1
|
Machado LFM, Galán JE. Loss of function of metabolic traits in typhoidal Salmonella without apparent genome degradation. mBio 2024; 15:e0060724. [PMID: 38572992 PMCID: PMC11077982 DOI: 10.1128/mbio.00607-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Salmonella enterica serovar Typhi and Paratyphi A are the cause of typhoid and paratyphoid fever in humans, which are systemic life-threatening illnesses. Both serovars are exclusively adapted to the human host, where they can cause life-long persistent infection. A distinct feature of these serovars is the presence of a relatively high number of degraded coding sequences coding for metabolic pathways, most likely a consequence of their adaptation to a single host. As a result of convergent evolution, these serovars shared many of the degraded coding sequences although often affecting different genes in the same metabolic pathway. However, there are several coding sequences that appear intact in one serovar while clearly degraded in the other, suggesting differences in their metabolic capabilities. Here, we examined the functionality of metabolic pathways that appear intact in S. Typhi but that show clear signs of degradation in S. Paratyphi A. We found that, in all cases, the existence of single amino acid substitutions in S. Typhi metabolic enzymes, transporters, or transcription regulators resulted in the inactivation of these metabolic pathways. Thus, the inability of S. Typhi to metabolize Glucose-6-Phosphate or 3-phosphoglyceric acid is due to the silencing of the expression of the genes encoding the transporters for these compounds due to point mutations in the transcriptional regulatory proteins. In contrast, its inability to utilize glucarate or galactarate is due to the presence of point mutations in the transporter and enzymes necessary for the metabolism of these sugars. These studies provide additional support for the concept of adaptive convergent evolution of these two human-adapted S. enterica serovars and highlight a limitation of bioinformatic approaches to predict metabolic capabilities. IMPORTANCE Salmonella enterica serovar Typhi and Paratyphi A are the cause of typhoid and paratyphoid fever in humans, which are systemic life-threatening illnesses. Both serovars can only infect the human host, where they can cause life-long persistent infection. Because of their adaptation to the human host, these bacterial pathogens have changed their metabolism, leading to the loss of their ability to utilize certain nutrients. In this study we examined the functionality of metabolic pathways that appear intact in S. Typhi but that show clear signs of degradation in S. Paratyphi A. We found that, in all cases, the existence of single amino acid substitutions in S. Typhi metabolic enzymes, transporters, or transcription regulators resulted in the inactivation of these metabolic pathways. These studies provide additional support for the concept of adaptive convergent evolution of these two human-adapted S. enterica serovars.
Collapse
|
2
|
Machado LFM, Galán JE. Loss of function of metabolic traits in typhoidal Salmonella without apparent genome degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580360. [PMID: 38405738 PMCID: PMC10888927 DOI: 10.1101/2024.02.14.580360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Salmonella enterica serovar Typhi and Paratyphi A are the cause of typhoid and paratyphoid fever in humans, which are systemic life-threatening illnesses. Both serovars are exclusively adapted to the human host, where they can cause life-long persistent infection. A distinct feature of these serovars is the presence of a relatively high number of degraded coding sequences coding for metabolic pathways, most likely a consequence of their adaptation to a single host. As a result of convergent evolution, these serovars shared many of the degraded coding sequences although often affecting different genes in the same metabolic pathway. However, there are several coding sequences that appear intact in one serovar while clearly degraded in the other, suggesting differences in their metabolic capabilities. Here, we examined the functionality of metabolic pathways that appear intact in S . Typhi but that show clear signs of degradation in S . Paratyphi A. We found that, in all cases, the existence of single amino acid substitutions in S. Typhi metabolic enzymes, transporters, or transcription regulators resulted in the inactivation of these metabolic pathways. Thus, the inability of S . Typhi to metabolize Glucose-6-Phosphate or 3-phosphoglyceric acid is due to the silencing of the expression of the genes encoding the transporters for these compounds due to point mutations in the transcriptional regulatory proteins. In contrast, its inability to utilize glucarate or galactarate is due to the presence of point mutations in the transporter and enzymes necessary for the metabolism of these sugars. These studies provide additional support for the concept of adaptive convergent evolution of these two human-adapted Salmonella enterica serovars and highlight a limitation of bioinformatic approaches to predict metabolic capabilities.
