1
|
Zanella F, Lorens JB, Link W. High content screening: seeing is believing. Trends Biotechnol 2010; 28:237-45. [PMID: 20346526 DOI: 10.1016/j.tibtech.2010.02.005] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 02/19/2010] [Accepted: 02/26/2010] [Indexed: 12/14/2022]
Abstract
High content screening (HCS) combines the efficiency of high-throughput techniques with the ability of cellular imaging to collect quantitative data from complex biological systems. HCS technology is integrated into all aspects of contemporary drug discovery, including primary compound screening, post-primary screening capable of supporting structure-activity relationships, and early evaluation of ADME (absorption, distribution, metabolism and excretion)/toxicity properties and complex multivariate drug profiling. Recently, high content approaches have been used extensively to interrogate stem cell biology. Despite these dramatic advances, a number of significant challenges remain related to the use of more biology- and disease-relevant cell systems, the development of informative reagents to measure and manipulate cellular events, and the integration of data management and informatics.
Collapse
|
Review |
15 |
263 |
2
|
Shaw MK, Lorens JB, Dhawan A, DalCanto R, Tse HY, Tran AB, Bonpane C, Eswaran SL, Brocke S, Sarvetnick N, Steinman L, Nolan GP, Fathman CG. Local delivery of interleukin 4 by retrovirus-transduced T lymphocytes ameliorates experimental autoimmune encephalomyelitis. J Exp Med 1997; 185:1711-4. [PMID: 9151908 PMCID: PMC2196296 DOI: 10.1084/jem.185.9.1711] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/1996] [Revised: 03/07/1997] [Indexed: 02/04/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory autoimmune disease of the central nervous system which serves as a model for the human disease multiple sclerosis. We demonstrate here that encephalitogenic T cells, transduced with a retroviral gene, construct to express interleukin 4, and can delay the onset and reduce the severity of EAE when adoptively transferred to myelin basic protein-immunized mice. Thus, T lymphocytes transduced with retroviral vectors can deliver "regulatory cytokines" in a site-specific manner and may represent a viable therapeutic strategy for the treatment of autoimmune disease.
Collapse
|
research-article |
28 |
208 |
3
|
Swift S, Lorens J, Achacoso P, Nolan GP. Rapid production of retroviruses for efficient gene delivery to mammalian cells using 293T cell-based systems. ACTA ACUST UNITED AC 2008; Chapter 10:Unit 10.17C. [PMID: 18432682 DOI: 10.1002/0471142735.im1017cs31] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This unit details the applications of one of the more common retroviral packaging systems, based on the highly transfectable 293T cell. The packaging system employs the use of the Phoenix cell lines. Calcium phosphate-mediated transfection is described for efficient introduction of retroviral vector plasmid DNA into the cells to generate high yields of virion-containing supernatant. An alternate protocol describes a method for transfecting retroviruses that contain a vesicular stomatitis virus G (VSV G) protein. Such virions are said to be "pseudotyped" with VSV G glycoprotein. Support protocols provide a simple method for concentrating VSV-G-pseudotyped retroviruses, as well as methods for culturing, cryopreserving, thawing, and drug selecting the Phoenix packaging cell lines. Finally, several methods for transfecting adherent or suspension cells with retroviruses are described.
Collapse
|
Journal Article |
17 |
194 |
4
|
Hitoshi Y, Lorens J, Kitada SI, Fisher J, LaBarge M, Ring HZ, Francke U, Reed JC, Kinoshita S, Nolan GP. Toso, a cell surface, specific regulator of Fas-induced apoptosis in T cells. Immunity 1998; 8:461-71. [PMID: 9586636 DOI: 10.1016/s1074-7613(00)80551-8] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fas is a surface receptor that can transmit signals for apoptosis. Using retroviral cDNA library-based functional cloning we identified a gene, toso, that blocks Fas-mediated apoptosis. Toso expression was confined to lymphoid cells and was enhanced after cell-specific activation processes in T cells. Toso appeared limited to inhibition of apoptosis mediated by members of the TNF receptor family and was capable of inhibiting T cell self-killing induced by TCR activation processes that up-regulate Fas ligand. We mapped the effect of Toso to inhibition of caspase-8 processing, the most upstream caspase activity in Fas-mediated signaling, potentially through activation of cFLIP. Toso therefore serves as a novel regulator of Fas-mediated apoptosis and may act as a regulator of cell fate in T cells and other hematopoietic lineages.
Collapse
|
|
27 |
176 |
5
|
Jenkins Y, Markovtsov V, Lang W, Sharma P, Pearsall D, Warner J, Franci C, Huang B, Huang J, Yam GC, Vistan JP, Pali E, Vialard J, Janicot M, Lorens JB, Payan DG, Hitoshi Y. Critical role of the ubiquitin ligase activity of UHRF1, a nuclear RING finger protein, in tumor cell growth. Mol Biol Cell 2005; 16:5621-9. [PMID: 16195352 PMCID: PMC1289407 DOI: 10.1091/mbc.e05-03-0194] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Early cellular events associated with tumorigenesis often include loss of cell cycle checkpoints or alteration in growth signaling pathways. Identification of novel genes involved in cellular proliferation may lead to new classes of cancer therapeutics. By screening a tetracycline-inducible cDNA library in A549 cells for genes that interfere with proliferation, we have identified a fragment of UHRF1 (ubiquitin-like protein containing PHD and RING domains 1), a nuclear RING finger protein, that acts as a dominant negative effector of cell growth. Reduction of UHRF1 levels using an UHRF1-specific shRNA decreased growth rates in several tumor cell lines. In addition, treatment of A549 cells with agents that activated different cell cycle checkpoints resulted in down-regulation of UHRF1. The primary sequence of UHRF1 contains a PHD and a RING motif, both of which are structural hallmarks of ubiquitin E3 ligases. We have confirmed using an in vitro autoubiquitination assay that UHRF1 displays RING-dependent E3 ligase activity. Overexpression of a GFP-fused UHRF1 RING mutant that lacks ligase activity sensitizes cells to treatment with various chemotherapeutics. Taken together, our results suggest a general requirement for UHRF1 in tumor cell proliferation and implicate the RING domain of UHRF1 as a functional determinant of growth regulation.
