1
|
Jenne C, Knorke H, Nierstenhöfer MC, Warneke J, Warneke Z. Derivatization of Undecahalogenated closo-Dodecaborates [B 12X 11NH 3] - (X = F-I): Attaching Isocyanate, Amidinium, and Formamide Functionalities. Inorg Chem 2024; 63:19227-19239. [PMID: 39344083 DOI: 10.1021/acs.inorgchem.4c02855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Halogenated closo-dodecaborates are very robust and versatile weakly coordinating anions for numerous applications. The introduction of additional substituents, e.g., pseudohalides, allows the tuning of their chemical and physical properties. In this report, the synthesis of the isocyanate-substituted closo-dodecaborates [B12X11(NCO)]2- (X = H, F-I) was investigated. In an attempt to synthesize the undecahalogenated derivatives, a selective and halogen-dependent reaction yielding boron clusters carrying the functional groups amidinium (-NHCHNMe2) and formamide (-NHC(O)H) was discovered. The halogenated anions were fully characterized by vibrational and NMR spectroscopy, mass spectrometry, and X-ray diffraction. Salts of the formamide-substituted anion [B12X11(NHC(O)H)]2- are surprisingly thermally stable in the condensed phase. In contrast, collision-induced dissociation in the gas phase reveals that the isolated dianion [B12X11(NHC(O)H)]2- in the gas phase preferentially loses water, while the protonated form, which was generated from decomposition of the tetraalkylammonium counterion [B12X11(NHC(O)H)H]-, tends to lose carbon monoxide. Possible reaction mechanisms are discussed.
Collapse
|
2
|
Rohdenburg M, Kawa S, Ha-Shan M, Reichelt M, Knorke H, Denecke R, Warneke J. Probing fragment ion reactivity towards functional groups on coordination polymer surfaces. Chem Commun (Camb) 2024; 60:10306-10309. [PMID: 39101945 DOI: 10.1039/d4cc00767k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Functionalization of surface-grown coordination polymer layers by ion soft-landing of highly reactive molecular fragment ions is demonstrated. The ions form covalent bonds to terminal functional groups of the polymer at the vacuum interface, opening new perspectives for controlled bond formation using reactive ions.
Collapse
|
3
|
Samayoa-Oviedo HY, Knorke H, Warneke J, Laskin J. Spontaneous ligand loss by soft landed [Ni(bpy) 3] 2+ ions on perfluorinated self-assembled monolayer surfaces. Chem Sci 2024; 15:10770-10783. [PMID: 39027285 PMCID: PMC11253159 DOI: 10.1039/d4sc02527j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Transition metal (TM) complexes are widely used in catalysis, photochemical energy conversion, and sensing. Understanding factors that affect ligand loss from TM complexes at interfaces is important both for generating catalytically-active undercoordinated TM complexes and for controlling the degradation pathways of photosensitizers and photoredox catalysts. Herein, we demonstrate that well-defined TM complexes prepared on surfaces using ion soft landing undergo substantial structural rearrangements resulting in ligand loss and formation of both stable and reactive undercoordinated species. We employ nickel bipyridine (Ni-bpy) cations as a model system and explore their structural reorganization on surfaces using a combination of experimental and computational approaches. The controlled preparation of surface layers by mass-selected deposition of [Ni(bpy)3]2+ cations provides insights into the chemical reactivity of these species on surfaces. Both surface characterization using mass spectrometry and electronic structure calculations using density functional theory (DFT) indicate that [Ni(bpy)3]2+ undergoes a substantial geometry distortion on surfaces in comparison with its gas-phase structure. This distortion reduces the ligand binding energy and facilitates the formation of the undercoordinated [Ni(bpy)2]2+. Additionally, charge reduction by the soft landed [Ni(bpy)3]2+ facilitates ligand loss. We observe that ligand loss is inhibited by co-depositing [Ni(bpy)3]2+ with a stable anion such as closo-dodecaborate dianion, [B12F12]2-. The strong electrostatic interaction between [Ni(bpy)3]2+ and [B12F12]2- diminishes the distortion of the cation due to interactions with the surface. This interaction stabilizes the soft landed cation by reducing the extent of charge reduction and its structural reorganization. Overall, this study shows the intricate interplay of charge state, ion surface interactions, and stabilization by counterions on the structure and reactivity of metal complexes on surfaces. The combined experimental and computational approach used in this study offers detailed insights into factors that affect the integrity and stability of active species relevant to energy production and catalysis.
