males; time since ACLR = 50.1 ± 36.8 months). INTERVENTION(S) Gait biomechanics were assessed during braced and unbraced conditions on separate days. MAIN OUTCOME MEASURE(S) Vertical ground reaction force, knee-flexion angle, and internal knee-extension moment waveforms were evaluated throughout the stance phase and compared between conditions. Percentage changes in serum cartilage oligomeric matrix protein (%ΔCOMP) and femoral cartilage cross-sectional area (%ΔCSA) measured via ultrasound were calculated after a 3000-step walking protocol. RESULTS Braced walking increased the knee-flexion angle (largest difference = 3.56°; Cohen d effect size = 1.72) and knee-extension moment (largest difference = -0.48% body weight × height; Cohen d effect size = -1.14) compared with nonbraced walking but did not influence vertical ground reaction force. Whereas no difference (P = .20) in %ΔCOMP existed between the braced and nonbraced conditions in the entire cohort (n = 30 with complete blood data), a larger increase (P = .04) in %ΔCOMP was seen during nonbraced than braced walking in individuals who demonstrated increased COMP during nonbraced walking. No difference (P = .86) in %ΔCSA was present between the braced and nonbraced conditions. CONCLUSIONS Braced walking may improve sagittal-plane gait biomechanics and %ΔCOMP in a subset of individuals who demonstrate a typical increased COMP response to load (ie, increase in COMP) after nonbraced walking.
Collapse
|
10
|
Bjornsen E, Davis-Wilson H, Evans-Picket A, Horton WZ, Lisee C, Munsch AE, Nissman D, Blackburn JT, Franz JR, Pietrosimone B. Knee kinetics and the medial femoral cartilage cross-sectional area response to loading in indviduals with anterior cruciate ligament reconstruction. Clin Biomech (Bristol, Avon) 2023; 105:105979. [PMID: 37148613 PMCID: PMC10278237 DOI: 10.1016/j.clinbiomech.2023.105979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Ultrasonography is capable of detecting morphological changes in femoral articular cartilage cross-sectional area in response to an acute bout of walking; yet, the response of femoral cartilage cross-sectional area varies between individuals. It is hypothesized that differences in joint kinetics may influence the response of cartilage to a standardized walking protocol. Therefore, the study purpose was to compare internal knee abduction and extension moments between individuals with anterior cruciate ligament reconstruction who demonstrate an acute increase, decrease, or unchanged medial femoral cross-sectional area response following 3000 steps. METHODS The medial femoral cartilage in the anterior cruciate ligament reconstructed limb was assessed with ultrasonography before and immediately following 3000 steps of treadmill walking. Knee joint moments were calculated in the anterior cruciate ligament reconstructed limb and compared between groups throughout the stance phase of gait using linear regression and functional, mixed effects waveform analyses. FINDINGS No associations between peak knee joint moments and the cross-sectional area response were observed. The group that demonstrated an acute cross-sectional area increase exhibited 1) lower knee abduction moments in early stance in comparison to the group that exhibited a decreased cross-sectional area response; and 2) greater knee extension moments in early stance in comparison to the group with an unchanged cross-sectional area response. INTERPRETATION The propensity of femoral cartilage to acutely increase cross-sectional area in response to walking is consistent with less-dynamic knee abduction and knee extension moment profiles.