Collapse
|
3
|
Lian H, Park D, Chen M, Schueder F, Lara-Tejero M, Liu J, Galán JE. Parkinson's disease kinase LRRK2 coordinates a cell-intrinsic itaconate-dependent defence pathway against intracellular Salmonella. Nat Microbiol 2023; 8:1880-1895. [PMID: 37640963 PMCID: PMC10962312 DOI: 10.1038/s41564-023-01459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
Cell-intrinsic defences constitute the first line of defence against intracellular pathogens. The guanosine triphosphatase RAB32 orchestrates one such defence response against the bacterial pathogen Salmonella, through delivery of antimicrobial itaconate. Here we show that the Parkinson's disease-associated leucine-rich repeat kinase 2 (LRRK2) orchestrates this defence response by scaffolding a complex between RAB32 and aconitate decarboxylase 1, which synthesizes itaconate from mitochondrial precursors. Itaconate delivery to Salmonella-containing vacuoles was impaired and Salmonella replication increased in LRRK2-deficient cells. Loss of LRRK2 also restored virulence of a Salmonella mutant defective in neutralizing this RAB32-dependent host defence pathway in mice. Cryo-electron tomography revealed tether formation between Salmonella-containing vacuoles and host mitochondria upon Salmonella infection, which was significantly impaired in LRRK2-deficient cells. This positions LRRK2 centrally within a host defence mechanism, which may have favoured selection of a common familial Parkinson's disease mutant allele in the human population.
Collapse
|
4
|
Chen M, Sun H, Boot M, Shao L, Chang SJ, Wang W, Lam TT, Lara-Tejero M, Rego EH, Galán JE. Itaconate is an effector of a Rab GTPase cell-autonomous host defense pathway against Salmonella. Science 2020; 369:450-455. [PMID: 32703879 DOI: 10.1126/science.aaz1333] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/26/2020] [Accepted: 05/15/2020] [Indexed: 11/02/2022]
Abstract
The guanosine triphosphatase (GTPase) Rab32 coordinates a cell-intrinsic host defense mechanism that restricts the replication of intravacuolar pathogens such as Salmonella Here, we show that this mechanism requires aconitate decarboxylase 1 (IRG1), which synthesizes itaconate, a metabolite with antimicrobial activity. We find that Rab32 interacts with IRG1 on Salmonella infection and facilitates the delivery of itaconate to the Salmonella-containing vacuole. Mice defective in IRG1 rescued the virulence defect of a S. enterica serovar Typhimurium mutant specifically defective in its ability to counter the Rab32 defense mechanism. These studies provide a link between a metabolite produced in the mitochondria after stimulation of innate immune receptors and a cell-autonomous defense mechanism that restricts the replication of an intracellular bacterial pathogen.
Collapse
|
5
|
Bleves S, Galán JE, Llosa M. Bacterial injection machines: Evolutionary diverse but functionally convergent. Cell Microbiol 2020; 22:e13157. [PMID: 31891220 PMCID: PMC7138736 DOI: 10.1111/cmi.13157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/19/2019] [Indexed: 12/23/2022]
Abstract
Many human pathogens use Type III, Type IV, and Type VI secretion systems to deliver effectors into their target cells. The contribution of these secretion systems to microbial virulence was the main focus of a workshop organised by the International University of Andalusia in Spain. The meeting addressed structure-function, substrate recruitment, and translocation processes, which differ widely on the different secretion machineries, as well as the nature of the translocated effectors and their roles in subverting the host cell. An excellent panel of worldwide speakers presented the state of the art of the field, highlighting the involvement of bacterial secretion in human disease and discussing mechanistic aspects of bacterial pathogenicity, which can provide the bases for the development of novel antivirulence strategies.