Collapse
|
4
|
Cao W, Warneke J, Wang XB. Probing the Electronic Structure of [B 10H 10] 2- Dianion Encapsulated by an Octamethylcalix[4]pyrrole Molecule. J Phys Chem A 2024; 128:3361-3369. [PMID: 38651632 DOI: 10.1021/acs.jpca.4c01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Despite being an important closo-borate in condensed phase boron chemistry, isolated [B10H10]2- is electronically unstable and has never been detected in the gas phase. Herein, we report a successful capture of this fleeting species through binding with an octamethylcalix[4]pyrrole (omC4P) molecule to form a stable gaseous omC4P·[B10H10]2- complex and its characterizations utilizing negative ion photoelectron spectroscopy (NIPES). The recorded NIPE spectrum, contributed by both omC4P and [B10H10]2-, is deconvoluted by subtracting the omC4P contribution to yield a [B10H10]2- spectrum. The obtained [B10H10]2- spectrum consists of four major bands spanning the electron binding energy (EBE) range from 1 to 5 eV, with the EBE gaps matching excellently with the energy intervals of computed high-lying occupied molecular orbitals of the [B10H10]2- dianion. This study showcases a generic method to utilize omC4P to capture unstable multiply charged anions in the gas phase for experimental determination of their electronic structures.
Collapse
|
5
|
Kawa S, Kaur J, Knorke H, Warneke Z, Wadsack M, Rohdenburg M, Nierstenhöfer M, Jenne C, Kenttämaa H, Warneke J. Generation and reactivity of the fragment ion [B 12I 8S(CN)] - in the gas phase and on surfaces. Analyst 2024; 149:2573-2585. [PMID: 38469706 DOI: 10.1039/d3an02175k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Gaseous fragment ions generated in mass spectrometers may be employed as "building blocks" for the synthesis of novel molecules on surfaces using ion soft-landing. A fundamental understanding of the reactivity of the fragment ions is required to control bond formation of deposited fragments in surface layers. The fragment ion [B12X11]- (X = halogen) is formed by collision-induced dissociation (CID) from the precursor [B12X12]2- dianion. [B12X11]- is highly reactive and ion soft-landing experiments have shown that this ion binds to the alkyl chains of organic molecules on surfaces. In this work we investigate whether specific modifications of the precursor ion affect the chemical properties of the fragment ions to such an extent that attachment to functional groups of organic molecules on surfaces occurs and binding of alkyl chains is prevented. Therefore, a halogen substituent was replaced by a thiocyanate substituent. CID of the precursor [B12I11(SCN)]2- ion preferentially yields the fragment ion [B12I8S(CN)]-, which shows significantly altered reactivity compared to the fragment ions of [B12I12]2-. [B12I8S(CN)]- has a previously unknown structural element, wherein a sulfur atom bridges three boron atoms. Gas-phase reactions with different neutral reactants (cyclohexane, dimethyl sulfide, and dimethyl amine) accompanied by theoretical studies indicate that [B12I8S(CN)]- binds with higher selectivity to functional groups of organic molecules than fragment ions of [B12I12]2- (e.g., [B12I11]- and [B12I9]-). These findings were further confirmed by ion soft-landing experiments, which showed that [B12I8S(CN)]- ions attacked ester groups of adipates and phthalates, whereas [B12I11]- ions only bound to alkyl chains of the same reagents.
Collapse
|
6
|
Yang F, Urban RD, Lorenz J, Griebel J, Koohbor N, Rohdenburg M, Knorke H, Fuhrmann D, Charvat A, Abel B, Azov VA, Warneke J. Control of Intermediates and Products by Combining Droplet Reactions and Ion Soft-Landing. Angew Chem Int Ed Engl 2024; 63:e202314784. [PMID: 37917653 DOI: 10.1002/anie.202314784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
Despite being recognized primarily as an analytical technique, mass spectrometry also has a large potential as a synthetic tool, enabling access to advanced synthetic routes by reactions in charged microdroplets or ionic thin layers. Such reactions are special and proceed primarily at surfaces of droplets and thin layers. Partial solvation of the reactants is usually considered to play an important role for reducing the activation barrier, but many mechanistic details still need to be clarified. In our study, we showcase the synergy between two sequentially applied "preparative mass spectrometry" methods: initiating accelerated reactions within microdroplets during electrospray ionization to generate gaseous ionic intermediates in high abundance, which are subsequently mass-selected and soft-landed to react with a provided reagent on a substrate. This allows the generation of products at a nanomolar scale, amenable to further characterization. In this proof-of-concept study, the contrasting reaction pathways between intrinsically neutral and pre-charged reagents, respectively, both in microdroplets and in layers generated by ion soft-landing are investigated. This provides new insights into the role of partially solvated reagents at microdroplet surfaces for increased reaction rates. Additionally, further insights into reactions of ions of the same polarity under various conditions is obtained.