Collapse
|
11
|
Song K, Pietrosimone B, Blackburn JT, Padua DA, Tennant JN, Wikstrom EA. Mechanical and Sensorimotor Outcomes Associated With Talar Cartilage Deformation After Static Loading in Those With Chronic Ankle Instability. J Athl Train 2023; 58:136-142. [PMID: 35476021 PMCID: PMC10072092 DOI: 10.4085/1062-6050-0520.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Those with chronic ankle instability (CAI) demonstrate deleterious changes in talar cartilage composition, resulting in alterations of talar cartilage loading behavior. Common impairments associated with CAI may play a role in cartilage behavior in response to mechanical loading. OBJECTIVE To identify mechanical and sensorimotor outcomes that are linked with the magnitude of talar cartilage deformation after a static loading protocol in patients with and those without CAI. DESIGN Cross-sectional study. SETTING Laboratory setting. PATIENTS OR OTHER PARTICIPANTS Thirty individuals with CAI and 30 healthy individuals. MAIN OUTCOME MEASURES(S) After a 60-minute off-loading period, ultrasonographic images of the talar cartilage were acquired immediately before and after a 2-minute static loading protocol (single-legged stance). Talar cartilage images were obtained and manually segmented to enable calculation of medial, lateral, and overall average talar thickness. The percentage change, relative to the average baseline thickness, was used for further analysis. Mechanical (ankle joint laxity) and sensorimotor (static balance and Star Excursion Balance Test) outcomes were captured. Partial correlations were computed to determine associations between cartilage deformation magnitude and the mechanical and sensorimotor outcomes after accounting for body weight. RESULTS In the CAI group, greater inversion laxity was associated with greater overall (r = -0.42, P = .03) and medial (r = -0.48, P = .01) talar cartilage deformation after a 2-minute static loading protocol. Similarly, poorer medial-lateral static balance was linked with greater overall (r = 0.47, P = .01) and lateral (r = 0.50, P = .01) talar cartilage deformation. In the control group, shorter posterolateral Star Excursion Balance Test reach distance was associated with greater lateral cartilage deformation (r = 0.42, P = .03). No other significant associations were observed. CONCLUSIONS In those with CAI, inversion laxity and poor static postural control were moderately associated with greater talar cartilage deformation after a 2-minute static loading protocol. These results suggest that targeting mechanical instability and poor balance in those with CAI via intervention strategies may improve how the talar cartilage responds to static loading conditions.
Collapse
|
12
|
Dewig DR, Evans-Pickett A, Pietrosimone BG, Blackburn JT. Comparison of discrete and continuous analysis approaches for evaluating gait biomechanics in individuals with anterior cruciate ligament reconstruction. Gait Posture 2023; 100:261-267. [PMID: 36682319 DOI: 10.1016/j.gaitpost.2023.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/19/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND Aberrant gait biomechanics contribute to post-traumatic knee osteoarthritis development following anterior cruciate ligament reconstruction (ACLR). Walking gait biomechanics are typically evaluated post-ACLR by identifying discrete, peak values in the load acceptance phase of gait (i.e. first 50 %). As these approaches evaluate a single time instant during the gait cycle, functional data analysis (FDA) techniques that evaluate the entire stance phase waveform are becoming more common in the literature. However, it is unclear if these analysis approaches identify the same biomechanical phenomena. RESEARCH QUESTION The purpose of this study was to determine whether four gait biomechanics analysis approaches identify the same aberrant gait characteristics in individuals with ACLR. METHODS Twenty-four individuals with ACLR and 24 healthy controls completed gait analyses on an instrumented treadmill. Four analysis approaches were employed to compare the vertical ground reaction force and sagittal knee angles and moments during the first 50 % of the stance phase between groups and between limbs in the ACLR cohort: 1) comparison of peak values from individual trials (Peak), 2) comparison of peak values from time-normalized ensemble waveforms (Ensemble Peak), 3) FDA via functional ANCOVA (FANCOVA), and 4) FDA evaluating overlap of the 95 % confidence intervals for each waveform (FDA-CI). RESULTS The Peak, Ensemble Peak, and FANCOVA approaches identified highly similar group and limb differences in the biomechanics outcomes with respect to both magnitude and temporal location. However, the FANCOVA approach indicated that these differences were distributed across large portions of the load acceptance phase and that differences existed outside the first 50 % of stance. The FDA-CI approach was generally not effective for identifying aberrant gait biomechanics. SIGNIFICANCE Peak and FANCOVA approaches to gait analysis provide similar findings. Future research is necessary to determine if the additional information afforded by FANCOVA provides insight regarding the mechanical pathogenesis of post-traumatic knee osteoarthritis.