Collapse
|
6
|
Geiger T, Lara-Tejero M, Xiong Y, Galán JE. Mechanisms of substrate recognition by a typhoid toxin secretion-associated muramidase. eLife 2020; 9:53473. [PMID: 31958059 PMCID: PMC6996933 DOI: 10.7554/elife.53473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/18/2020] [Indexed: 01/07/2023] Open
Abstract
Typhoid toxin is a virulence factor for the bacterial pathogen Salmonella Typhi, which causes typhoid fever in humans. After its synthesis by intracellular bacteria, typhoid toxin is secreted into the lumen of the Salmonella-containing vacuole by a secretion mechanism strictly dependent on TtsA, a specific muramidase that facilitates toxin transport through the peptidoglycan layer. Here we show that substrate recognition by TtsA depends on a discrete domain within its carboxy terminus, which targets the enzyme to the bacterial poles to recognize YcbB-edited peptidoglycan. Comparison of the atomic structures of TtsA bound to its substrate and that of a close homolog with different specificity identified specific determinants involved in substrate recognition. Combined with structure-guided mutagenesis and in vitro and in vivo crosslinking experiments, this study provides an unprecedented view of the mechanisms by which a muramidase recognizes its peptidoglycan substrate to facilitate protein secretion.
Collapse
|
7
|
Zhu S, Schniederberend M, Zhitnitsky D, Jain R, Galán JE, Kazmierczak BI, Liu J. In Situ Structures of Polar and Lateral Flagella Revealed by Cryo-Electron Tomography. J Bacteriol 2019; 201:e00117-19. [PMID: 31010901 PMCID: PMC6560136 DOI: 10.1128/jb.00117-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023] Open
Abstract
The bacterial flagellum is a sophisticated self-assembling nanomachine responsible for motility in many bacterial pathogens, including Pseudomonas aeruginosa, Vibrio spp., and Salmonella enterica The bacterial flagellum has been studied extensively in the model systems Escherichia coli and Salmonella enterica serovar Typhimurium, yet the range of variation in flagellar structure and assembly remains incompletely understood. Here, we used cryo-electron tomography and subtomogram averaging to determine in situ structures of polar flagella in P. aeruginosa and peritrichous flagella in S Typhimurium, revealing notable differences between these two flagellar systems. Furthermore, we observed flagellar outer membrane complexes as well as many incomplete flagellar subassemblies, which provide additional insight into mechanisms underlying flagellar assembly and loss in both P. aeruginosa and S Typhimurium.IMPORTANCE The bacterial flagellum has evolved as one of the most sophisticated self-assembled molecular machines, which confers locomotion and is often associated with virulence of bacterial pathogens. Variation in species-specific features of the flagellum, as well as in flagellar number and placement, results in structurally distinct flagella that appear to be adapted to the specific environments that bacteria encounter. Here, we used cutting-edge imaging techniques to determine high-resolution in situ structures of polar flagella in Pseudomonas aeruginosa and peritrichous flagella in Salmonella enterica serovar Typhimurium, demonstrating substantial variation between flagella in these organisms. Importantly, we observed novel flagellar subassemblies and provided additional insight into the structural basis of flagellar assembly and loss in both P. aeruginosa and S Typhimurium.
Collapse
|
8
|
Guo EZ, Desrosiers DC, Zalesak J, Tolchard J, Berbon M, Habenstein B, Marlovits T, Loquet A, Galán JE. A polymorphic helix of a Salmonella needle protein relays signals defining distinct steps in type III secretion. PLoS Biol 2019; 17:e3000351. [PMID: 31260457 PMCID: PMC6625726 DOI: 10.1371/journal.pbio.3000351] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/12/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022] Open
Abstract
Type III protein-secretion machines are essential for the interactions of many pathogenic or symbiotic bacterial species with their respective eukaryotic hosts. The core component of these machines is the injectisome, a multiprotein complex that mediates the selection of substrates, their passage through the bacterial envelope, and ultimately their delivery into eukaryotic target cells. The injectisome is composed of a large cytoplasmic complex or sorting platform, a multiring base embedded in the bacterial envelope, and a needle-like filament that protrudes several nanometers from the bacterial surface and is capped at its distal end by the tip complex. A characteristic feature of these machines is that their activity is stimulated by contact with target host cells. The sensing of target cells, thought to be mediated by the distal tip of the needle filament, generates an activating signal that must be transduced to the secretion machine by the needle filament. Here, through a multidisciplinary approach, including solid-state NMR (SSNMR) and cryo electron microscopy (cryo-EM) analyses, we have identified critical residues of the needle filament protein of a Salmonella Typhimurium type III secretion system that are involved in the regulation of the activity of the secretion machine. We found that mutations in the needle filament protein result in various specific phenotypes associated with different steps in the type III secretion process. More specifically, these studies reveal an important role for a polymorphic helix of the needle filament protein and the residues that line the lumen of its central channel in the control of type III secretion.