Collapse
|
Journal Article |
20 |
152 |
6
|
Holland SJ, Powell MJ, Franci C, Chan EW, Friera AM, Atchison RE, McLaughlin J, Swift SE, Pali ES, Yam G, Wong S, Lasaga J, Shen MR, Yu S, Xu W, Hitoshi Y, Bogenberger J, Nör JE, Payan DG, Lorens JB. Multiple roles for the receptor tyrosine kinase axl in tumor formation. Cancer Res 2005; 65:9294-303. [PMID: 16230391 DOI: 10.1158/0008-5472.can-05-0993] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A focus of contemporary cancer therapeutic development is the targeting of both the transformed cell and the supporting cellular microenvironment. Cell migration is a fundamental cellular behavior required for the complex interplay between multiple cell types necessary for tumor development. We therefore developed a novel retroviral-based screening technology in primary human endothelial cells to discover genes that control cell migration. We identified the receptor tyrosine kinase Axl as a novel regulator of endothelial cell haptotactic migration towards the matrix factor vitronectin. Using small interfering RNA-mediated silencing and overexpression of wild-type or mutated receptor proteins, we show that Axl is a key regulator of multiple angiogenic behaviors including endothelial cell migration, proliferation, and tube formation in vitro. Moreover, using sustained, retrovirally delivered short hairpin RNA (shRNA) Axl knockdown, we show that Axl is necessary for in vivo angiogenesis in a mouse model. Furthermore, we show that Axl is also required for human breast carcinoma cells to form a tumor in vivo. These findings indicate that Axl regulates processes vital for both neovascularization and tumorigenesis. Disruption of Axl signaling using a small-molecule inhibitor will hence simultaneously affect both the tumor and stromal cell compartments and thus represents a unique approach for cancer therapeutic development.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/blood supply
- Breast Neoplasms/enzymology
- Cell Growth Processes/physiology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Transformation, Neoplastic/metabolism
- Cells, Cultured
- Chemotaxis/drug effects
- Chemotaxis/physiology
- Coculture Techniques
- Endothelial Cells/cytology
- Endothelial Cells/enzymology
- Humans
- Mice
- Mice, SCID
- Neovascularization, Pathologic/enzymology
- Neovascularization, Pathologic/genetics
- Neovascularization, Physiologic/genetics
- Neovascularization, Physiologic/physiology
- Oncogene Proteins/antagonists & inhibitors
- Oncogene Proteins/biosynthesis
- Oncogene Proteins/genetics
- Oncogene Proteins/physiology
- Proto-Oncogene Proteins
- RNA, Small Interfering/genetics
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Signal Transduction
- Transfection
- Transplantation, Heterologous
- Vitronectin/pharmacology
- Axl Receptor Tyrosine Kinase
Collapse
|
Journal Article |
20 |
147 |
7
|
Ludwig KF, Du W, Sorrelle NB, Wnuk-Lipinska K, Topalovski M, Toombs JE, Cruz VH, Yabuuchi S, Rajeshkumar NV, Maitra A, Lorens JB, Brekken RA. Small-Molecule Inhibition of Axl Targets Tumor Immune Suppression and Enhances Chemotherapy in Pancreatic Cancer. Cancer Res 2017; 78:246-255. [PMID: 29180468 DOI: 10.1158/0008-5472.can-17-1973] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/02/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022]
Abstract
Activation of the receptor tyrosine kinase Axl is associated with poor outcomes in pancreatic cancer (PDAC), where it coordinately mediates immune evasion and drug resistance. Here, we demonstrate that the selective Axl kinase inhibitor BGB324 targets the tumor-immune interface to blunt the aggressive traits of PDAC cells in vitro and enhance gemcitibine efficacy in vivo Axl signaling stimulates the TBK1-NFκB pathway and innate immune suppression in the tumor microenvironment. In tumor cells, BGB324 treatment drove epithelial differentiation, expression of nucleoside transporters affecting gemcitabine response, and an immune stimulatory microenvironment. Our results establish a preclinical mechanistic rationale for the clinical development of Axl inhibitors to improve the treatment of PDAC patients.Significance: These results establish a preclinical mechanistic rationale for the clinical development of AXL inhibitors to improve the treatment of PDAC patients. Cancer Res; 78(1); 246-55. ©2017 AACR.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
118 |
8
|
Mileusnic D, Lee JM, Magnuson DJ, Hejna MJ, Krause JE, Lorens JB, Lorens SA. Neurokinin-3 receptor distribution in rat and human brain: an immunohistochemical study. Neuroscience 1999; 89:1269-90. [PMID: 10362314 DOI: 10.1016/s0306-4522(98)00349-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Autoradiographic and immunohistochemical studies have shown that the neurokinin-3 receptor is widely distributed in the rodent CNS. Expression of the neurokinin-3 receptor in human brain, however, has been debated. These conflicting findings, as well as the poor resolution of autoradiographic images, prompted us to develop a polyclonal antibody against an oligopeptide derived from the carboxy-terminus consensus sequence of both the rat and human neurokinin-3 receptor ([C]ASTTSSFISSPYTSVDEYS, amino acids 434-452 of the rat neurokinin-3 receptor). Western blot analysis of both human and rat brain tissue revealed a major band in the molecular weight range 65,000-67,000, the proposed molecular weight of the neurokinin-3 receptor based on its amino acid sequence and presumed glycosylation state. The distribution of selective high affinity neurokinin-3 receptor agonist [3H]senktide binding and neurokinin-3 receptor immunoreactivity were virtually identical in the brains of male Fischer 344 rats. The highest concentrations of neurokinin-3 receptors were observed in cortical layers IV-V; the basolateral amygdaloid nucleus; the hypothalamic paraventricular, perifornical and supraoptic nuclei; the zona incerta; and the entopeduncular and interpeduncular nuclei. [3H]senktide binding and neurokinin-3 receptor immunoreactivity were compared in homologous cortical areas of the human and rat brain. In contrast to the rat, autoradiographic analysis of normal control human brains (35-75 years) revealed a distinct and predominant superficial cortical labeling in the glia limitans and the cortical layer I. However, neurokinin-3 receptor immunoreactivity could be found not only in the superficial cortical layers, but also on pyramidal neurons and astrocytes in the neuropil and white matter. These findings suggest species differences in both the cellular and anatomical distribution of the neurokinin-3 receptor.
