1
|
Kim Y, Ko JY, Kong HK, Lee M, Chung W, Lim S, Son D, Oh S, Park JW, Kim DY, Lee M, Han W, Park WY, Yoo KH, Park JH. Hypomethylation of ATP1A1 Is Associated with Poor Prognosis and Cancer Progression in Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:1666. [PMID: 38730618 PMCID: PMC11083557 DOI: 10.3390/cancers16091666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Dysregulated DNA methylation in cancer is critical in the transcription machinery associated with cancer progression. Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, but no treatment targeting TNBC biomarkers has yet been developed. To identify specific DNA methylation patterns in TNBC, methyl-binding domain protein 2 (MBD) sequencing data were compared in TNBC and the three other major breast cancer subtypes. Integrated analysis of DNA methylation and gene expression identified a gene set showing a correlation between DNA methylation and gene expression. ATPase Na+/K+-transporting subunit alpha 1 (ATP1A1) was found to be specifically hypomethylated in the coding sequence (CDS) region and to show increased expression in TNBC. The Cancer Genome Atlas (TCGA) database also showed that hypomethylation and high expression of ATP1A1 were strongly associated with poor survival in patients with TNBC. Furthermore, ATP1A1 knockdown significantly reduced the viability and tumor-sphere formation of TNBC cells. These results suggest that the hypomethylation and overexpression of ATP1A1 could be a prognostic marker in TNBC and that the manipulation of ATP1A1 expression could be a therapeutic target in this disease.
Collapse
|
2
|
Oh S, Baek YH, Jung S, Yoon S, Kang B, Han SH, Park G, Ko JY, Han SY, Jeong JS, Cho JH, Roh YH, Lee SW, Choi GB, Lee YS, Kim W, Seong RH, Park JH, Lee YS, Yoo KH. Identification of signature gene set as highly accurate determination of metabolic dysfunction-associated steatotic liver disease progression. Clin Mol Hepatol 2024; 30:247-262. [PMID: 38281815 PMCID: PMC11016492 DOI: 10.3350/cmh.2023.0449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/09/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND/AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by fat accumulation in the liver. MASLD encompasses both steatosis and MASH. Since MASH can lead to cirrhosis and liver cancer, steatosis and MASH must be distinguished during patient treatment. Here, we investigate the genomes, epigenomes, and transcriptomes of MASLD patients to identify signature gene set for more accurate tracking of MASLD progression. METHODS Biopsy-tissue and blood samples from patients with 134 MASLD, comprising 60 steatosis and 74 MASH patients were performed omics analysis. SVM learning algorithm were used to calculate most predictive features. Linear regression was applied to find signature gene set that distinguish the stage of MASLD and to validate their application into independent cohort of MASLD. RESULTS After performing WGS, WES, WGBS, and total RNA-seq on 134 biopsy samples from confirmed MASLD patients, we provided 1,955 MASLD-associated features, out of 3,176 somatic variant callings, 58 DMRs, and 1,393 DEGs that track MASLD progression. Then, we used a SVM learning algorithm to analyze the data and select the most predictive features. Using linear regression, we identified a signature gene set capable of differentiating the various stages of MASLD and verified it in different independent cohorts of MASLD and a liver cancer cohort. CONCLUSION We identified a signature gene set (i.e., CAPG, HYAL3, WIPI1, TREM2, SPP1, and RNASE6) with strong potential as a panel of diagnostic genes of MASLD-associated disease.
Collapse
|
3
|
Seo S, Sonn SK, Kweon HY, Jin J, Kume T, Ko JY, Park JH, Oh GT. Primary Cilium in Neural Crest Cells Crucial for Anterior Segment Development and Corneal Avascularity. Invest Ophthalmol Vis Sci 2024; 65:30. [PMID: 38517430 PMCID: PMC10981158 DOI: 10.1167/iovs.65.3.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Purpose Intraflagellar transport 46 (IFT46) is an integral subunit of the IFT-B complex, playing a key role in the assembly and maintenance of primary cilia responsible for transducing signaling pathways. Despite its predominant expression in the basal body of cilia, the precise role of Ift46 in ocular development remains undetermined. This study aimed to elucidate the impact of neural crest (NC)-specific deletion of Ift46 on ocular development. Methods NC-specific conditional knockout mice for Ift46 (NC-Ift46F/F) were generated by crossing Ift46F mice with Wnt1-Cre2 mice, enabling the specific deletion of Ift46 in NC-derived cells (NCCs). Sonic Hedgehog (Shh) and Notch signaling activities in NC-Ift46F/F mice were evaluated using Gli1lacZ and CBF:H2B-Venus reporter mice, respectively. Cell fate mapping was conducted using ROSAmTmG reporter mice. Results The deletion of Ift46 in NCCs resulted in a spectrum of ocular abnormalities, including thickened corneal stroma, hypoplasia of the anterior chamber, irregular iris morphology, and corneal neovascularization. Notably, this deletion led to reduced Shh signal activity in the periocular mesenchyme, sustained expression of key transcription factors Foxc1, Foxc2 and Pitx2, along with persistent cell proliferation. Additionally, it induced increased Notch signaling activity and the development of ectopic neovascularization within the corneal stroma. Conclusions The absence of primary cilia due to Ift46 deficiency in NCCs is associated with anterior segment dysgenesis (ASD) and corneal neovascularization, suggesting a potential link to Axenfeld-Rieger syndrome, a disorder characterized by ASD. This underscores the pivotal role of primary cilia in ensuring proper anterior segment development and maintaining an avascular cornea.