Collapse
|
13
|
Evans-Pickett A, Lisee C, Zachary Horton W, Lalush D, Nissman D, Troy Blackburn J, Spang JT, Pietrosimone B. Worse Tibiofemoral Cartilage Composition Is Associated with Insufficient Gait Kinetics After ACL Reconstruction. Med Sci Sports Exerc 2022; 54:1771-1781. [PMID: 35700436 PMCID: PMC9481723 DOI: 10.1249/mss.0000000000002969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Greater articular cartilage T1ρ magnetic resonance imaging relaxation times indicate less proteoglycan density and are linked to posttraumatic osteoarthritis development after anterior cruciate ligament reconstruction (ACLR). Although changes in T1ρ relaxation times are associated with gait biomechanics, it is unclear if excessive or insufficient knee joint loading is linked to greater T1ρ relaxation times 12 months post-ACLR. The purpose of this study was to compare external knee adduction (KAM) and flexion (KFM) moments in individuals after ACLR with high versus low tibiofemoral T1ρ relaxation profiles and uninjured controls. METHODS Gait biomechanics were collected in 26 uninjured controls (50% females; age, 22 ± 4 yr; body mass index, 23.9 ± 2.8 kg·m -2 ) and 26 individuals after ACLR (50% females; age, 22 ± 4 yr; body mass index, 24.2 ± 3.5 kg·m -2 ) at 6 and 12 months post-ACLR. ACLR-T1ρ High ( n = 9) and ACLR-T1ρ Low ( n = 17) groups were created based on 12-month post-ACLR T1ρ relaxation times using a k-means cluster analysis. Functional analyses of variance were used to compare KAM and KFM. RESULTS ACLR-T1ρ High exhibited lesser KAM than ACLR-T1ρ Low and uninjured controls 6 months post-ACLR. ACLR-T1ρ Low exhibited greater KAM than uninjured controls 6 and 12 months post-ACLR. KAM increased in ACLR-T1ρ High and decreased in ACLR-T1ρ Low between 6 and 12 months, both groups becoming more similar to uninjured controls. There were scant differences in KFM between ACLR-T1ρ High and ACLR-T1ρ Low 6 or 12 months post-ACLR, but both groups demonstrated lesser KFM compared with uninjured controls. CONCLUSIONS Associations between worse T1ρ profiles and increases in KAM may be driven by the normalization of KAM in individuals who initially exhibit insufficient KAM 6 months post-ACLR.
Collapse
|
14
|
Davis-Wilson HC, Thoma LM, Johnston CD, Young E, Evans-Pickett A, Spang JT, Blackburn JT, Hackney AC, Pietrosimone B. Fewer daily steps are associated with greater cartilage oligomeric matrix protein response to loading post-ACL reconstruction. J Orthop Res 2022; 40:2248-2257. [PMID: 35060165 DOI: 10.1002/jor.25268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/19/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023]
Abstract
Aberrant joint loading contributes to the development of posttraumatic knee osteoarthritis (PTOA) following anterior cruciate ligament reconstruction (ACLR); yet little is known about the association between joint loading due to daily walking and cartilage health post-ACLR. Accelerometer-based measures of daily steps and cadence (i.e., rate of steps/min) provide information regarding daily walking in a real-world setting. The purpose of this study was to determine the association between changes in serum cartilage oligomeric matrix protein (COMP; %∆COMP), a mechanosensitive biomarker that is associated with osteoarthritis progression, following a standardized walking protocol and daily walking in individuals with ACLR and uninjured controls. Daily walking was assessed over 7 days using an accelerometer worn on the right hip in 31 individuals with ACLR and 21 controls and quantified as mean steps/day and time spent in ≥100 steps/min. Serum COMP was measured before and following a 3000-step walking protocol at a preferred speed. %∆COMP was calculated as a change in COMP relative to the prewalking value. Linear regressions were used to examine associations between daily walking and %∆COMP after adjusting for preferred speed. Fewer daily steps (ΔR2 = 0.18, p = 0.02) and fewer minutes spent in ≥100 steps/min (ΔR2 = 0.16, p = 0.03) were associated with greater %∆COMP following walking in individuals with ACLR; no statistically significant associations existed in controls (daily steps: ΔR2 = 0.03, p = 0.47; time ≥100 steps/min: ΔR2 < 0.01, p = 0.81). Clinical significance: Individuals with ACLR who engage in less daily walking undergo greater %ΔCOMP, which may represent greater cartilage degradation or turnover in response to walking.