Collapse
|
7
|
Kawa S, Knorke H, Jin J, Rohdenburg M, Asmis KR, Tonner-Zech R, Bernhardt E, Jenne C, Finze M, Warneke J. Binding Properties of Small Electrophilic Anions [B 6 X 5 ] - and [B 10 X 9 ] - (X=Cl, Br, I): Activation of Small Molecules Based on π-Backbonding. Chemistry 2023; 29:e202302247. [PMID: 37749942 DOI: 10.1002/chem.202302247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Superelectrophilic anions constitute a special class of molecular anions that show strong binding of weak nucleophiles despite their negative charge. In this study, the binding characteristics of smaller gaseous electrophilic anions of the types [B6 X5 ]- and [B10 X9 ]- (with X=Cl, Br, I) were computationally and experimentally investigated and compared to those of the larger analogues [B12 X11 ]- . The positive charge of vacant boron increases from [B6 X5 ]- via [B10 X9 ]- to [B12 X11 ]- , as evidenced by increasing attachment enthalpies towards typical σ-donor molecules (noble gases, H2 O). However, this behavior is reversed for σ-donor-π-acceptor molecules. [B6 Cl5 ]- binds most strongly to N2 and CO, even more strongly than to H2 O. Energy decomposition analysis confirms that the orbital interaction is responsible for this opposite trend. The extended transition state natural orbitals for chemical valence method shows that the π-backdonation order is [B6 X5 ]- >[B10 X9 ]- >[B12 X11 ]- . This predicted order explains the experimentally observed red shifts of the CO and N2 stretching fundamentals compared to those of the unbound molecules, as measured by infrared photodissociation spectroscopy. The strongest red shift is observed for [B6 Cl5 N2 ]- : 222 cm-1 . Therefore, strong activation of unreactive σ-donor-π-acceptor molecules (commonly observed for cationic transition metal complexes) is achieved with metal-free molecular anions.
Collapse
|
8
|
Rohdenburg M, Warneke Z, Knorke H, Icker M, Warneke J. Chemical Synthesis with Gaseous Molecular Ions: Harvesting [B 12 Br 11 N 2 ] - from a Mass Spectrometer. Angew Chem Int Ed Engl 2023; 62:e202308600. [PMID: 37531598 DOI: 10.1002/anie.202308600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Mass spectrometry frequently reveals the existence of transient gas phase ions that have not been synthesized in solution or in bulk. These elusive ions are, therefore, often considered to be primarily of analytical value in fundamental gas phase studies. Here, we provide proof-of-concept that the products of ion-molecule reactions in mass spectrometers may be collected on surfaces to generate condensed matter and thus serve as building blocks to synthesize new compounds. The highly reactive fragment anion [B12 Br11 ]- was generated in a mass spectrometer and converted to [B12 Br11 N2 ]- in the presence of molecular nitrogen followed by its mass-selection and soft-landing on surfaces. The molecular structure of [B12 Br11 N2 ]- , which has not been synthetically obtained before, was confirmed by conventional methods of molecular analysis, including nuclear magnetic resonance and infrared spectroscopy. The [B12 Br11 N2 ]- ion is stable on surfaces and in solution at room temperature, but thermal annealing induces elimination of N2 and provides access to the highly reactive intermediate [B12 Br11 ]- in the condensed phase, which can be further used as a reagent, for example, for electrophilic aromatic substitutions. Thus, isolation of [B12 Br11 N2 ]- expands the repertoire of the available diazo ions that can be employed as versatile intermediates in various chemical transformations.