Collapse
|
9
|
Chang SJ, Jin SC, Jiao X, Galán JE. Unique features in the intracellular transport of typhoid toxin revealed by a genome-wide screen. PLoS Pathog 2019; 15:e1007704. [PMID: 30951565 PMCID: PMC6469816 DOI: 10.1371/journal.ppat.1007704] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/17/2019] [Accepted: 03/13/2019] [Indexed: 12/29/2022] Open
Abstract
Typhoid toxin is a virulence factor for Salmonella Typhi and Paratyphi, the cause of typhoid fever in humans. This toxin has a unique architecture in that its pentameric B subunit, made of PltB, is linked to two enzymatic A subunits, the ADP ribosyl transferase PltA and the deoxyribonuclease CdtB. Typhoid toxin is uniquely adapted to humans, recognizing surface glycoprotein sialoglycans terminated in acetyl neuraminic acid, which are preferentially expressed by human cells. The transport pathway to its cellular targets followed by typhoid toxin after receptor binding is currently unknown. Through a genome-wide CRISPR/Cas9-mediated screen we have characterized the mechanisms by which typhoid toxin is transported within human cells. We found that typhoid toxin hijacks specific elements of the retrograde transport and endoplasmic reticulum-associated degradation machineries to reach its subcellular destination within target cells. Our study reveals unique and common features in the transport mechanisms of bacterial toxins that could serve as the bases for the development of novel anti-toxin therapeutic strategies.
Collapse
|
10
|
Abstract
Many bacteria have evolved specialized nanomachines with the remarkable ability to inject multiple bacterially encoded effector proteins into eukaryotic or prokaryotic cells. Known as type III, type IV, and type VI secretion systems, these machines play a central role in the pathogenic or symbiotic interactions between multiple bacteria and their eukaryotic hosts, or in the establishment of bacterial communities in a diversity of environments. Here we focus on recent progress elucidating the structure and assembly pathways of these machines. As many of the interactions shaped by these machines are of medical importance, they provide an opportunity to develop novel therapeutic approaches to combat important human diseases.
Collapse
|
11
|
Lara-Tejero M, Qin Z, Hu B, Butan C, Liu J, Galán JE. Role of SpaO in the assembly of the sorting platform of a Salmonella type III secretion system. PLoS Pathog 2019; 15:e1007565. [PMID: 30668610 PMCID: PMC6358110 DOI: 10.1371/journal.ppat.1007565] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/01/2019] [Accepted: 01/04/2019] [Indexed: 11/23/2022] Open
Abstract
Many bacterial pathogens and symbionts use type III secretion machines to interact with their hosts by injecting bacterial effector proteins into host target cells. A central component of this complex machine is the cytoplasmic sorting platform, which orchestrates the engagement and preparation of type III secreted proteins for their delivery to the needle complex, the substructure of the type III secretion system that mediates their passage through the bacterial envelope. The sorting platform is thought to be a dynamic structure whose components alternate between assembled and disassembled states. However, how this dynamic behavior is controlled is not understood. In S. Typhimurium a core component of the sorting platform is SpaO, which is synthesized in two tandemly translated products, a full length (SpaOL) and a short form (SpaOS) composed of the C-terminal 101 amino acids. Here we show that in the absence of SpaOS the assembly of the needle substructure of the needle complex, which requires a functional sorting platform, can still occur although with reduced efficiency. Consistent with this observation, in the absence of SpaOS secretion of effectors proteins, which requires a fully assembled injectisome, is only slightly compromised. In the absence of SpaOS we detect a significant number of fully assembled needle complexes that are not associated with fully assembled sorting platforms. We also find that although binding of SpaOL to SpaOS can be detected in the absence of other components of the sorting platform, this interaction is not detected in the context of a fully assembled sorting platform suggesting that SpaOS may not be a core structural component of the sorting platform. Consistent with this observation we find that SpaOS and OrgB, a component of the sorting platform, share the same binding surface on SpaOL. We conclude that SpaOS regulates the assembly of the sorting platform during type III secretion. Many pathogenic and symbiotic gram-negative bacteria utilize type III secretion