Collapse
|
15
|
Lisee CM, Bjornsen E, Horton WZ, Davis-Wilson H, Blackburn JT, Fisher MB, Pietrosimone B. Differences in Gait Biomechanics Between Adolescents and Young Adults With Anterior Cruciate Ligament Reconstruction. J Athl Train 2022; 57:921-928. [PMID: 36638344 PMCID: PMC9842117 DOI: 10.4085/1062-6050-0052.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CONTEXT Adolescents and adults are treated similarly in rehabilitation and research despite differences in clinical recovery after anterior cruciate ligament reconstruction (ACLR). Aberrant gait is a clinical outcome associated with poor long-term health post-ACLR but has not been compared between adolescents and adults. OBJECTIVE To compare gait biomechanical waveforms throughout stance between adolescents (<18 years old) and young adults (≥18 years old) post-ACLR. DESIGN Case-control study. SETTING Laboratory. PATIENTS OR OTHER PARTICIPANTS Adolescents (n = 13, girls = 77%, age = 16.7 ± 0.6 years, height = 1.7 ± 0.1 m, weight = 22.2 ± 3.7 kg/m2) were identified from a cross-sectional cohort assessing clinical outcomes 6 to 12 months post-ACLR. Young adults (n = 13, women = 77%, age = 22.3 ± 4.0 years, height = 1.7 ± 0.1 m, weight = 22.9 ± 3.3 kg/m2) were matched based on sex, time since surgery (±2 months), and body mass index (±3 kg/m2). INTERVENTION(S) Participants performed 5 gait trials at their habitual speed. MAIN OUTCOME MEASURE(S) Three-dimensional gait biomechanics and forces were collected. Vertical ground reaction force normalized to body weight (xBW), knee-flexion angle (°), knee-abduction moment (xBW × height), and knee-extension moment (BW × height) waveforms were calculated during the stance phase of gait (0%-100%). Habitual walking speed was compared using independent t tests. We used functional waveforms to compare gait biomechanics throughout stance with and without controlling for habitual walking speed by calculating mean differences between groups with 95% CIs. RESULTS Adolescents walked with slower habitual speeds compared with adults (adolescents = 1.1 ± 0.1 m/s, adults = 1.3 ± 0.1 m/s, P < .001). When gait speed was not controlled, adolescents walked with less vertical ground reaction force (9%-15% of stance) and knee-abduction moment (12%-25% of stance) during early stance and less knee-extension moment during late stance (80%-99% of stance). Regardless of their habitual walking speed, adolescents walked with greater knee-flexion angle throughout most stances (0%-21% and 29%-100% of stance). CONCLUSIONS Adolescents and adults demonstrated different gait patterns post-ACLR, suggesting that age may play a role in altered gait biomechanics.
Collapse
|
16
|
Evans-Pickett A, Davis-Wilson H, Munsch A, Blackburn JT, Franz JR, Pietrosimone B. Real-time Biofeedback Elicits Bilateral Changes In Gait Biomechanics In Patients With Anterior Cruciate Ligament Reconstruction. Med Sci Sports Exerc 2022. [DOI: 10.1249/01.mss.0000877632.86774.b8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Song K, Pietrosimone B, Blackburn JT, Padua DA, Tennant JN, Wikstrom EA. Dorsiflexion and Hop Biomechanics Associate with Greater Talar Cartilage Deformation in Those with Chronic Ankle Instability. Med Sci Sports Exerc 2022; 54:1176-1182. [PMID: 35389946 DOI: 10.1249/mss.0000000000002902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to identify associations between dorsiflexion range of motion (DFROM), functional hop test performance, and hopping biomechanics with the magnitude of talar cartilage deformation after a standardized hopping protocol in individuals with and without chronic ankle instability (CAI). METHODS Thirty CAI and 30 healthy individuals participated. Ankle DFROM was assessed using the weight-bearing lunge test. Four different functional hop tests were assessed. Three-dimensional kinematics and kinetics were sampled during a 60-cm single-leg hop. We calculated cartilage deformation after a dynamic loading protocol consisting of sixty 60-cm single-leg forward hops by assessing the change in average thickness for the overall, medial, and lateral talar cartilage. Linear regressions examined the associations between cartilage deformation magnitude and DFROM, functional hop tests, and hop biomechanical variables after accounting for body weight and time since the initial ankle sprain. RESULTS In CAI group, lesser static DFROM (ΔR2 = 0.22) and smaller peak ankle dorsiflexion angle (ΔR2 = 0.17) was associated with greater medial deformation. Greater peak vertical ground reaction force (vGRF) (ΔR2 = 0.26-0.28) was associated with greater medial and overall deformation. Greater vGRF loading rate (ΔR2 = 0.23-0.35) was associated with greater lateral and overall deformation. Greater side hop test times (ΔR2 = 0.31-0.36) and ankle plantarflexion at initial contact (ΔR2 = 0.23-0.38) were associated with greater medial, lateral, and overall deformation. In the control group, lesser side hop test times (ΔR2 = 0.14), greater crossover hop distances (ΔR2 = 0.14), and greater single-hop distances (ΔR2 = 0.21) were associated with greater overall deformation. CONCLUSIONS Our results indicate that lesser static DFROM, poorer functional hop test performance, and hop biomechanics associate with greater talar cartilage deformation after a dynamic loading protocol in those with CAI. These factors may represent targets for therapeutic interventions within this population to slow ankle posttraumatic osteoarthritis progression.