Collapse
|
9
|
Werner I, Griebel J, Masip-Sánchez A, López X, Załęski K, Kozłowski P, Kahnt A, Boerner M, Warneke Z, Warneke J, Monakhov KY. Hybrid Molecular Magnets with Lanthanide- and Countercation-Mediated Interfacial Electron Transfer between Phthalocyanine and Polyoxovanadate. Inorg Chem 2023; 62:3761-3775. [PMID: 36534941 DOI: 10.1021/acs.inorgchem.2c03599] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A series of {V12}-nuclearity polyoxovanadate cages covalently functionalized with one or sandwiched by two phthalocyaninato (Pc) lanthanide (Ln) moieties via V-O-Ln bonds were prepared and fully characterized for paramagnetic Ln = SmIII-ErIII and diamagnetic Ln = LuIII, including YIII. The LnPc-functionalized {V12O32} cages with fully oxidized vanadium centers in the ground state were isolated as (nBu4N)3[HV12O32Cl(LnPc)] and (nBu4N)2[HV12O32Cl(LnPc)2] compounds. As corroborated by a combined experimental (EPR, DC and AC SQUID, laser photolysis transient absorption spectroscopy, and electrochemistry) and computational (DFT, MD, and model Hamiltonian approach) methods, the compounds feature intra- and intermolecular electron transfer that is responsible for a partial reduction at V(3d) centers from VV to VIV in the solid state and at high sample concentrations. The effects are generally Ln dependent and are clearly demonstrated for the (nBu4N)3[HV12O32Cl(LnPc)] representative with Ln = LuIII or DyIII. Intramolecular charge transfer takes place for Ln = LuIII and occurs from a Pc ligand via the Ln center to the {V12O32} core of the same molecule, whereas for Ln = DyIII, only intermolecular charge transfer is allowed, which is realized from Pc in one molecule to the {V12O32} core of another molecule usually via the nBu4N+ countercation. For all Ln but DyIII, two of these phenomena may be present in different proportions. Besides, it is demonstrated that (nBu4N)3[HV12O32Cl(DyPc)] is a field-induced single molecule magnet with a maximal relaxation time of the order 10-3 s. The obtained results open up the way to further exploration and fine-tuning of these three modular molecular nanocomposites regarding tailoring and control of their Ln-dependent charge-separated states (induced by intramolecular transfer) and relaxation dynamics as well as of electron hopping between molecules. This should enable us to realize ultra-sensitive polyoxometalate powered quasi-superconductors, sensors, and data storage/processing materials for quantum technologies and neuromorphic computing.
Collapse
|
10
|
Su P, Warneke Z, Volke D, Espenship MF, Hu H, Kawa S, Kirakci K, Hoffmann R, Laskin J, Wiebeler C, Warneke J. Gas Phase Reactivity of [Mo 6X 14] 2- Dianions (X = Cl - I). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:161-170. [PMID: 36630296 DOI: 10.1021/jasms.2c00243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We investigate collision-induced dissociation (CID) of [Mo6X14]2- (X = Cl, Br, I) and the reactivity of fragment ions of these precursors with background gases. Ion mobility measurements and theoretical calculations provide structural information for some of the observed ions. Sequential losses of MoX2 units dominate the dissociation pathways of [Mo6Cl14]2-. Meanwhile, loss of X radicals is the main channel for X = Br and I. Ion mobility measurements and computational investigations indicate minor structural changes in the octahedral Mo6 unit for [Mo6Im]- (m = 6-13) fragments. We observe that mass spectra obtained using CID substantially vary among mass spectrometers: Specifically, ions with molecular formula [Mo6Xm(O2)n]- (X = Br and I) are observed as dominant species produced through reactions with O2 in several mass spectrometers, but also adduct free fragment ions were observed in other instruments, depending on the background conditions. Ion-trap fragmentation combined with theoretical investigations indicates that spontaneous losses of X radicals occur upon binding of O2 to [Mo6Im]- fragments (m ≤ 12). Theoretical investigations indicate that both oxygen atoms are bound to the vacant sites of the Mo6 units. This study opens up a new vista to generate and study a large variety of hexanuclear Mo6Xm(O2)n anions.
Collapse
|
11
|
Ma X, Rohdenburg M, Knorke H, Kawa S, Liu JKY, Aprà E, Asmis KR, Azov VA, Laskin J, Jenne C, Kenttamaa HI, Warneke J. Binding of Saturated and Unsaturated C6-Hydrocarbons to the Electrophilic Anion [B12Br11]−: A Systematic Mechanistic Study. Phys Chem Chem Phys 2022; 24:21759-21772. [DOI: 10.1039/d2cp01042a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The highly reactive gaseous ion [B12Br11]– is a metal-free closed-shell anion which spontaneously forms covalent bonds with hydrocarbon molecules, including alkanes. Herein, we systematically investigate the reaction mechanism for binding...
Collapse
|
12
|
Yuan Q, Rohdenburg M, Cao W, Aprà E, Landmann J, Finze M, Warneke J, Wang XB. Isolated [B 2(CN) 6] 2-: Small Yet Exceptionally Stable Nonmetal Dianion. J Phys Chem Lett 2021; 12:12005-12011. [PMID: 34890205 DOI: 10.1021/acs.jpclett.1c03533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report the observation of a small, yet remarkably stable, metal-free hexacyanodiborate dianion [B2(CN)6]2- in the gas phase. Negative ion photoelectron spectroscopy (NIPES) was employed to measure its spectra at multiple laser wavelengths, yielding a 1.9 eV electron binding energy (EBE) ─a remarkably high value of electronic stability and a ∼2.60 eV repulsive Coulomb barrier (RCB) for electron detachment. This rationalizes the observation of this dianion, although homolytic charge-separation dissociation into two [B(CN)3]•- is energetically favorable. Quantum chemical calculations demonstrate a D3d staggered conformation for both the dianion and radical monoanion, and the calculated EBE and RCB match the experimental values well. The simulated density of states spectrum reproduces all measured electronic transitions, while the simulated vibrational progressions for the ground state transition cover a much narrower EBE range compared to the experimental band, indicating appreciable auto-photodetachment via electronically excited dianion resonances.