Collapse
|
4
|
Han SH, Ko JY, Kang ES, Park JH, Yoo KH. Long non-coding RNAs: key regulators of liver and kidney fibrogenesis. BMB Rep 2023:5936. [PMID: 37357534 PMCID: PMC10390290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Fibrosis is a pathological condition that is characterized by an abnormal buildup of extracellular matrix (ECM) components, such as collagen, in tissues. This condition affects various organs of the body, including the liver and kidney. Early diagnosis and treatment of fibrosis are crucial, as it is a progressive and irreversible process in both organs. While there are certain similarities in the fibrosis process between the liver and kidney, there are also significant differences that must be identified to determine molecular diagnostic markers and potential therapeutic targets. Long non-coding RNAs (lncRNAs), a class of RNA molecules that do not code for proteins, are increasingly recognized as playing significant roles in gene expression regulation. Emerging evidence suggests that specific lncRNAs are involved in fibrosis development and progression by modulating signaling pathways, such as the TGF-β/Smad pathway and the β-catenin pathway. Thus, identifying the precise lncRNAs involved in fibrosis could lead to novel therapeutic approaches for fibrotic diseases. In this review, we summarize lncRNAs related to fibrosis in the liver and kidney, and propose their potential as therapeutic targets based on their functions.
Collapse
|
5
|
Ko JY, Park JH. Transcriptional programming of pathogenic genes in polycystic kidney disease. Kidney Int 2023; 103:25-28. [PMID: 36603979 DOI: 10.1016/j.kint.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 01/04/2023]
Abstract
Transcriptional dysregulation is a prominent contributor to the pathogenesis of autosomal dominant polycystic kidney disease. Lakhia et al. identified an enhancer landscape associated with disease genes and its pathologic role in autosomal dominant polycystic kidney disease to understand cyst formation. This commentary discusses these findings reported by Lakhia et al. in the broader contexts of transcriptional programming and the identification of potential autosomal dominant polycystic kidney disease therapeutic targets.
Collapse
|
6
|
Rah G, Cha H, Kim J, Song J, Kim H, Oh YK, Ahn C, Kang M, Kim J, Yoo KH, Kim MJ, Ko HW, Ko JY, Park JH. KLC3 Regulates Ciliary Trafficking and Cyst Progression in CILK1 Deficiency-Related Polycystic Kidney Disease. J Am Soc Nephrol 2022; 33:1726-1741. [PMID: 35961787 PMCID: PMC9529174 DOI: 10.1681/asn.2021111455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/23/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Ciliogenesis-associated kinase 1 (CILK1) is a ciliary gene that localizes in primary cilia and regulates ciliary transport. Mutations in CILK1 cause various ciliopathies. However, the pathogenesis of CILK1-deficient kidney disease is unknown. METHODS To examine whether CILK1 deficiency causes PKD accompanied by abnormal cilia, we generated mice with deletion of Cilk1 in cells of the renal collecting duct. A yeast two-hybrid system and coimmunoprecipitation (co-IP) were used to identify a novel regulator, kinesin light chain-3 (KLC3), of ciliary trafficking and cyst progression in the Cilk1-deficient model. Immunocytochemistry and co-IP were used to examine the effect of KLC3 on ciliary trafficking of the IFT-B complex and EGFR. We evaluated the effects of these genes on ciliary trafficking and cyst progression by modulating CILK1 and KLC3 expression levels. RESULTS CILK1 deficiency leads to PKD accompanied by abnormal ciliary trafficking. KLC3 interacts with CILK1 at cilia bases and is increased in cyst-lining cells of CILK1-deficient mice. KLC3 overexpression promotes ciliary recruitment of IFT-B and EGFR in the CILK1 deficiency condition, which contributes to the ciliary defect in cystogenesis. Reduction in KLC3 rescued the ciliary defects and inhibited cyst progression caused by CILK1 deficiency. CONCLUSIONS Our findings suggest that CILK1 deficiency in renal collecting ducts leads to PKD and promotes ciliary trafficking via increased KLC3.