systems to deliver bacterial proteins, known as effectors, directly into the host cell cytosol to promote their survival and the colonization of tissues. Type III secretion systems or injectisomes are large, multiprotein complexes composed of several substructures: the needle complex, a multiring structure with a protruding needle-like appendage anchored in the bacterial envelope; the export apparatus, a set of membrane proteins that form a gate in the inner-membrane for the passage of effector proteins; and the sorting platform, a large cytosolic complex that delivers the effectors to the needle complex in an orderly fashion. In this study, we characterize SpaO, the core component of the Salmonella Typhimurium sorting platform. The spaO gene encodes two simultaneously translated products, a full length protein (SpaOL) and a shorter product (SpaOS) encompassing the last 101 aa of the full length product. Here we find that in the absence of SpaOS, the sorting platform still forms and functions although slightly less efficiently than in the wild-type situation, and therefore we conclude that SpaOS is most likely not a central structural component of the sorting platform and may play a regulatory role during the cycles of assembly and disassembly that the sorting platform undergoes. In addition, we identify residues critical for the interaction between SpaOL and OrgB and SpaOL and SpaOS and conclude that those interactions might be mutually exclusive further supporting the idea that SpaOS may not be a core structural component of the sorting platform. N-terminal residues in SpaOL are shown to be critical for the formation of the sorting platform. Our findings provide insights into the sorting platform substructure, a highly conserved element in type III secretion systems and may contribute to the development of novel therapeutic avenues to fight infection.
Collapse
|
12
|
Park D, Lara-Tejero M, Waxham MN, Li W, Hu B, Galán JE, Liu J. Visualization of the type III secretion mediated Salmonella-host cell interface using cryo-electron tomography. eLife 2018; 7:39514. [PMID: 30281019 PMCID: PMC6175578 DOI: 10.7554/elife.39514] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/24/2018] [Indexed: 02/01/2023] Open
Abstract
Many important gram-negative bacterial pathogens use highly sophisticated type III protein secretion systems (T3SSs) to establish complex host-pathogen interactions. Bacterial-host cell contact triggers the activation of the T3SS and the subsequent insertion of a translocon pore into the target cell membrane, which serves as a conduit for the passage of effector proteins. Therefore the initial interaction between T3SS-bearing bacteria and host cells is the critical step in the deployment of the protein secretion machine, yet this process remains poorly understood. Here, we use high-throughput cryo-electron tomography (cryo-ET) to visualize the T3SS-mediated Salmonella-host cell interface. Our analysis reveals the intact translocon at an unprecedented level of resolution, its deployment in the host cell membrane, and the establishment of an intimate association between the bacteria and the target cells, which is essential for effector translocation. Our studies provide critical data supporting the long postulated direct injection model for effector translocation.
Collapse
|
13
|
Geiger T, Pazos M, Lara-Tejero M, Vollmer W, Galán JE. Peptidoglycan editing by a specific LD-transpeptidase controls the muramidase-dependent secretion of typhoid toxin. Nat Microbiol 2018; 3:1243-1254. [PMID: 30250245 DOI: 10.1038/s41564-018-0248-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/20/2018] [Indexed: 01/26/2023]
Abstract
Protein secretion mechanisms are essential for the virulence of most bacterial pathogens. Typhoid toxin is an essential virulence factor for Salmonella Typhi, the cause of typhoid fever in humans. This toxin is unique in that it is only produced within mammalian cells, and it must be trafficked to the extracellular space before intoxicating target cells. An essential and poorly understood aspect of this transport pathway is the secretion of typhoid toxin from the bacterium into the S. Typhi-containing vacuole. We show here that typhoid toxin secretion requires its translocation to the trans side of the peptidoglycan layer at the bacterial poles for subsequent release through the outer membrane. This translocation process depends on a specialized muramidase, the activity of which requires the localized editing of peptidoglycan by a specific ld-transpeptidase. These studies describe a protein export mechanism that is probably conserved in other bacterial species.