Collapse
|
13
|
Yang F, Behrend KA, Knorke H, Rohdenburg M, Charvat A, Jenne C, Abel B, Warneke J. Anion-Anion Chemistry with Mass-Selected Molecular Fragments on Surfaces. Angew Chem Int Ed Engl 2021; 60:24910-24914. [PMID: 34523217 PMCID: PMC9293123 DOI: 10.1002/anie.202109249] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/06/2021] [Indexed: 01/21/2023]
Abstract
While reactions between ions and neutral molecules in the gas phase have been studied extensively, reactions between molecular ions of same polarity remain relatively unexplored. Herein we show that reactions between fragment ions generated in the gas phase and molecular ions of the same polarity are possible by soft-landing of both reagents on surfaces. The reactive [B12 I11 ]1- anion was deposited on a surface layer built up by landing the generally unreactive [B12 I12 ]2- . Ex-situ analysis of the generated material shows that [B24 I23 ]3- was formed. A computational study shows that the product is metastable in the gas phase, but a charge-balanced environment of a grounded surface may stabilize the triply charged product, as suggested by model calculations. This opens new opportunities for the generation of highly charged clusters using unconventional building blocks from the gas phase.
Collapse
|
14
|
Yang F, Behrend KA, Knorke H, Rohdenburg M, Charvat A, Jenne C, Abel B, Warneke J. Anionen‐Anionen‐Chemie mit massenselektierten Fragmentionen auf Oberflächen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Samayoa-Oviedo HY, Behrend KA, Kawa S, Knorke H, Su P, Belov ME, Anderson G, Warneke J, Laskin J. Design and Performance of a Soft-Landing Instrument for Fragment Ion Deposition. Anal Chem 2021; 93:14489-14496. [PMID: 34672519 DOI: 10.1021/acs.analchem.1c03009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the development of a new high-flux electrospray ionization-based instrument for soft landing of mass-selected fragment ions onto surfaces. Collision-induced dissociation is performed in a collision cell positioned after the dual electrodynamic ion funnel assembly. The high duty cycle of the instrument enables high-coverage deposition of mass-selected fragment ions onto surfaces at a defined kinetic energy. This capability facilitates the investigation of the reactivity of gaseous fragment ions in the condensed phase. We demonstrate that the observed reactions of deposited fragment ions are dependent on the structure of the ion and the composition of either ionic or neutral species codeposited onto a surface. The newly developed instrument provides access to high-purity ion fragments as building blocks for the preparation of unique ionic layers.
Collapse
|
16
|
Moors M, Warneke J, López X, de Graaf C, Abel B, Monakhov KY. Insights from Adsorption and Electron Modification Studies of Polyoxometalates on Surfaces for Molecular Memory Applications. Acc Chem Res 2021; 54:3377-3389. [PMID: 34427081 DOI: 10.1021/acs.accounts.1c00311] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This Account highlights recent experimental and theoretical work focusing on the development of polyoxometalates (POMs) as possible active switching units in what may be called "molecule-based memory cells". Herein, we critically discuss how multiply charged vanadium-containing POMs, which exhibit stable metal-oxo bonds and are characterized by the excellent ability to change their redox states without significant structural distortions of the central polyoxoanion core, can be immobilized best and how they may work optimally at appropriate surfaces. Furthermore, we critically discuss important issues and challenges on the long way toward POM-based nanoelectronics. This Account is divided into four sections shedding light on POM interplay in solution and on surfaces, ion soft-landing of mass-selected POMs on surfaces, electronic modification of POMs on surfaces, and computational modeling of POMs on surfaces. The sections showcase the complex nature of far-reaching POM interactions with the chemical surroundings in solution and the properties of POMs in the macroscopic environment of electrode surfaces. Section 2 describes complex relationships of POMs with their counter-cations, solvent molecules, and water impurities, which have been shown to exhibit a direct impact on the resulting surface morphology, where a concentration-dependent formation of micellar structures can be potentially observed. Section 3 gives insights into the ion soft-landing deposition of mass-selected POMs on electrode surfaces, which emerges as an appealing method because the simultaneous deposition of agglomeration-stimulating counter-cations can be avoided. Section 4 provides details of electronic properties of POMs and their modification by external electronic stimuli toward the development of multiple-state resistive (memristive) switches. Section 5 sheds light on issues of the determination of the electronic structure properties of POMs across their interfaces, which is difficult to address by experiment. The studies summarized in these four sections have employed various X-ray-scattering, microscopy, spectroscopy, and computational techniques for imaging of POM interfaces in solution and on surfaces to determine the adsorption type, agglomeration tendency, distribution, and oxidation state of deposited molecules. The presented research findings and conceptual ideas may assist experimentalists and theoreticians to advance the exploration of POM electrical conductivity as a function of metal redox and spin states and to pave the way for a realization of ("brain-inspired") POM-based memory devices, memristive POM-surface device engineering, and energy efficient nonvolatile data storage and processing technologies.