Collapse
|
7
|
Park JH, Kim Y, Ko JY, Lee SB, Park M. Abstract 5825: Reduced miR-371b-5p expression drives tumor progression via CSDE1/RAC1 regulation in triple-negative breast cancer. Cancer Res 2022. [DOI: 10.1158/1538-7445.am2022-5825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer; however, specific prognostic biomarkers have not yet been developed. In this study, we identified dysregulated microRNAs (miRNAs) in TNBC by profiling miRNA and mRNA expression. In patients with TNBC, miR-371b-5p expression was reduced, and miR-371b-5p overexpression significantly mitigated TNBC cell growth, migration, and invasion. In addition, we found that expression of cold shock domain-containing protein E1 (CSDE1), a direct target gene of miR-371b-5p, was upregulated in TNBC cells, and inhibition of CSDE1 expression alleviated TNBC cell growth by regulating RAC1 transcription. Mechanistically, CSDE1, phosphorylated C-terminal domain (p-CTD) of RNA polymerase II (RNAPII), and CDK7 form a complex, and downregulation of CSDE1 leads to weak interaction between RNAPII p-CTD and CDK7, resulting in a decrease in RNAPII p-CTD expression to reduce RAC1 transcript levels in CSDE1-deficient TNBC cells. Our data demonstrate that miR-371b-5p is a tumor-suppressive miRNA that regulates the CSDE1/Rac1 axis and could be a potential prognostic biomarker for TNBC.
Citation Format: Jong Hoon Park, Yesol Kim, Je Yeong Ko, Soo-Been Lee, Minah Park. Reduced miR-371b-5p expression drives tumor progression via CSDE1/RAC1 regulation in triple-negative breast cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 5825.
Collapse
|
8
|
Jun JH, Lee EJ, Park M, Ko JY, Park JH. Reduced expression of TAZ inhibits primary cilium formation in renal glomeruli. Exp Mol Med 2022; 54:169-179. [PMID: 35177808 PMCID: PMC8894487 DOI: 10.1038/s12276-022-00730-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Renal primary cilia are antenna-like organelles that maintain cellular homeostasis via multiple receptors clustered along their membranes. Recent studies have revealed that YAP/TAZ, key paralogous effectors of the Hippo pathway, are involved in ciliogenesis; however, their independent roles need to be further investigated. Here, we analyzed the renal phenotypes of kidney-specific TAZ knockout mice and observed ciliary defects only in glomeruli where mild cysts were formed. This finding prompted us to verify the role of TAZ specifically in renal tubule ciliary regulation. Therefore, we investigated the effects of TAZ silencing and compared them to those of YAP knockdown using three different types of renal tubular cells. We found that the absence of TAZ prevented proper cilia formation in glomerular cells, whereas it had a negligible effect in collecting duct and proximal tubule cells. IFT and NPHP protein levels were altered because of TAZ deficiency, accompanied by ciliary defects in glomerular cells, and ciliary recovery was identified by regulating some NPHP proteins. Although our study focused on TAZ, ciliogenesis, and other ciliary genes, the results suggest the very distinct roles of YAP and TAZ in kidneys, specifically in terms of ciliary regulation. The roles of two regulatory proteins in the kidneys have been further clarified and provide insights into cilia defects and cyst formation. Cilia are organelles that act as ‘antennae’ for cell signaling in many tissues. Recent studies have highlighted two proteins involved in kidney cilia formation, YAP and TAZ, but little is known about their roles. Jong Hoon Park and co-workers at Sookmyung Women’s University in Seoul, South Korea, examined the role of TAZ in the regulation of kidney tubule cilia in mice. They explored the effects of silencing TAZ or YAP expression in different types of kidney tubule cells. TAZ deficiency but not YAP deficiency prevented correct cilia formation in the glomeruli, blood vessels that filter waste in the kidneys, and the resulting defects led to mild cyst generation.