Collapse
|
|
26 |
110 |
9
|
Evensen L, Micklem DR, Blois A, Berge SV, Aarsæther N, Littlewood-Evans A, Wood J, Lorens JB. Mural cell associated VEGF is required for organotypic vessel formation. PLoS One 2009; 4:e5798. [PMID: 19495422 PMCID: PMC2688382 DOI: 10.1371/journal.pone.0005798] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 04/17/2009] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Blood vessels comprise endothelial cells, mural cells (pericytes/vascular smooth muscle cells) and basement membrane. During angiogenesis, mural cells are recruited to sprouting endothelial cells and define a stabilizing context, comprising cell-cell contacts, secreted growth factors and extracellular matrix components, that drives vessel maturation and resistance to anti-angiogenic therapeutics. METHODS AND FINDINGS To better understand the basis for mural cell regulation of angiogenesis, we conducted high content imaging analysis on a microtiter plate format in vitro organotypic blood vessel system comprising primary human endothelial cells co-cultured with primary human mural cells. We show that endothelial cells co-cultured with mural cells undergo an extensive series of phenotypic changes reflective of several facets of blood vessel formation and maturation: Loss of cell proliferation, pathfinding-like cell migration, branching morphogenesis, basement membrane extracellular matrix protein deposition, lumen formation, anastamosis and development of a stabilized capillary-like network. This phenotypic sequence required endothelial-mural cell-cell contact, mural cell-derived VEGF and endothelial VEGFR2 signaling. Inhibiting formation of adherens junctions or basement membrane structures abrogated network formation. Notably, inhibition of mural cell VEGF expression could not be rescued by exogenous VEGF. CONCLUSIONS These results suggest a unique role for mural cell-associated VEGF in driving vessel formation and maturation.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
110 |
10
|
Kirane A, Ludwig KF, Sorrelle N, Haaland G, Sandal T, Ranaweera R, Toombs JE, Wang M, Dineen SP, Micklem D, Dellinger MT, Lorens JB, Brekken RA. Warfarin Blocks Gas6-Mediated Axl Activation Required for Pancreatic Cancer Epithelial Plasticity and Metastasis. Cancer Res 2015. [PMID: 26206560 DOI: 10.1158/0008-5472.can-14-2887-t] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Repurposing "old" drugs can facilitate rapid clinical translation but necessitates novel mechanistic insight. Warfarin, a vitamin K "antagonist" used clinically for the prevention of thrombosis for more than 50 years, has been shown to have anticancer effects. We hypothesized that the molecular mechanism underlying its antitumor activity is unrelated to its effect on coagulation, but is due to inhibition of the Axl receptor tyrosine kinase on tumor cells. Activation of Axl by its ligand Gas6, a vitamin K-dependent protein, is inhibited at doses of warfarin that do not affect coagulation. Here, we show that inhibiting Gas6-dependent Axl activation with low-dose warfarin, or with other tumor-specific Axl-targeting agents, blocks the progression and spread of pancreatic cancer. Warfarin also inhibited Axl-dependent tumor cell migration, invasiveness, and proliferation while increasing apoptosis and sensitivity to chemotherapy. We conclude that Gas6-induced Axl signaling is a critical driver of pancreatic cancer progression and its inhibition with low-dose warfarin or other Axl-targeting agents may improve outcome in patients with Axl-expressing tumors.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
103 |
11
|
Perez OD, Kinoshita S, Hitoshi Y, Payan DG, Kitamura T, Nolan GP, Lorens JB. Activation of the PKB/AKT pathway by ICAM-2. Immunity 2002; 16:51-65. [PMID: 11825565 DOI: 10.1016/s1074-7613(02)00266-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We identified intracellular adhesion molecule-2 (ICAM-2) in a genetic screen as an activator of the PI3K/AKT pathway leading to inhibition of apoptosis. ICAM-2 induced tyrosine phosphorylation of ezrin and PI3K kinase membrane translocation, resulting in phosphatidylinositol 3,4,5 production, PDK-1 and AKT activation, and subsequent phosphorylation of AKT targets BAD, GSK3, and FKHR. ICAM-2 clustering protected primary human CD19+ cells from TNFalpha- and Fas-mediated apoptosis as determined by single-cell analysis. ICAM-2 engagement by CD19+ cells of its natural receptor, LFA-1, on CD4+ naive cells specifically induced AKT activity in the absence of an MHC-peptide interaction. These results attribute a novel signaling function to ICAM-2 that might suggest mechanisms by which ICAM-2 signals intracellular communication at various immunological synapses.