Collapse
|
17
|
Warneke J, Wang XB. Measuring Electronic Structure of Multiply Charged Anions to Understand Their Chemistry: A Case Study on Gaseous Polyhedral closo-Borate Dianions. J Phys Chem A 2021; 125:6653-6661. [PMID: 34323504 DOI: 10.1021/acs.jpca.1c04618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Research on multiply charged anions (MCAs) in the gas phase has been intensively performed during the past decades, mainly to understand fundamental molecular physics phenomena, for example, intramolecular Coulomb repulsion and existence of the repulsive Coulomb barrier. However, the relevance of these investigations with respect to understanding MCAs' chemistry appears often vague. Here, we discuss how insights into the electronic structure obtained from negative ion photoelectron spectroscopy (NIPES) combined with theoretical calculations and collision-induced dissociation can provide a fundamental understanding of the intrinsic chemical reactivity of MCAs and their fragments. This is exemplified in our studies on polyhedral closo-borate dianions [BnXn]2- (n = 6, 10, 11, 12; X = H, F-I, CN) and their fragment ions. For example, the rational design of closo-borate dianions with specific electronic properties is described, which leads to generating highly reactive fragments. Depending on the dianionic precursor, these fragments are tuned to either bind noble gases effectively or activate small molecules like CO and N2. The intrinsic electronic properties of closo-borate dianions are further compared to their electrochemistry in solutions, revealing solvent effects on the redox potentials. Neutral host molecules such as cyclodextrins are found to bind strongly to [BnXn]2-, and gas phase NIPES provides insights into the intrinsic host-guest interactions. Finally, outlooks including the direct NIPES of molecular fragment ions that cannot be generated in the condensed phase and their utilization in preparative mass spectrometry are discussed.
Collapse
|
18
|
Mayer M, Rohdenburg M, Kawa S, Horn F, Knorke H, Jenne C, Tonner R, Asmis KR, Warneke J. Cover Feature: Relevance of π‐Backbonding for the Reactivity of Electrophilic Anions [B
12
X
11
]
−
(X=F, Cl, Br, I, CN) (Chem. Eur. J. 40/2021). Chemistry 2021. [DOI: 10.1002/chem.202102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Ueltzen K, Schmitz S, Moors M, Glöß M, Börner M, Werner I, Warneke Z, Warneke J, Abel B, Monakhov KY. Synthesis, Structure, and Surface Adsorption Characteristics of a Polynuclear Mn II,IV-Yb III Complex. Inorg Chem 2021; 60:10415-10425. [PMID: 34192460 DOI: 10.1021/acs.inorgchem.1c00994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The controlled adsorption of polynuclear coordination compounds with specific structural and electronic characteristics on surfaces is crucial for the prospective implementation of molecule-surface interfaces into practical electronic devices. From this perspective, a neutral 3d,4f-coordination cluster [MnII3MnIVYb3O3(OH)(L·SMe)3(OOCMe)9]·2MeCN·3EtOH (1·2MeCN·3EtOH), where L·SMe- is a Schiff base, has been synthesized and fully characterized and its adsorption on two different solid substrates, gold and graphite, has been studied. The mixed-valence compound with a bilayered metal core structure and the structurally exposed thioether groups exhibits a substantially different surface bonding to metallic gold and semimetallic graphite substrates. While on graphite the adsorption takes place only on distinguished attraction points with a locally increased number of potential bonding sites such as terrace edges and other surface defects, on gold the molecules were found to adsorb rather weakly on randomly distributed adsorption sites of the surface terraces. This entirely different behavior provides important information for the development of advanced surface materials that may enable well-distributed ordered molecular assemblies.