Collapse
|
9
|
Park JW, Kim Y, Lee SB, Oh CW, Lee EJ, Ko JY, Park JH. Autophagy inhibits cancer stemness in triple-negative breast cancer via miR-181a-mediated regulation of ATG5 and/or ATG2B. Mol Oncol 2022; 16:1857-1875. [PMID: 35029026 PMCID: PMC9067148 DOI: 10.1002/1878-0261.13180] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/11/2022] [Indexed: 11/19/2022] Open
Abstract
Autophagy has a dual role in the maintenance of cancer stem cells (CSCs), but the precise relationship between autophagy and cancer stemness requires further investigation. In this study, it was found that luminal and triple‐negative breast cancers require distinct therapeutic approaches because of their different amounts of autophagy flux. We identified that autophagy flux was inhibited in triple‐negative breast cancer (TNBC) CSCs. Moreover, miRNA‐181a (miR‐181a) expression is upregulated in both TNBC CSCs and patient tissues. Autophagy‐related 5 (ATG5) and autophagy‐related 2B (ATG2B) participate in the early formation of autophagosomes and were revealed as targets of miR‐181a. Inhibition of miR‐181a expression led to attenuation of TNBC stemness and an increase in autophagy flux. Furthermore, treatment with curcumin led to attenuation of cancer stemness in TNBC CSCs; the expression of ATG5 and ATG2B was enhanced and there was an increase of autophagy flux. These results indicated that ATG5 and ATG2B are involved in the suppression of cancer stemness in TNBC. In summary, autophagy inhibits cancer stemness through the miR‐181a‐regulated mechanism in TNBC. Promoting tumor‐suppressive autophagy using curcumin may be a potential method for the treatment of TNBC.
Collapse
|
10
|
Oh C, Kim HR, Oh S, Ko JY, Kim Y, Kang K, Yang Y, Kim J, Park JH, Roe JS, Yoo KH. Epigenetic Upregulation of MAGE-A Isoforms Promotes Breast Cancer Cell Aggressiveness. Cancers (Basel) 2021; 13:cancers13133176. [PMID: 34202157 PMCID: PMC8268034 DOI: 10.3390/cancers13133176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 01/28/2023] Open
Abstract
Simple Summary Breast cancer is a heterogeneous disease that has complex causes and mechanisms of development. Currently, patient treatment options depend on the breast cancer molecular subtype, which is classified based on the presence or absence of hormone receptors and HER2. However, this classification system has limitations in terms of predicting responsiveness to anticancer drugs and patient outcomes. In this study, we present a new approach to classifying molecular breast cancer subtypes: it is based on changes in histone modifications in the promoter region of the MAGEA12 locus, which we found related closely to MAGEA12 expression and MAGEA12-associated malignancy of breast cancer cells. Abstract After decades-long efforts to diagnose and treat breast cancer, the management strategy that has proved most successful to date is molecular-subtype-specific inhibition of the hormone receptors and HER2 that are expressed by individual cancers. Melanoma-associated antigen (MAGE) proteins comprise >40 highly conserved members that contain the MAGE homology domain. They are often overexpressed in multiple cancers and contribute to cancer progression and metastasis. However, it remains unclear whether the biological activity arising from MAGE gene expression is associated with breast cancer subtypes. In this study, we analyzed the RNA-sequencing (RNA-seq) data of 70 breast cancer cell lines and found that MAGEA12 and MAGEA3 were highly expressed in a subset of these lines. Significantly, MAGEA12 and MAGEA3 expression levels were independent of hormone receptor expression levels but were closely associated with markers of active histone modifications. This indicates that overexpression of these genes is attributable to epigenetic deregulation. RNA-seq of MAGEA12-depleted cells was then used to identify 382 candidate targets of MAGEA12 that were downregulated by MAGEA12 depletion. Furthermore, our gain-of-function experiments showed that MAGEA12 overexpression promoted aggressive behaviors of malignant breast cancer cells, including enhancing their cell migration and invasion. These changes were associated with increased epigenetic deregulation of the MAGEA12 signature genes. Thus, MAGEA12 may play an important role in breast cancer malignancy. Taken together, our findings suggest that MAGEA12 could be a promising therapeutic target in breast cancer, and its overexpression and epigenetic changes could serve as subtype classification biomarkers.
Collapse
|
11
|
Choi SY, Hong JY, Kim HJ, Lee GY, Cheong SH, Jung HJ, Bang CH, Lee DH, Jue MS, Kim HO, Park EJ, Ko JY, Son SW. Mask-induced dermatoses during the COVID-19 pandemic: a questionnaire-based study in 12 Korean hospitals. Clin Exp Dermatol 2021; 46:1504-1510. [PMID: 34081799 PMCID: PMC8239570 DOI: 10.1111/ced.14776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND During the coronavirus disease 2019 (COVID-19) pandemic, various adverse skin reactions to long-term mask wearing have been reported. AIM To assess the clinical features of mask-induced dermatoses and to recommend prevention and treatment options. METHODS From April to August 2020, questionnaires including topics such as demographic information, pre-existing skin disorders, reported mask-related symptoms, daily mask-wearing duration and frequency, types of masks used and whether the participant was a healthcare worker, were distributed to patients in 12 hospitals. Dermatologists assessed skin lesions, confirmed diagnosis and recorded treatments. RESULTS Itchiness was the most frequent symptom, mostly affecting the cheeks. The most common skin disease was new-onset contact dermatitis (33.94%), followed by new-onset acne (16.97%) and worsening of pre-existing acne (16.97%). Daily wearing of masks was significantly (P = 0.02) associated with new-onset contact dermatitis. More than half of patients with pre-existing skin problems experienced disease worsening while wearing masks. Longer duration of wearing (> 6 h/day, P = 0.04) and use of cotton masks (P < 0.001) significantly increased acne flare-up. Healthcare workers had a higher incidence of skin disease. Skin lesions were generally mild and well tolerated with topical treatment. The study had some limitations: the effect of seasonal characteristics and other risk factors were not assessed, and the patients were visiting dermatological clinics and had interest in their skin status, thus, there may have been selection bias. CONCLUSION Mask-induced/-triggered dermatoses contribute to increase the dermatological burden during the pandemic.