Collapse
|
|
23 |
97 |
12
|
Demo SD, Masuda E, Rossi AB, Throndset BT, Gerard AL, Chan EH, Armstrong RJ, Fox BP, Lorens JB, Payan DG, Scheller RH, Fisher JM. Quantitative measurement of mast cell degranulation using a novel flow cytometric annexin-V binding assay. CYTOMETRY 1999; 36:340-8. [PMID: 10404150 DOI: 10.1002/(sici)1097-0320(19990801)36:4<340::aid-cyto9>3.0.co;2-c] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Mast cells are primary mediators of allergic inflammation. Antigen-mediated crosslinking of their cell surface immunoglobulin E (IgE) receptors results in degranulation and the release of proinflammatory mediators including histamine, tumor necrosis factor-alpha, and leukotrienes. METHODS Mast cells were stimulated to degranulate by using either IgE crosslinking or ionophore treatment. Exogenously added annexin-V was used to stain exocytosing granules, and the extent of binding was measured flow cytometrically. Release of the enzyme beta-hexosaminidase was used for population-based measurements of degranulation. Two known inhibitors of degranulation, the phosphatidylinositol 3 kinase inhibitor wortmannin and overexpression of a mutant rab3d protein, were used as controls to validate the annexin-V binding assay. RESULTS Annexin-V specifically bound to mast cell granules exposed after stimulation in proportion to the extent of degranulation. Annexin-V binding was calcium dependent and was blocked by phosphatidylserine containing liposomes, consistent with specific binding to this membrane lipid. Visualization of annexin-V staining showed granular cell surface patches that colocalized with the exocytic granule marker VAMP-green fluorescent protein (GFP). Wortmannin inhibited both annexin-V binding and beta-hexosaminidase release in RBL-2H3 cells, as did the expression of a dominant negative rab3d mutant protein. CONCLUSIONS The annexin-V binding assay represents a powerful new flow cytometric method to monitor mast cell degranulation for functional analysis.
Collapse
|
|
26 |
96 |
13
|
Virtakoivu R, Mai A, Mattila E, De Franceschi N, Imanishi SY, Corthals G, Kaukonen R, Saari M, Cheng F, Torvaldson E, Kosma VM, Mannermaa A, Muharram G, Gilles C, Eriksson J, Soini Y, Lorens JB, Ivaska J. Vimentin-ERK Signaling Uncouples Slug Gene Regulatory Function. Cancer Res 2015; 75:2349-62. [PMID: 25855378 DOI: 10.1158/0008-5472.can-14-2842] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/22/2015] [Indexed: 11/16/2022]
Abstract
Epithelial-mesenchymal transition (EMT) in cells is a developmental process adopted during tumorigenesis that promotes metastatic capacity. In this study, we advance understanding of EMT control in cancer cells with the description of a novel vimentin-ERK axis that regulates the transcriptional activity of Slug (SNAI2). Vimentin, ERK, and Slug exhibited overlapping subcellular localization in clinical specimens of triple-negative breast carcinoma. RNAi-mediated ablation of these gene products inhibited cancer cell migration and cell invasion through a laminin-rich matrix. Biochemical analyses demonstrated direct interaction of vimentin and ERK, which promoted ERK activation and enhanced vimentin transcription. Consistent with its role as an intermediate filament, vimentin acted as a scaffold to recruit Slug to ERK and promote Slug phosphorylation at serine-87. Site-directed mutagenesis established a requirement for ERK-mediated Slug phosphorylation in EMT initiation. Together, these findings identified a pivotal step in controlling the ability of Slug to organize hallmarks of EMT.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
94 |
14
|
Stapnes C, Døskeland AP, Hatfield K, Ersvaer E, Ryningen A, Lorens JB, Gjertsen BT, Bruserud O. The proteasome inhibitors bortezomib and PR-171 have antiproliferative and proapoptotic effects on primary human acute myeloid leukaemia cells. Br J Haematol 2007; 136:814-28. [PMID: 17341267 DOI: 10.1111/j.1365-2141.2007.06504.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proteasome inhibitors represent a new class of antineoplastic drugs that are considered in the treatment of haematological malignancies. We compared the effects of the reversible proteasome inhibitor bortezomib (Velcade) and the epoxomicin derivative PR-171, an irreversible inhibitor, on primary human acute myeloid leukaemia (AML) cells. Both drugs inhibited autocrine- and cytokine-dependent proliferation of primary AML blasts when tested at nanomolar levels (0.1-100 nmol/l). The antiproliferative effect was independent of basal chymotrypsin-like proteasome activity (showing a 20-fold variation between patients), genetic abnormalities, morphological differentiation and CD34 expression when testing a large group of consecutive patients (n = 54). The effect was retained in cocultures with bone marrow stromal cells. In addition, both drugs enhanced apoptosis. The effect of PR-171 could be detected at lower concentrations than for bortezomib, especially when testing the influence on clonogenic AML cell proliferation. Both drugs had divergent effects on AML cells' constitutive cytokine release. Furthermore, both drugs caused a decrease in proliferation and viability when tested in combination with idarubicin or cytarabine. An antiproliferative effect on primary human acute lymphoblastic leukaemia cells was also detected. We conclude that nanomolar levels of the proteasome inhibitors tested had dose-dependent antiproliferative and proapoptotic effects on primary AML cells in vitro.