Collapse
|
20
|
Jiang Y, Yuan Q, Cao W, Rohdenburg M, Nierstenhöfer MC, Li Z, Yang Y, Zhong C, Jenne C, Warneke J, Sun H, Sun Z, Wang XB. Gaseous cyclodextrin- closo-dodecaborate complexes χCD·B 12X 122- (χ = α, β, and γ; X = F, Cl, Br, and I): electronic structures and intramolecular interactions. Phys Chem Chem Phys 2021; 23:13447-13457. [PMID: 34008657 DOI: 10.1039/d1cp01131f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fundamental understanding of cyclodextrin-closo-dodecaborate inclusion complexes is of great interest in supramolecular chemistry. Herein, we report a systematic investigation on the electronic structures and intramolecular interactions of perhalogenated closo-dodecaborate dianions B12X122- (X = F, Cl, Br and I) binding to α-, β-, and γ-cyclodextrins (CDs) in the gas phase using combined negative ion photoelectron spectroscopy (NIPES) and density functional theory (DFT) calculations. The vertical detachment energy (VDE) of each complex and electronic stabilization of each dianion due to the CD binding (ΔVDE, relative to the corresponding isolated B12X122-) are determined from the experiments along α-, β- and γ-CD in the form of VDE (ΔVDE): 4.00 (2.10), 4.33 (2.43), and 4.30 (2.40) eV in X = F; 4.09 (1.14), 4.64 (1.69), and 4.69 (1.74) eV in X = Cl; 4.11 (0.91), 4.58 (1.38), and 4.70 (1.50) eV in X = Br; and 3.54 (0.74), 3.88 (1.08), and 4.05 (1.25) eV in X = I, respectively. All complexes have significantly higher VDEs than the corresponding isolated dodecaborate dianions with ΔVDE spanning from 0.74 eV at (α, I) to 2.43 eV at (β, F), sensitive to both host CD size and guest substituent X. DFT-optimized complex structures indicate that all B12X122- prefer binding to the wide openings of CDs with the insertion depth and binding motif strongly dependent on the CD size and halogen X. Dodecaborate anions with heavy halogens, i.e., X = Cl, Br, and I, are found outside of α-CD, while B12F122- is completely wrapped by γ-CD. Partial embedment of B12X122- into CDs is observed for the other complexes via multipronged B-XH-O/C interlocking patterns. The simulated spectra based on the density of states agree well with those of the experiments and the calculated VDEs well reproduce the experimental trends. Molecular orbital analyses suggest that the spectral features at low binding energies originated from electrons detached from the dodecaborate dianion, while those at higher binding energies are derived from electron detachment from CDs. Energy decomposition analyses reveal that the electrostatic interaction plays a dominating role in contributing to the host-guest interactions for the X = F series partially due to the formation of a O/C-HX-B hydrogen bonding network, and the dispersion forces gradually become important with the increase of halogen size.
Collapse
|
21
|
Mayer M, Rohdenburg M, Kawa S, Horn F, Knorke H, Jenne C, Tonner R, Asmis KR, Warneke J. Relevance of π-Backbonding for the Reactivity of Electrophilic Anions [B 12 X 11 ] - (X=F, Cl, Br, I, CN). Chemistry 2021; 27:10274-10281. [PMID: 34014012 PMCID: PMC8362024 DOI: 10.1002/chem.202100949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 11/08/2022]
Abstract
Electrophilic anions of type [B12 X11 ]- posses a vacant positive boron binding site within the anion. In a comparatitve experimental and theoretical study, the reactivity of [B12 X11 ]- with X=F, Cl, Br, I, CN is characterized towards different nucleophiles: (i) noble gases (NGs) as σ-donors and (ii) CO/N2 as σ-donor-π-acceptors. Temperature-dependent formation of [B12 X11 NG]- indicates the enthalpy order (X=CN)>(X=Cl)≈(X=Br)>(X=I)≈(X=F) almost independent of the NG in good agreement with calculated trends. The observed order is explained by an interplay of the electron deficiency of the vacant boron site in [B12 X11 ]- and steric effects. The binding of CO and N2 to [B12 X11 ]- is significantly stronger. The B3LYP 0 K attachment enthapies follow the order (X=F)>(X=CN)>(X=Cl)>(X=Br)>(X=I), in contrast to the NG series. The bonding motifs of [B12 X11 CO]- and [B12 X11 N2 ]- were characterized using cryogenic ion trap vibrational spectroscopy by focusing on the CO and N2 stretching frequencies ν C O and ν N 2 , respectively. Observed shifts of ν C O and ν N 2 are explained by an interplay between electrostatic effects (blue shift), due to the positive partial charge, and by π-backdonation (red shift). Energy decomposition analysis and analysis of natural orbitals for chemical valence support all conclusions based on the experimental results. This establishes a rational understanding of [B12 X11 ]- reactivety dependent on the substituent X and provides first systematic data on π-backdonation from delocalized σ-electron systems of closo-borate anions.