Collapse
|
18
|
Harkey MS, Blackburn JT, Hackney AC, Lewek MD, Schmitz RJ, Pietrosimone B. Sex-Specific Associations between Cartilage Structure and Metabolism at Rest and Acutely Following Walking and Drop-Landing. Cartilage 2021; 13:1772S-1781S. [PMID: 32954820 PMCID: PMC8808927 DOI: 10.1177/1947603520959386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Cartilage health is thought to be dependent on the relationship between mechanics, structure, and metabolism, rather than these individual components in isolation. Due to sex differences in cartilage health, there is need to determine if the relationships between these cartilage components separately for males and females. Therefore, we sought to determine the sex-specific associations between cartilage structure and metabolism at rest and their acute response following walking and drop-landing in healthy individuals. DESIGN A cartilage ultrasound assessment and an ante-cubital blood draw were performed before and after walking and drop-landing conditions in 20 males and 20 females. Cartilage structure was assessed via medial and lateral femoral cartilage cross-sectional area. Cartilage metabolism was quantified with serum cartilage oligomeric matrix protein (COMP) concentration. Percent change scores from pre- to postloading were used to calculate acute alterations in cross-sectional area and COMP. Correlational analyses were used to assess the association between cartilage structure and metabolism measures separately for males and females. RESULTS In females, greater resting COMP concentration was associated with less cartilage cross-sectional area in the medial(ρ = -0.50, P = 0.03) and lateral (ρ = -0.69, P = 0.001) femur. Resting cartilage measures were not associated among males. Following walking and drop-landing, percent change scores in cartilage structure and metabolism were not associated. CONCLUSIONS This study highlights that, in females, thinner anterior femoral cartilage is associated with greater resting serum COMP concentrations, a biomarker often linked to cartilage breakdown. Future studies into the relationships between various cartilage components should consider sex-specific analyses as these relationships are sex dependent.
Collapse
|
19
|
Wallace KG, Pfeiffer SJ, Pietrosimone LS, Harkey MS, Zong X, Nissman D, Kamath GM, Creighton RA, Spang JT, Blackburn JT, Pietrosimone B. Changes in Infrapatellar Fat Pad Volume 6 to 12 Months After Anterior Cruciate Ligament Reconstruction and Associations With Patient-Reported Knee Function. J Athl Train 2021; 56:1173-1179. [PMID: 33787883 PMCID: PMC8582630 DOI: 10.4085/1062-6050-0458.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Hypertrophy of the infrapatellar fat pad (IFP) in idiopathic knee osteoarthritis has been linked to deleterious synovial changes and joint pain related to mechanical tissue impingement. Yet little is known regarding the IFP's volumetric changes after anterior cruciate ligament reconstruction (ACLR). OBJECTIVES To examine changes in IFP volume between 6 and 12 months after ACLR and determine associations between patient-reported outcomes and IFP volume at each time point as well as the volume change over time. In a subset of individuals, we examined interlimb IFP volume differences 12 months post-ACLR. STUDY DESIGN Prospective cohort study. SETTING Laboratory. PATIENTS OR OTHER PARTICIPANTS We studied 26 participants (13 women, 13 men, age = 21.88 ± 3.58 years, body mass index = 23.82 ± 2.21 kg/m2) for our primary aims and 13 of those participants (8 women, 5 men, age = 21.15 ± 3.85 years, body mass index = 23.01 ± 2.01 kg/m2) for our exploratory aim. MAIN OUTCOME MEASURE(S) Using magnetic resonance imaging, we evaluated the IFP volume change between 6 and 12 months post-ACLR in the ACLR limb and between-limbs differences at 12 months in a subset of participants. International Knee Documentation Committee subjective knee evaluation (IKDC) scores were collected at 6-month and 12-month follow-ups, and associations between IFP volume and patient-reported outcomes were determined. RESULTS The IFP volume in the ACLR limb increased from 6 months (19.67 ± 6.30 cm3) to 12 months (21.26 ± 6.91 cm3) post-ACLR. Greater increases of IFP volume between 6 and 12 months were significantly associated with better 6-month IKDC scores (r = .44, P = .03). The IFP volume was greater in the uninjured limb (22.71 ± 7.87 cm3) than in the ACLR limb (20.75 ± 9.03 cm3) 12 months post-ACLR. CONCLUSIONS The IFP volume increased between 6 and 12 months post-ACLR; however, the IFP volume of the ACLR limb remained smaller than that of the uninjured limb at 12 months. In addition, those with better knee function 6 months post-ACLR demonstrated greater increases in IFP volume between 6 and 12 months post-ACLR. This suggests that greater IFP volumes may play a role in long-term joint health after ACLR.