Collapse
|
|
18 |
92 |
15
|
Male R, Lorens JB, Smalas AO, Torrissen KR. Molecular Cloning and Characterization of Anionic and Cationic Variants of Trypsin from Atlantic Salmon. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.677zz.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
30 |
69 |
16
|
Xu X, Leo C, Jang Y, Chan E, Padilla D, Huang BC, Lin T, Gururaja T, Hitoshi Y, Lorens JB, Anderson DC, Sikic B, Luo Y, Payan DG, Nolan GP. Dominant effector genetics in mammalian cells. Nat Genet 2001; 27:23-9. [PMID: 11137994 DOI: 10.1038/83717] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have expressed libraries of peptides in mammalian cells to select for trans-dominant effects on intracellular signaling systems. As an example-and to reveal pharmacologically relevant points in pathways that lead to Taxol resistance-we selected for peptide motifs that confer resistance to Taxol-induced cell death. Of several peptides selected, one, termed RGP8.5, was linked to upregulation of expression of the gene ABCB1 (also known as MDR1, for multiple drug resistance) in HeLa cells. Our data indicate that trans-dominant effector peptides can point to potential mechanisms by which signaling systems operate. Such tools may be useful in functional genomic analysis of signaling pathways in mammalian disease processes.
Collapse
|
|
24 |
68 |
17
|
Lotsberg ML, Wnuk-Lipinska K, Terry S, Tan TZ, Lu N, Trachsel-Moncho L, Røsland GV, Siraji MI, Hellesøy M, Rayford A, Jacobsen K, Ditzel HJ, Vintermyr OK, Bivona TG, Minna J, Brekken RA, Baguley B, Micklem D, Akslen LA, Gausdal G, Simonsen A, Thiery JP, Chouaib S, Lorens JB, Engelsen AST. AXL Targeting Abrogates Autophagic Flux and Induces Immunogenic Cell Death in Drug-Resistant Cancer Cells. J Thorac Oncol 2020; 15:973-999. [PMID: 32018052 PMCID: PMC7397559 DOI: 10.1016/j.jtho.2020.01.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/29/2019] [Accepted: 01/19/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Acquired cancer therapy resistance evolves under selection pressure of immune surveillance and favors mechanisms that promote drug resistance through cell survival and immune evasion. AXL receptor tyrosine kinase is a mediator of cancer cell phenotypic plasticity and suppression of tumor immunity, and AXL expression is associated with drug resistance and diminished long-term survival in a wide range of malignancies, including NSCLC. METHODS We aimed to investigate the mechanisms underlying AXL-mediated acquired resistance to first- and third-generation small molecule EGFR tyrosine kinase inhibitors (EGFRi) in NSCLC. RESULTS We found that EGFRi resistance was mediated by up-regulation of AXL, and targeting AXL reduced reactivation of the MAPK pathway and blocked onset of acquired resistance to long-term EGFRi treatment in vivo. AXL-expressing EGFRi-resistant cells revealed phenotypic and cell signaling heterogeneity incompatible with a simple bypass signaling mechanism, and were characterized by an increased autophagic flux. AXL kinase inhibition by the small molecule inhibitor bemcentinib or siRNA mediated AXL gene silencing was reported to inhibit the autophagic flux in vitro, bemcentinib treatment blocked clonogenicity and induced immunogenic cell death in drug-resistant NSCLC in vitro, and abrogated the transcription of autophagy-associated genes in vivo. Furthermore, we found a positive correlation between AXL expression and autophagy-associated gene signatures in a large cohort of human NSCLC (n = 1018). CONCLUSION Our results indicate that AXL signaling supports a drug-resistant persister cell phenotype through a novel autophagy-dependent mechanism and reveals a unique immunogenic effect of AXL inhibition on drug-resistant NSCLC cells.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
65 |
18
|
Bohan D, Van Ert H, Ruggio N, Rogers KJ, Badreddine M, Aguilar Briseño JA, Elliff JM, Rojas Chavez RA, Gao B, Stokowy T, Christakou E, Kursula P, Micklem D, Gausdal G, Haim H, Minna J, Lorens JB, Maury W. Phosphatidylserine receptors enhance SARS-CoV-2 infection. PLoS Pathog 2021; 17:e1009743. [PMID: 34797899 PMCID: PMC8641883 DOI: 10.1371/journal.ppat.1009743] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/03/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023] Open
Abstract
Phosphatidylserine (PS) receptors enhance infection of many enveloped viruses through virion-associated PS binding that is termed apoptotic mimicry. Here we show that this broadly shared uptake mechanism is utilized by SARS-CoV-2 in cells that express low surface levels of ACE2. Expression of members of the TIM (TIM-1 and TIM-4) and TAM (AXL) families of PS receptors enhance SARS-CoV-2 binding to cells, facilitate internalization of fluorescently-labeled virions and increase ACE2-dependent infection of SARS-CoV-2; however, PS receptors alone did not mediate infection. We were unable to detect direct interactions of the PS receptor AXL with purified SARS-CoV-2 spike, contrary to a previous report. Instead, our studies indicate that the PS receptors interact with PS on the surface of SARS-CoV-2 virions. In support of this, we demonstrate that: 1) significant quantities of PS are located on the outer leaflet of SARS-CoV-2 virions, 2) PS liposomes, but not phosphatidylcholine liposomes, reduced entry of VSV/Spike pseudovirions and 3) an established mutant of TIM-1 which does not bind to PS is unable to facilitate entry of SARS-CoV-2. As AXL is an abundant PS receptor on a number of airway lines, we evaluated small molecule inhibitors of AXL signaling such as bemcentinib for