Collapse
|
12
|
Abstract
The primary cilium is a microtubule-based structure projecting from a cell. Although the primary cilium shows no motility, it can recognize environmental stimuli. Thus, ciliary defects cause severe abnormalities called ciliopathies. Ciliogenesis is a very complex process and involves a myriad of components and regulators. In order to excavate the novel positive regulators of ciliogenesis, we performed mRNA microarray using starved NIH/3T3 cells. We selected 62 murine genes with corresponding human orthologs, with significantly upregulated expression at 24 h after serum withdrawal. Finally, calpain-6 was selected as a positive regulator of ciliogenesis. We found that calpain-6 deficiency reduced the percentage of ciliated cells and impaired sonic hedgehog signaling. It has been speculated that this defect might be associated with decreased levels of α-tubulin acetylation at lysine 40. This is the first study to report a novel role of calpain-6 in the formation of primary cilia.
Collapse
|
13
|
Ko JY, Lee EJ, Park JH. Interplay Between Primary Cilia and Autophagy and Its Controversial Roles in Cancer. Biomol Ther (Seoul) 2019; 27:337-341. [PMID: 31042678 PMCID: PMC6609109 DOI: 10.4062/biomolther.2019.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/27/2022] Open
Abstract
Primary cilia and autophagy are two distinct nutrient-sensing machineries required for maintaining intracellular energy homeostasis, either via signal transduction or recycling of macromolecules from cargo breakdown, respectively. Potential correlations between primary cilia and autophagy have been recently suggested and their relationship may increase our understanding of the pathogenesis of human diseases, including ciliopathies and cancer. In this review, we cover the current issues concerning the bidirectional interaction between primary cilia and autophagy and discuss its role in cancer with cilia defect.
Collapse
|
14
|
Kim DY, Woo YM, Lee S, Oh S, Shin Y, Shin JO, Park EY, Ko JY, Lee EJ, Bok J, Yoo KH, Park JH. Impact of miR-192 and miR-194 on cyst enlargement through EMT in autosomal dominant polycystic kidney disease. FASEB J 2018; 33:2870-2884. [PMID: 30332302 DOI: 10.1096/fj.201800563rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Altered miRNA (miR) expression occurs in various diseases. However, the therapeutic effect of miRNAs in autosomal dominant polycystic kidney disease (ADPKD) is unclear. Genome-wide analyses of miRNA expression and DNA methylation status were conducted to identify crucial miRNAs in end-stage ADPKD. miR-192 and -194 levels were down-regulated with hypermethylation at these loci, mainly in the intermediate and late stages, not in the early stage, of cystogenesis, suggesting their potential impact on cyst expansion. Cyst expansion has been strongly associated with endothelial-mesenchymal transition (EMT). Zinc finger E-box-binding homeobox-2 and cadherin-2, which are involved in EMT, were directly regulated by miR-192 and -194. The therapeutic effect of miR-192 and -194 in vivo and in vitro were assessed. Restoring these miRs by injection of precursors influenced the reduced size of cysts in Pkd1 conditional knockout mice. miR-192 and -194 may act as potential therapeutic targets to control the expansion and progression of cysts in patients with ADPKD.-Kim, D. Y., Woo, Y. M., Lee, S., Oh, S., Shin, Y., Shin, J.-O., Park, E. Y., Ko, J. Y., Lee, E. J., Bok, J., Yoo, K. H., Park, J. H. Impact of miR-192 and miR-194 on cyst enlargement through EMT in autosomal dominant polycystic kidney disease.