Collapse
|
20
|
Davis-Wilson H, Pfeiffer SJ, Evans-Pickett A, Franz J, Blackburn JT, Pietrosimone B. Femoral Cartilage Ultrasound Outcomes Associate With T1rho Magnetic Resonance Outcomes Following Anterior Cruciate Ligament Reconstruction. Med Sci Sports Exerc 2021. [DOI: 10.1249/01.mss.0000761108.62603.3d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Davis-Wilson HC, Thoma LM, Longobardi L, Franz JR, Blackburn JT, Hackney AC, Pietrosimone B. Quality of Life Associates With Moderate to Vigorous Physical Activity Following Anterior Cruciate Ligament Reconstruction. J Athl Train 2021; 57:532-539. [PMID: 34329413 DOI: 10.4085/1062-6050-0670.20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT Higher knee function is linked to psychological readiness to return to sport following anterior cruciate ligament reconstruction (ACLR). Individuals with ACLR participate in less physical activity compared to matched uninjured controls, yet the association between knee function and physical activity following ACLR remains unclear. OBJECTIVE To determine the association between patient-reported knee function measured with the Knee Injury and Osteoarthritis Outcomes Score Quality of Life (KOOS-QOL), daily steps, and minutes spent in moderate to vigorous physical activity (MVPA) in individuals with ACLR. Secondarily, we determined associations between KOOS-QOL, daily steps, and MVPA in individuals with ACLR who presented with (symptomatic) and without (asymptomatic) clinically meaningful knee related symptoms. DESIGN Cross-sectional study. SETTING Laboratory, Free-living conditions. PATIENTS OR OTHER PARTICIPANTS Sixty-six individuals with primary unilateral ACLR (55% female, 22±4 years, 28±33 months post-ACLR, BMI: 24.2±2.9 kg/m2). OUTCOME MEASURE(S) We collected KOOS and retrospectively stratified participants into those with (symptomatic [n=30]) or without (asymptomatic [n=36]) clinically meaningful knee related symptoms based on previously defined KOOS cutoffs. We assessed daily steps and MVPA from ActiGraph GT9X Link accelerometers which each participant wore on the right hip for 7 days. We conducted linear regressions to determine associations between KOOS-QOL, daily steps, and MVPA. RESULTS No significant associations existed in the entire sample between KOOS-QOL and daily steps (ΔR2=0.01, P=0.50) or MVPA (ΔR2=0.01, P=0.36). In symptomatic individuals, greater KOOS-QOL associated with greater MVPA (ΔR2=0.12, P=0.05,). No significant associations existed between KOOS-QOL, daily steps, and MVPA in the asymptomatic group. CONCLUSIONS Symptomatic individuals with ACLR who spent more time in MVPA reported higher quality of life.