their ability to inhibit SARS-CoV-2 infection. Bemcentinib robustly inhibited virus infection of Vero E6 cells as well as multiple human lung cell lines that expressed AXL. This inhibition correlated well with inhibitors that block endosomal acidification and cathepsin activity, consistent with AXL-mediated uptake of SARS-CoV-2 into the endosomal compartment. We extended our observations to the related betacoronavirus mouse hepatitis virus (MHV), showing that inhibition or ablation of AXL reduces MHV infection of murine cells. In total, our findings provide evidence that PS receptors facilitate infection of the pandemic coronavirus SARS-CoV-2 and suggest that inhibition of the PS receptor AXL has therapeutic potential against SARS-CoV-2. Phosphatidylserine (PS) receptors bind PS and mediate uptake of apoptotic bodies. Many enveloped viruses utilize this PS/PS receptor mechanism to adhere to and internalize into the endosomal compartment of cells. For viruses that have a mechanism(s) of endosomal escape, apoptotic mimicry is a productive route of virus entry. This clever use of this uptake mechanism by enveloped viruses is termed apoptotic mimicry. We evaluated if PS receptors serve as cell surface receptors for SARS-CoV-2 and found that the PS receptors, AXL, TIM-1 and TIM-4, facilitated virus infection when the SARS-CoV-2 cognate receptor, ACE2, was present. Consistent with the established mechanism of PS receptor utilization by other viruses, PS liposomes competed with SARS-CoV-2 for binding and entry. PS is readily detectable on the surface of SARS-CoV-2 virions, and contrary to prior reports we were unable to identify any interaction between AXL and SARS-CoV-2 spike. Pharmacological inhibition of AXL activity and knockout of AXL expression suggest it is the preferred PS receptor during SARS-CoV-2 entry. We propose that AXL is an under-appreciated but potentially important host factor facilitating SARS-CoV-2 entry.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
60 |
19
|
Pelissier FA, Garbe JC, Ananthanarayanan B, Miyano M, Lin C, Jokela T, Kumar S, Stampfer MR, Lorens JB, LaBarge MA. Age-related dysfunction in mechanotransduction impairs differentiation of human mammary epithelial progenitors. Cell Rep 2014; 7:1926-39. [PMID: 24910432 DOI: 10.1016/j.celrep.2014.05.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 04/15/2014] [Accepted: 05/08/2014] [Indexed: 11/29/2022] Open
Abstract
Dysfunctional progenitor and luminal cells with acquired basal cell properties accumulate during human mammary epithelial aging for reasons not understood. Multipotent progenitors from women aged <30 years were exposed to a physiologically relevant range of matrix elastic modulus (stiffness). Increased stiffness causes a differentiation bias towards myoepithelial cells while reducing production of luminal cells and progenitor maintenance. Lineage representation in progenitors from women >55 years is unaffected by physiological stiffness changes. Efficient activation of Hippo pathway transducers YAP and TAZ is required for the modulus-dependent myoepithelial/basal bias in younger progenitors. In older progenitors, YAP and TAZ are activated only when stressed with extraphysiologically stiff matrices, which bias differentiation towards luminal-like phenotypes. In vivo YAP is primarily active in myoepithelia of younger breasts, but localization and activity increases in luminal cells with age. Thus, aging phenotypes of mammary epithelia may arise partly because alterations in Hippo pathway activation impair microenvironment-directed differentiation and lineage specificity.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
55 |
20
|
Terry S, Buart S, Tan TZ, Gros G, Noman MZ, Lorens JB, Mami-Chouaib F, Thiery JP, Chouaib S. Acquisition of tumor cell phenotypic diversity along the EMT spectrum under hypoxic pressure: Consequences on susceptibility to cell-mediated cytotoxicity. Oncoimmunology 2017; 6:e1271858. [PMID: 28344883 DOI: 10.1080/2162402x.2016.1271858] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 01/06/2023] Open
Abstract
Tumor escape to immunosurveillance and resistance to immune attacks present a major hurdle in cancer therapy, especially in the current era of new cancer immunotherapies. We report here that hypoxia, a hallmark of most solid tumors, orchestrates carcinoma cell heterogeneity through the induction of phenotypic diversity and the acquisition of distinct epithelial-mesenchymal transition (EMT) states. Using lung adenocarcinoma cells derived from a non-metastatic patient, we demonstrated that hypoxic stress induced phenotypic diversity along the EMT spectrum, with induction of EMT transcription factors (EMT-TFs) SNAI1, SNAI2, TWIST1, and ZEB2 in a hypoxia-inducible factor-1α (HIF1A)-dependent or -independent manner. Analysis of hypoxia-exposed tumor subclones, with pronounced epithelial or mesenchymal phenotypes, revealed that mesenchymal subclones exhibited an increased propensity to resist cytotoxic T lymphocytes (CTL), and natural killer (NK) cell-mediated lysis by a mechanism involving defective immune synapse signaling. Additionally, targeting EMT-TFs, or inhibition of TGF-β signaling, attenuated mesenchymal subclone susceptibility to immune attack. Together, these findings uncover hypoxia-induced EMT and heterogeneity as a novel driving escape mechanism to lymphocyte-mediated cytotoxicity, with the potential to provide new therapeutic opportunities for cancer patients.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
55 |
21
|