Collapse
|
15
|
Lee H, Sohn YM, Ko JY, Lee SY, Jhun BW, Park HY, Jeon K, Kim DH, Kim SY, Choi JE, Moon IJ, Shin SJ, Park HJ, Koh WJ. Once-daily dosing of amikacin for treatment of Mycobacterium abscessus lung disease. Int J Tuberc Lung Dis 2018. [PMID: 28633708 DOI: 10.5588/ijtld.16.0791] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
SETTING Tertiary referral centre, Samsung Medical Center, South Korea. OBJECTIVE To evaluate the pharmacokinetic parameters and toxicities of once-daily amikacin (AMK) dosing for lung disease due to Mycobacterium abscessus. DESIGN A retrospective review of 48 patients with M. abscessus lung disease who received once-daily AMK for 4 weeks between January 2012 and June 2015. RESULTS With a starting dose of 15 mg/kg/day and adjustment of AMK dose according to the peak serum level (Cmax), the Cmax target of 55-65 μg/ml was achieved in 31.3% (15/48) of patients in the first week, 68.8% (33/48) in week 2, 91.7% (44/48) in week 3 and 95.8% (46/48) in week 4. Transient nephrotoxicity developed in 6.3% (3/48) of patients and ototoxicity in 25.0% (6/24), which was determined by audiogram as hearing loss, asymptomatic in five patients and tinnitus in one. Multivariate analysis revealed that the highest drug concentration 12 h after administration was significantly associated with the development of toxicities (adjusted odds ratio 1.862, P = 0.047). CONCLUSION Our results suggest that once-daily AMK for 4 weeks with a target Cmax of 55-65 μg/ml can be used in patients with M. abscessus lung disease, with careful monitoring of toxicity.
Collapse
|
16
|
Shin Y, Kim DY, Ko JY, Woo YM, Park JH. Regulation of KLF12 by microRNA-20b and microRNA-106a in cystogenesis. FASEB J 2018; 32:3574-3582. [PMID: 29475398 DOI: 10.1096/fj.201700923r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common inherited disorders. ADPKD is caused by mutations in the gene encoding either polycystic kidney disease 1 ( PKD1) or polycystic kidney disease 2 ( PKD2). Patients with ADPKD show progressive growth of cystic fluid-filled renal cysts. Here, we used Pkd2f/f control mice and Pkd2f/f:HoxB7-Cre experimental mice, which are bred to have a conditional deletion of Pkd2 in the collecting ducts, and analyzed the expression pattern of microRNAs (miRNAs) of kidney tissues from Pkd2f/f and Pkd2f/f:HoxB7-Cre mice. Decreased expression of miR-20b-5p and miR-106a-5p in Pkd2f/f:HoxB7-Cre mice compared to that in Pkd2f/f mice was observed. These miRNAs target Klf12 (Krüppel-like factor 12), which has low expression in kidney tissues of Pkd2f/f mice; however, its expression is enhanced in Pkd2f/f:HoxB7-Cre mice over time. Moreover, miR-20b-5p and miR-106a-5p directly target Klf12 mRNA by binding to the 3'-UTR of Klf12. In addition, human and mouse cell lines exhibit similar patterns. These findings were also consistent with the data from Pkd2 knockout mouse embryonic fibroblasts. Furthermore, direct and indirect knockdown of Klf12 slows cyst growth and cell proliferation in mouse inner medullary collecting duct cells. Taken together, we suggest that the induction of miR-20b-5p or miR-106a-5p or the down-regulation of KLF12 could be used as potential novel therapies for inhibiting cyst growth in patients with ADPKD.-Shin, Y., Kim, D. Y., Ko, J. Y., Woo, Y. M., Park, J. H. Regulation of KLF12 by microRNA-20b and microRNA-106a in cystogenesis.
Collapse
|
17
|
Kong HK, Park SJ, Kim YS, Kim KM, Lee HW, Kang HG, Woo YM, Park EY, Ko JY, Suzuki H, Chun KH, Song E, Jang KY, Park JH. Epigenetic activation of LY6K predicts the presence of metastasis and poor prognosis in breast carcinoma. Oncotarget 2018; 7:55677-55689. [PMID: 27494879 PMCID: PMC5342445 DOI: 10.18632/oncotarget.10972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 07/06/2016] [Indexed: 12/11/2022] Open
Abstract
The role of lymphocyte antigen 6 complex, locus K (LY6K) in breast cancer has been studied, whereas the epigenetic control of LY6K transcription is not fully understood. Here, we report that breast cancer patients with increased LY6K expression had shorter disease-free and overall survival than the patients with low levels of LY6K by multivariate analysis. LY6K also was upregulated in breast cancer patients with distant metastases than those without distant metastases, downregulating E-cadherin expression. Furthermore, xenograft tumor volumes from LY6K knockdown nude mice were reduced than those of mice treated with control lentivirus. Interestingly, LY6K has a CpG island (CGI) around the transcription start site and non-CGI in its promoter, called a CGI shore. LY6K expression was inversely correlated with methylation in not only CGI but CGI shore, which are associated with histone modifications. Additionally, LY6K methylation was increased by the PAX3 transcription factor due to the SNP242 mutation in LY6K CGI shore. Taken together, breast cancer risk and metastasis were significantly associated with not only LY6K expression, but also methylation of CGI shore which induced by SNP242 mutation. Our results suggest that an understanding epigenetic mechanism of the LY6K gene may be useful to diagnose carcinogenic risk and predict outcomes of patients with metastatic breast cancer.