Collapse
|
22
|
Evans-Pickett A, Longobardi L, Spang JT, Creighton RA, Kamath G, Davis-Wilson HC, Loeser R, Blackburn JT, Pietrosimone B. Synovial fluid concentrations of matrix Metalloproteinase-3 and Interluekin-6 following anterior cruciate ligament injury associate with gait biomechanics 6 months following reconstruction. Osteoarthritis Cartilage 2021; 29:1006-1019. [PMID: 33781899 PMCID: PMC8658576 DOI: 10.1016/j.joca.2021.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare gait biomechanics 6 months following anterior cruciate ligament (ACL) reconstruction (ACLR) between patients with the highest and lowest concentrations of synovial fluid (SF) interleukin-6 (IL-6) and matrix metalloproteinase-3 (MMP-3), as well as compared to uninjured controls. DESIGN SF concentrations of IL-6 and MMP-3 were collected 7 ± 4 days post injury in 38 ACL injured patients (55% female, 21±4yrs, 25.3 ± 5.2BMI). ACL injured individuals were stratified into the lowest and highest quartiles based on IL-6 (IL-6Lowest and IL-6Highest) and MMP-3 (MMP-3Lowest and MMP-3Highest) concentrations. Gait biomechanics were collected on the injured limb 6 months post-ACLR and in 38 uninjured controls (50% female, 21±3yrs, 23.8 ± 2.8BMI). Functional analyses of variance were used to compare vertical ground reaction force (vGRF), knee flexion angle (KFA), and internal knee extension moment (KEM) waveforms throughout stance phase of gait to determine the proportions of stance differing between limbs and groups. RESULTS Compared to uninjured controls, IL-6High and MMP-3High ACL subgroups demonstrated lesser vGRF (largest differences: IL-6, 7.88%BW; MMP-3, 11.05%BW) during early-stance and greater vGRF (largest differences: IL-6, 6.21%BW; MMP-3, 5.85%BW) in mid-stance, lesser KFA (largest differences: IL-6, 3.11°; MMP-3, 3.72°) and lesser KEM (largest differences: IL-6, 0.96%BW•m; MMP-3, 1.07%BW•m) in early-stance, as well as greater KFA in mid-stance (largest differences: IL-6, 1.5°; MMP-3, 2.95°). CONCLUSIONS High SF concentrations of a proinflammatory cytokine and a degradative enzyme early post-ACL injury are associated with aberrant gait biomechanics in the injured limb at 6 months post-ACLR (i.e., lesser vGRF, KFA and KEM) linked to posttraumatic osteoarthritis development.
Collapse
|
23
|
Song K, Pietrosimone B, Blackburn JT, Padua DA, Tennant JN, Wikstrom EA. Acute Talar Cartilage Deformation in Those with and without Chronic Ankle Instability. Med Sci Sports Exerc 2021; 53:1228-1234. [PMID: 33986229 DOI: 10.1249/mss.0000000000002572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed 1) to determine whether talar cartilage deformation measured via ultrasonography (US) after standing and hopping loading protocols differs between chronic ankle instability (CAI) patients and healthy controls and 2) to determine whether the US measurement of cartilage deformation reflects viscoelasticity between standing and hopping protocols. METHODS A total of 30 CAI and 30 controls participated. After a 60-min off-loading period, US images of the talar cartilage were acquired before and after static (2-min single-leg standing) and dynamic (60 single-leg forward hops) loading conditions. We calculated cartilage deformation by assessing the change in average thickness (mm) for overall, medial, and lateral talar cartilage. The independent variables include time (Pre60 and postloading), condition (standing and dynamic loading), and group (CAI and control). A three-way mixed-model repeated-measures ANCOVA and appropriate post hoc tests were used to compare cartilage deformation between the groups after static and dynamic loading. RESULTS After the static loading condition, those with CAI had greater talar cartilage deformation compared with healthy individuals for overall (-10.87% vs -6.84%, P = 0.032) and medial (-12.98% vs -5.80%, P = 0.006) talar cartilage. Similarly, the CAI group had greater deformation relative to the control group for overall (-8.59% vs -3.46%, P = 0.038) and medial (-8.51% vs -3.31%, P = 0.043) talar cartilage after the dynamic loading condition. In the combined cohort, cartilage deformation was greater after static loading compared with dynamic in overall (-8.85% vs -6.03%, P = 0.003), medial (-9.38% vs -5.91%, P = 0.043), and lateral (-7.90% vs -5.65%, P = 0.009) cartilage. CONCLUSION US is capable of detecting differences in cartilage deformation between those with CAI and uninjured controls after standardized physiologic loads. Across both groups, our results demonstrate that static loading results in greater cartilage deformation compared with dynamic loading.