Pedersen TO, Blois AL, Xue Y, Xing Z, Sun Y, Finne-Wistrand A, Lorens JB, Fristad I, Leknes KN, Mustafa K. Mesenchymal stem cells induce endothelial cell quiescence and promote capillary formation. Stem Cell Res Ther 2014; 5:23. [PMID: 24533904 PMCID: PMC4055064 DOI: 10.1186/scrt412] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/12/2014] [Indexed: 01/13/2023] Open
Abstract
Introduction Rapid establishment of functional blood vessels is a prerequisite for successful tissue engineering. During vascular development, endothelial cells (ECs) and perivascular cells assemble into a complex regulating proliferation of ECs, vessel diameter and production of extracellular matrix proteins. The aim of this study was to evaluate the ability of mesenchymal stem cells (MSCs) to establish an endothelial-perivascular complex in tissue-engineered constructs comprising ECs and MSCs. Methods Primary human ECs and MSCs were seeded onto poly(L-lactide-co-1,5-dioxepan-2-one) (poly(LLA-co-DXO)) scaffolds and grown in dynamic culture before subcutaneous implantation in immunocompromised mice for 1 and 3 weeks. Cellular activity, angiogenic stimulation and vascular assembly in cell/scaffold constructs seeded with ECs or ECs/MSCs in a 5:1 ratio was monitored with real-time RT-PCR, ELISA and immunohistochemical microscopy analysis. Results A quiescent phenotype of ECs was generated, by adding MSCs to the culture system. Decreased proliferation of ECs, in addition to up-regulation of selected markers for vascular maturation was demonstrated. Baseline expression of VEGFa was higher for MSCs compared with EC (P <0.001), with subsequent up-regulated VEGFa-expression for EC/MSC constructs before (P <0.05) and after implantation (P <0.01). Furthermore, an inflammatory response with CD11b + cells was generated from implantation of human cells. At the end of the 3 week experimental period, a higher vascular density was shown for both cellular constructs compared with empty control scaffolds (P <0.01), with the highest density of capillaries being generated in constructs comprising both ECs and MSCs. Conclusions Induction of a quiescent phenotype of ECs associated with vascular maturation can be achieved by co-seeding with MSCs. Hence, MSCs can be appropriate perivascular cells for tissue-engineered constructs.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
52 |
22
|
Haaland GS, Falk RS, Straume O, Lorens JB. Association of Warfarin Use With Lower Overall Cancer Incidence Among Patients Older Than 50 Years. JAMA Intern Med 2017; 177:1774-1780. [PMID: 29114736 PMCID: PMC5820735 DOI: 10.1001/jamainternmed.2017.5512] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE In cancer models, warfarin inhibits AXL receptor tyrosine kinase-dependent tumorigenesis and enhances antitumor immune responses at doses not reaching anticoagulation levels. This study investigates the association between warfarin use and cancer incidence in a large, unselected population-based cohort. OBJECTIVE To examine the association between warfarin use and cancer incidence. DESIGN, SETTING, AND PARTICIPANTS This population-based cohort study with subgroup analysis used the Norwegian National Registry coupled with the Norwegian Prescription Database and the Cancer Registry of Norway. The cohort comprised all persons (N = 1 256 725) born between January 1, 1924, and December 31, 1954, who were residing in Norway from January 1, 2006, through December 31, 2012. The cohort was divided into 2 groups-warfarin users and nonusers; persons taking warfarin for atrial fibrillation or atrial flutter were the subgroup. Data were collected from January 1, 2004, to December 31, 2012. Data analysis was conducted from October 15, 2016, to January 31, 2017. EXPOSURES Warfarin use was defined as taking at least 6 months of a prescription and at least 2 years from first prescription to any cancer diagnosis. If warfarin treatment started after January 1, 2006, each person contributed person-time in the nonuser group until the warfarin user criteria were fulfilled. MAIN OUTCOMES AND MEASURES Cancer diagnosis of any type during the 7-year observation period (January 1, 2006, through December 31, 2012). RESULTS Of the 1 256 725 persons in the cohort, 607 350 (48.3%) were male, 649 375 (51.7%) were female, 132 687 (10.6%) had cancer, 92 942 (7.4%) were classified as warfarin users, and 1 163 783 (92.6%) were classified as nonusers. Warfarin users were older, with a mean (SD) age of 70.2 (8.2) years, and were predominantly men (57 370 [61.7%]) as compared with nonusers, who had a mean (SD) age of 63.9 (8.6) years and were mostly women (613 803 [52.7%]). Among warfarin users and compared with nonusers, there was a significantly lower age- and sex-adjusted incidence rate ratio (IRR) in all cancer sites (IRR, 0.84; 95% CI, 0.82-0.86) and in prevalent organ-specific sites (lung, 0.80 [95% CI, 0.75-0.86]; prostate, 0.69 [95% CI, 0.65-0.72]; and breast, 0.90 [95% CI, 0.82-1.00]). There was no observed significant effect in colon cancer (IRR, 0.99; 95% CI, 0.93-1.06). In a subgroup analysis of patients with atrial fibrillation or atrial flutter, the IRR was lower in all cancer sites (IRR, 0.62; 95% CI, 0.59-0.65) and in prevalent sites (lung, 0.39 [95% CI, 0.33-0.46]; prostate, 0.60 [95% CI, 0.55-0.66]; breast, 0.72 [95% CI, 0.59-0.87]; and colon, 0.71 [95% CI, 0.63-0.81]). CONCLUSIONS AND RELEVANCE Warfarin use may have broad anticancer potential in a large, population-based cohort of persons older than 50 years. This finding could have important implications for the selection of medications for patients needing anticoagulation.