Collapse
|
22
|
Pütt R, Kozłowski P, Werner I, Griebel J, Schmitz S, Warneke J, Monakhov KY. {P 2V 3W 15}-Polyoxometalates Functionalized with Phthalocyaninato Y and Yb Moieties. Inorg Chem 2021; 60:80-86. [PMID: 33180468 DOI: 10.1021/acs.inorgchem.0c02257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A tris(alkoxo)pyridine-augmented Wells-Dawson polyoxometalate (nBu4N)6[WD-Py] (WD = P2V3W15O59(OCH2)3C, Py = C5H4N) was functionalized with phthalocyaninato metal moieties (MPc where M = Y or Yb and Pc = C32H16N8) to afford (nBu4N)4[HWD-Py(MPc)] compounds. High-resolution mass spectrometry was used to detect and identify the hybrid assembly. The magnetism studies reveal substantial differences between M = Yb (monomeric, single-ion paramagnetism) and M = Y (containing dimers, radical character). The results of electronic paramagnetic resonance spectroscopy, SQUID magnetometry, and magnetochemical calculations indicate the presence of intramolecular charge transfer from the MPc moiety to the polyoxometalate and of intermolecular charge transfer from the MPc moiety of one molecule to the polyoxometalate unit of another molecule. These compounds with identified VIV ions represent unique examples of transition-metal/lanthanide complex-POM hybrid compounds with nonphotoinduced charge transfer between electron donor and acceptor centers.
Collapse
|
23
|
Wulf T, Warneke J, Heine T. B 12X 11(H 2) −: exploring the limits of isotopologue selectivity of hydrogen adsorption. RSC Adv 2021; 11:28466-28475. [PMID: 35478551 PMCID: PMC9038111 DOI: 10.1039/d1ra06322g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
We study the isotopologue-selective binding of dihydrogen at the undercoordinated boron site of B12X11− (X = H, F, Cl, Br, I, CN) using ab initio quantum chemistry. With a Gibbs free energy of H2 attachment reaching up to 80 kJ mol−1 (ΔG at 300 K for X = CN), these sites are even more attractive than most undercoordinated metal centers studied so far. We thus believe that they can serve as an edge case close to the upper limit of isotopologue-selective H2 adsorption sites. Differences of the zero-point energy of attachment average 5.0 kJ mol−1 between D2 and H2 and 2.7 kJ mol−1 between HD and H2, resulting in hypothetical isotopologue selectivities as high as 2.0 and 1.5, respectively, even at 300 K. Interestingly, even though attachment energies vary substantially according to the chemical nature of X, isotopologue selectivities remain very similar. We find that the H–H activation is so strong that it likely results in the instantaneous heterolytic dissociation of H2 in all cases (except, possibly, for X = H), highlighting the extremely electrophilic nature of B12X11− despite its negative charge. Unfortunately, this high reactivity also makes B12X11− unsuitable for practical application in the field of dihydrogen isotopologue separation. Thus, this example stresses the two-edged nature of strong H2 affinity, yielding a higher isotopologue selectivity on the one hand but risking dissociation on the other, and helps define a window of adsorption energies into which a material for selective adsorption near room temperature should ideally fall. The extreme H2 affinity of B12X11− gives a glimpse of how higher selectivities in adsorptive isotopologue separation may be achieved.![]()
Collapse
|
24
|
Knorke H, Li H, Warneke J, Liu ZF, Asmis KR. Cryogenic ion trap vibrational spectroscopy of the microhydrated sulfate dianions SO 42-(H 2O) 3-8. Phys Chem Chem Phys 2020; 22:27732-27745. [PMID: 33242322 DOI: 10.1039/d0cp04386a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Infrared photodissociation spectra of the D2-tagged microhydrated sulfate dianions with three to eight water molecules are presented over a broad spectral range that covers the OH stretching and H2O bending modes of the solvent molecules at higher energies, the sulfate stretching modes of the solute at intermediate energies and the intermolecular solute librational modes at the lowest energies. A low ion temperature combined with messenger-tagging ensures well-resolved vibrational spectra that allow for structure assignments based on a comparison to harmonic and anharmonic IR spectra from density functional theory (DFT) calculations. DFT ab initio molecular dynamics simulations are required to disentangle the broad and complex spectral signatures of microhydrated sulfate dianions in the OH stretching region and to identify systematic trends in the correlation of the strength and evolution of the solute-solvent and solvent-solvent interactions with cluster size. The onset for the formation of the second solvation shell is observed for n = 8.
Collapse
|
25
|
Asmis KR, Beele BB, Jenne C, Kawa S, Knorke H, Nierstenhöfer MC, Wang X, Warneke J, Warneke Z, Yuan Q. Cover Feature: Synthesis, Electronic Properties and Reactivity of [B
12
X
11
(NO
2
)]
2−
(X=F–I) Dianions (Chem. Eur. J. 64/2020). Chemistry 2020. [DOI: 10.1002/chem.202004113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|