Collapse
|
18
|
Woo YM, Kim DY, Koo NJ, Kim YM, Lee S, Ko JY, Shin Y, Kim BH, Mun H, Choi S, Lee EJ, Shin JO, Park EY, Bok J, Park JH. Profiling of miRNAs and target genes related to cystogenesis in ADPKD mouse models. Sci Rep 2017; 7:14151. [PMID: 29074972 PMCID: PMC5658336 DOI: 10.1038/s41598-017-14083-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/02/2017] [Indexed: 11/09/2022] Open
Abstract
Autosomal polycystic kidney disease (ADPKD) is a common inherited renal disease characterized by the development of numerous fluid-filled cysts in both kidneys. We investigated miRNA-mediated regulatory systems and networks that play an important role during cystogenesis through integrative analysis of miRNA- and RNA-seq using two ADPKD mouse models (conditional Pkd1- or Pkd2-deficient mice), at three different time points (P1, P3, and P7). At each time point, we identified 13 differentially expressed miRNAs (DEmiRs) and their potential targets in agreement with cyst progression in both mouse models. These targets were involved in well-known signaling pathways linked to cystogenesis. More specifically, we found that the actin cytoskeleton pathway was highly enriched and connected with other well-known pathways of ADPKD. We verified that miR-182-5p regulates actin cytoskeleton rearrangement and promotes ADPKD cystogenesis by repressing its target genes-Wasf2, Dock1, and Itga4-in vitro and in vivo. Our data suggest that actin cytoskeleton may play an important role in renal cystogenesis, and miR-182-5p is a novel regulator of actin cytoskeleton and cyst progression. Furthermore, this study provides a systemic network of both key miRNAs and their targets associated with cyst growth in ADPKD.
Collapse
|
19
|
Abstract
The primary cilium is a microtubule-based organelle that is considered to be a cellular antennae, because proteins related to multiple signaling pathways such as Wnt, PDGFRα, Hh, and mechanosignaling are localized to the membrane of the primary cilium. In the kidney, primary cilia extend from the cell membrane to the lumen of renal tubules to respond to fluidic stress. Recent studies have indicated that the disruption of ciliary proteins including polycystin-1 (PC1), polycystin-2 (PC2), and members of the intraflagellar transport (IFT) family induce the development of polycystic kidney disease (PKD), suggesting that the malformation or absence of primary cilia is a driving force of the onset of PKD. Therefore, in this chapter, the renal cystogenesis mechanism induced by cilia defects and pathogenic ciliary proteins associated with PKD development will be described.
Collapse
|
20
|
Park BJ, Oh EH, Kim JE, Ko JY, Ro YS. Treatment of disseminated superficial actinic porokeratosis with oral alitretinoin. J Eur Acad Dermatol Venereol 2017; 31:e505-e507. [PMID: 28543730 DOI: 10.1111/jdv.14354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Ko JY, Oh S, Yoo KH. Functional Enhancers As Master Regulators of Tissue-Specific Gene Regulation and Cancer Development. Mol Cells 2017; 40:169-177. [PMID: 28359147 PMCID: PMC5386954 DOI: 10.14348/molcells.2017.0033] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/30/2022] Open
Abstract
Tissue-specific transcription is critical for normal development, and abnormalities causing undesirable gene expression may lead to diseases such as cancer. Such highly organized transcription is controlled by enhancers with specific DNA sequences recognized by transcription factors. Enhancers are associated with chromatin modifications that are distinct epigenetic features in a tissue-specific manner. Recently, super-enhancers comprising enhancer clusters co-occupied by lineage-specific factors have been identified in diverse cell types such as adipocytes, hair follicle stem cells, and mammary epithelial cells. In addition, noncoding RNAs, named eRNAs, are synthesized at super-enhancer regions before their target genes are transcribed. Many functional studies revealed that super-enhancers and eRNAs are essential for the regulation of tissue-specific gene expression. In this review, we summarize recent findings concerning enhancer function in tissue-specific gene regulation and cancer development.