Collapse
|
24
|
Pietrosimone LS, Blackburn JT, Wikstrom EA, Berkoff DJ, Docking SI, Cook J, Padua DA. Differences in Biomechanical Loading Magnitude During a Landing Task in Male Athletes with and without Patellar Tendinopathy. J Athl Train 2021; 57:464343. [PMID: 33887762 PMCID: PMC9875712 DOI: 10.4085/1062-6050-0548.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
CONTEXT Prior research has not established if overloading or underloading movement profiles are present in symptomatic and asymptomatic athletes with patellar tendon structural abnormality (PTA) compared to healthy athletes. OBJECTIVE The purpose was to compare involved limb landing biomechanics between male athletes with and without patellar tendinopathy. DESIGN Cross-sectional study Setting: Laboratory Patients or Other Participants: 43 males were grouped based on patellar tendon pain & ultrasound imaging of the proximal patellar tendon: symptomatic with PTA (SYM-PTA; n=13; 20±2yrs; 1.8±0.1m; 84±5kg), asymptomatic with PTA (ASYM-PTA; n=15; 21±2yrs; 1.8±0.1m; 82±13kg), and healthy control (CON; n=15; 20±2yrs; 1.8±0.1m; 79±12kg). MAIN OUTCOME MEASURES 3D biomechanics were collected during double-limb jump-landing. Kinematic (knee flexion angle (KF)) and kinetic (vertical ground reaction force (VGRF); internal knee extension moment (KEM); patellar tendon force (FPT)) variables were analyzed as continuous waveforms during the stance phase for the involved limb. Mean values were calculated for each 1% of stance, normalized over 202 data points (0-100%), and plotted with 95% confidence intervals. Statistical significance was defined as a lack of 95% CI overlap for ≥ 6 consecutive data points. RESULTS SYM-PTA had lesser KF than CON throughout the stance phase. ASYM-PTA had lesser KF than CON in the early and late stance phase. SYM-PTA group had lesser KEM and FPT than CON in early stance, as well as ASYM-PTA in mid-stance. CONCLUSIONS Male athletes with SYM-PTA demonstrated a patellar tendon load-avoidance profile compared to ASYM-PTA and CON athletes. ASYM-PTA did not show evidence of overloading compared to CON. Our findings support the need for individualized treatments for athletes with tendinopathy to maximize load-capacity. TRIAL REGISTRY ClinicalTrials.gov (#XXX).
Collapse
|
25
|
Pexa B, Ryan ED, Blackburn JT, Padua DA, Garrison JC, Myers JB. Influence of Baseball Training Load on Clinical Reach Tests and Grip Strength in Collegiate Baseball Players. J Athl Train 2021; 55:984-993. [PMID: 32857132 DOI: 10.4085/1062-6050-0456.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT A baseball-specific training load may influence strength or glenohumeral range of motion, which are related to baseball injuries. Glenohumeral reach tests and grip strength are clinical assessments of shoulder range of motion and upper extremity strength, respectively. OBJECTIVE To examine changes in glenohumeral reach test performance and grip strength between dominant and nondominant limbs and high, moderate, and low baseball-specific training-load groups. DESIGN Repeated-measures study. SETTING University laboratory and satellite clinic. PATIENTS OR OTHER PARTICIPANTS Collegiate baseball athletes (n = 18, age = 20.1 ± 1.3 years, height = 185.0 ± 6.5 cm, mass = 90.9 ± 10.2 kg). MAIN OUTCOME MEASURE(S) Participants performed overhead reach tests (OHRTs), behind-the-back reach tests (BBRTs), and grip strength assessments using the dominant and nondominant limbs every 4 weeks for 16 weeks. Percentage change scores were calculated between testing times. After each training session, participants provided their duration of baseball activity, throw count, and body-specific and arm-specific ratings of perceived exertion. We classified them in the high, moderate, or low training-load group based on each training-load variable: body-specific acute:chronic workload ratio (ACWR), arm-specific ACWR, body-specific cumulative load, and arm-specific cumulative load. Mixed models were used to compare training-load groups and limbs. RESULTS The arm-specific ACWR group demonstrated as main effect for OHRT (F = 7.70, P = .001), BBRT (F = 4.01, P = .029), and grip strength (F = 8.89, P < .001). For the OHRT, the moderate training-load group demonstrated a 10.8% greater increase than the high group (P = .004) and a 13.2% greater increase than the low group (P < .001). For the BBRT, the low training-load group had a 10.1% greater increase than the moderate group (P = .011). For grip strength, the low training-load group demonstrated a 12.1% greater increase than the high group (P = .006) and a 17.7% greater increase than the moderate group (P < .001). CONCLUSIONS Arm-specific ACWR was related to changes in clinical assessments of range of motion and strength. Clinicians may use arm-specific ACWR to indicate when a baseball athlete's physical health is changing.
Collapse
|