Collapse
|
research-article |
8 |
52 |
23
|
Nikolaisen J, Nilsson LIH, Pettersen IKN, Willems PHGM, Lorens JB, Koopman WJH, Tronstad KJ. Automated quantification and integrative analysis of 2D and 3D mitochondrial shape and network properties. PLoS One 2014; 9:e101365. [PMID: 24988307 PMCID: PMC4079598 DOI: 10.1371/journal.pone.0101365] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 06/05/2014] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial morphology and function are coupled in healthy cells, during pathological conditions and (adaptation to) endogenous and exogenous stress. In this sense mitochondrial shape can range from small globular compartments to complex filamentous networks, even within the same cell. Understanding how mitochondrial morphological changes (i.e. “mitochondrial dynamics”) are linked to cellular (patho) physiology is currently the subject of intense study and requires detailed quantitative information. During the last decade, various computational approaches have been developed for automated 2-dimensional (2D) analysis of mitochondrial morphology and number in microscopy images. Although these strategies are well suited for analysis of adhering cells with a flat morphology they are not applicable for thicker cells, which require a three-dimensional (3D) image acquisition and analysis procedure. Here we developed and validated an automated image analysis algorithm allowing simultaneous 3D quantification of mitochondrial morphology and network properties in human endothelial cells (HUVECs). Cells expressing a mitochondria-targeted green fluorescence protein (mitoGFP) were visualized by 3D confocal microscopy and mitochondrial morphology was quantified using both the established 2D method and the new 3D strategy. We demonstrate that both analyses can be used to characterize and discriminate between various mitochondrial morphologies and network properties. However, the results from 2D and 3D analysis were not equivalent when filamentous mitochondria in normal HUVECs were compared with circular/spherical mitochondria in metabolically stressed HUVECs treated with rotenone (ROT). 2D quantification suggested that metabolic stress induced mitochondrial fragmentation and loss of biomass. In contrast, 3D analysis revealed that the mitochondrial network structure was dissolved without affecting the amount and size of the organelles. Thus, our results demonstrate that 3D imaging and quantification are crucial for proper understanding of mitochondrial shape and topology in non-flat cells. In summary, we here present an integrative method for unbiased 3D quantification of mitochondrial shape and network properties in mammalian cells.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
52 |
24
|
Terry S, Dalban C, Rioux Leclercq N, Adam J, Meylan M, Buart S, Bougoüin A, Lespagnol A, Dugay F, Colina Moreno I, Lacroix G, Lorens JB, Gausdal G, Fridman WH, Mami-Chouaib F, Chaput N, Beuselinck B, Chabaud S, Barros Monteiro J, Vano Y, Escudier B, Sautes-Fridman C, Albiges L, Chouaib S. Association of AXL and PD-L1 expression with clinical outcomes in patients with advanced renal cell carcinoma treated with PD-1 blockade. Clin Cancer Res 2021; 27:6749-6760. [PMID: 34407968 DOI: 10.1158/1078-0432.ccr-21-0972] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE A minority of patients currently respond to single agent immune checkpoint blockade (ICB) and strategies to increase response rates are urgently needed. AXL is receptor tyrosine kinase commonly associated with drug-resistance and poor prognosis in many cancer types including in clear-cell renal cell carcinoma (ccRCC). Recent experimental cues in breast, pancreatic and lung cancer models have linked AXL with immune suppression and resistance to antitumor immunity. However, its role in intrinsic and acquired resistance to ICB remains largely unexplored. EXPERIMENTAL DESIGN In this study, tumoral expression of AXL was examined in ccRCC specimens from 316 metastatic patients receiving PD-1 inhibitor, nivolumab, in the GETUG AFU 26 NIVOREN trial after failure of anti-angiogenic therapy. We assessed associations between AXL and patient outcomes following PD-1 blockade, as well as the relationship with various markers including PD-L1, VEGFA, the immune markers CD3, CD8, CD163, CD20, and the mutational status of the tumor suppressor gene VHL Results: Our results show that high AXL expression levels in tumor cells is associated with lower response rates and a trend to shorter progression-free survival following anti-PD-1 treatment. AXL expression was strongly associated with tumor PD-L1 expression, especially in tumors with VHL inactivation. Moreover, patients with tumors displaying concomitant PD-L1 expression and high AXL expression had the worst overall survival. CONCLUSIONS Our findings propose AXL as candidate factor of resistance to PD-1 blockade, and provide compelling support for screening both AXL and PD-L1 expression in the management of advanced ccRCC.
Collapse
|
|
4 |
51 |
25
|
Terry S, Abdou A, Engelsen AST, Buart S, Dessen P, Corgnac S, Collares D, Meurice G, Gausdal G, Baud V, Saintigny P, Lorens JB, Thiery JP, Mami-Chouaib F, Chouaib S. AXL Targeting Overcomes Human Lung Cancer Cell Resistance to NK- and CTL-Mediated Cytotoxicity. Cancer Immunol Res 2019; 7:1789-1802. [PMID: 31488404 DOI: 10.1158/2326-6066.cir-18-0903] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/29/2019] [Accepted: 08/30/2019] [Indexed: 11/16/2022]
Abstract
Immune resistance may arise from both genetic instability and tumor heterogeneity. Microenvironmental stresses such as hypoxia and various resistance mechanisms promote carcinoma cell plasticity. AXL, a member of the TAM (Tyro3, Axl, and Mer) receptor tyrosine kinase family, is widely expressed in human cancers and increasingly recognized for its role in cell plasticity and drug resistance. To investigate mechanisms of immune resistance, we studied multiple human lung cancer clones derived from a model of hypoxia-induced tumor plasticity that exhibited mesenchymal or epithelial features. We demonstrate that AXL expression is increased in mesenchymal lung cancer clones. Expression of AXL in the cells correlated with increased cancer cell-intrinsic resistance to both natural killer (NK)- and cytotoxic T lymphocyte (CTL)-mediated killing. A small-molecule targeting AXL sensitized mesenchymal lung cancer cells to cytotoxic lymphocyte-mediated killing. Mechanistically, we showed that attenuation of AXL-dependent immune resistance involved a molecular network comprising NF-κB activation, increased ICAM1 expression, and upregulation of ULBP1 expression coupled with MAPK inhibition. Higher ICAM1 and ULBP1 tumor expression correlated with improved patient survival in two non-small cell lung cancer (NSCLC) cohorts. These results reveal an AXL-mediated immune-escape regulatory pathway, suggest AXL as a candidate biomarker for tumor resistance to NK and CTL immunity, and support AXL targeting to optimize immune response in NSCLC.
Collapse
|
Journal Article |
6 |
49 |