Collapse
|
22
|
Shin JM, Hong JH, Ko JY, Ro YS, Kim JE. Erythematous vesiculopapular eruptions on the extremities. Clin Exp Dermatol 2015; 40:943-5. [PMID: 25960170 DOI: 10.1111/ced.12666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2014] [Indexed: 11/26/2022]
|
23
|
Lee EJ, Park EY, Mun H, Chang E, Ko JY, Kim DY, Park JH. Soluble receptor for advanced glycation end products inhibits disease progression in autosomal dominant polycystic kidney disease by down-regulating cell proliferation. FASEB J 2015; 29:3506-14. [PMID: 25934702 DOI: 10.1096/fj.15-272302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/21/2015] [Indexed: 12/12/2022]
Abstract
Autosomal polycystic kidney disease (ADPKD) is a highly prevalent genetic renal disorder in which epithelial-lining fluid-filled cysts appear in kidneys. It is accompanied by hyperactivation of cell proliferation, interstitial inflammation, and fibrosis around the cyst lining cells, finally reaching end-stage renal disease. Previously, we found high expression of ligands stimulating the receptor for advanced glycation end products (RAGE) in ADPKD mice. Furthermore, gene silencing of RAGE was revealed to cause reduction of cystogenesis via down-regulation of cell proliferation in vitro, and intravenous administration of anti-RAGE adenovirus in vivo also displayed alleviation of the disease. Here, we attempted to identify the role of soluble RAGE (sRAGE) in inhibiting the progression of ADPKD using 2 different ADPKD mouse models. sRAGE is an endogenously expressed form of RAGE that has no membrane-anchoring domain, thereby giving it the ability to neutralize the ligands that stimulate RAGE signals. Both overexpression of sRAGE and sRAGE treatment blocked RAGE-mediated cell proliferation in vitro. In addition, sRAGE-injected ADPKD mice showed reduced cysts accompanied by enhanced renal function, inhibition of cell proliferation, inflammation, and fibrosis. These positive therapeutic effects of sRAGE displayed little liver toxicity, suggesting it as a new potential therapeutic target of ADPKD with low side effects.
Collapse
|
24
|
Park EY, Chang E, Lee EJ, Lee HW, Kang HG, Chun KH, Woo YM, Kong HK, Ko JY, Suzuki H, Song E, Park JH. Targeting of miR34a-NOTCH1 axis reduced breast cancer stemness and chemoresistance. Cancer Res 2014; 74:7573-82. [PMID: 25368020 DOI: 10.1158/0008-5472.can-14-1140] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human breast cancers include cancer stem cell populations as well as nontumorigenic cancer cells. Breast cancer stem cells have self-renewal capability and are resistant to conventional chemotherapy. miRNAs regulate the expression of many target genes; therefore, dysregulation of miRNAs has been associated with the pathogenesis of human diseases, including cancer. However, a role for miRNA dysregulation in stemness and drug resistance has yet to be identified. Members of the miR34 family are reportedly tumor-suppressor miRNAs and are associated with various human cancers. Our results confirm that miR34a expression was downregulated in MCF7/ADR cells compared with MCF7 cells. We hypothesized that this reduction was due to the p53 (TP53) mutation in MCF7/ADR cells. In this study, we found that primary and mature miR34a were suppressed by treatment with p53 RNAi or the dominant-negative p53 mutant in MCF7 cells. Ectopic miR34a expression reduced cancer stem cell properties and increased sensitivity to doxorubicin treatment by directly targeting NOTCH1. Furthermore, tumors from nude mice treated with miR34a were significantly smaller compared with those of mice treated with control lentivirus. Our research suggests that the ectopic expression of miR34a represents a novel therapeutic approach in chemoresistant breast cancer treatment.
Collapse
|
25
|
Woo JH, Ko JY, Choi EY, Her JG, O'Sullivan DM. Development and evaluation of a novel taekwondo chest protector to improve mobility when performing axe kicks. Biol Sport 2014; 30:51-5. [PMID: 24744466 PMCID: PMC3944553 DOI: 10.5604/20831862.1029822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2012] [Indexed: 11/13/2022] Open
Abstract
The axe kick, in Olympic style taekwondo, has been identified as the most popular scoring technique aimed to the head during full contact competition. The first purpose of this study was to identify and investigate design issues with the current World Taekwondo Federation approved chest protector. A secondary purpose was to develop a novel chest protector addressing the identified design issues and to conduct a biomechanical analysis. Fifteen male elite Taekwondo players were selected to perform three different styles of the axe kick, i.e., front, in-out, and out-in axe kick five times each for a total of 45 kicks. Two-way repeated measures ANOVA showed significant differences between the novel and existing chest protector conditions for vertical height of the toe, downward kicking foot speed, hip flexion angle and ipsilateral shoulder flexion extension range of motion (ROM) (p < 0.05). There were no significant differences between the control condition (no chest protector) and the novel chest protector condition for these variables (p > 0.05). These results indicate that the novel chest protector interferes less with both the lower and upper limbs during the performance of the axe kick and provides a more natural, free-moving alternative to the current equipment used.
Collapse
|