Collapse
|
14
|
Sun H, Kamanova J, Lara-Tejero M, Galán JE. Salmonella stimulates pro-inflammatory signalling through p21-activated kinases bypassing innate immune receptors. Nat Microbiol 2018; 3:1122-1130. [PMID: 30224799 PMCID: PMC6158040 DOI: 10.1038/s41564-018-0246-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/13/2018] [Indexed: 01/11/2023]
Abstract
Microbial infections are most often countered by inflammatory responses that are initiated through the recognition of conserved microbial products by innate immune receptors and result in pathogen expulsion1-6. However, inflammation can also lead to pathology. Tissues such as the intestinal epithelium, which are exposed to microbial products, are therefore subject to stringent negative regulatory mechanisms to prevent signalling through innate immune receptors6-11. This presents a challenge to the enteric pathogen Salmonella Typhimurium, which requires intestinal inflammation to compete against the resident microbiota and to acquire the nutrients and electron acceptors that sustain its replication12,13. We show here that S. Typhimurium stimulates pro-inflammatory signalling by a unique mechanism initiated by effector proteins that are delivered by its type III protein secretion system. These effectors activate Cdc42 and the p21-activated kinase 1 (PAK1) leading to the recruitment of TNF receptor-associated factor 6 (TRAF6) and mitogen-activated protein kinase kinase kinase 7 (TAK1), and the stimulation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inflammatory signalling. The removal of Cdc42, PAK1, TRAF6 or TAK1 prevented S. Typhimurium from stimulating NF-κB signalling in cultured cells. In addition, oral administration of a highly specific PAK inhibitor blocked Salmonella-induced intestinal inflammation and bacterial replication in the mouse intestine, although it resulted in a significant increase in the bacterial loads in systemic tissues. Thus, S. Typhimurium stimulates inflammatory signalling in the intestinal tract by engaging critical downstream signalling components of innate immune receptors. These findings illustrate the unique balance that emerges from host-pathogen co-evolution, in that pathogen-initiated responses that help pathogen replication are also important to prevent pathogen spread to deeper tissues.
Collapse
|
15
|
Fowler CC, Galán JE. Decoding a Salmonella Typhi Regulatory Network that Controls Typhoid Toxin Expression within Human Cells. Cell Host Microbe 2018; 23:65-76.e6. [PMID: 29324231 DOI: 10.1016/j.chom.2017.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/26/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
Salmonella Typhi is the cause of typhoid fever, a major global health concern. An essential virulence factor of this pathogen is typhoid toxin. In contrast to most AB-type toxins, typhoid toxin is exclusively expressed by intracellular bacteria. The regulatory networks that ensure this unique gene expression pattern are unknown. Here, we developed FAST-INSeq, a genome-wide screening approach to identify S. Typhi genes required for typhoid toxin expression within infected cells. We find that typhoid toxin expression is controlled by a silencing and counter-silencing mechanism through the opposing actions of the PhoP/PhoQ two-component regulatory system and the histone-like protein H-NS. The screen also identified bacterial mutants that alter the proportion of intracellular S. Typhi that reside within an intravacuolar environment, which was essential for toxin expression. Collectively, these data describe a regulatory mechanism that allows a bacterial pathogen to exclusively express a virulence factor when located within a specific intracellular compartment.
Collapse
|
16
|
Gao X, Deng L, Stack G, Yu H, Chen X, Naito-Matsui Y, Varki A, Galán JE. Evolution of host adaptation in the Salmonella typhoid toxin. Nat Microbiol 2017; 2:1592-1599. [PMID: 28993610 PMCID: PMC5705260 DOI: 10.1038/s41564-017-0033-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/23/2017] [Indexed: 12/03/2022]
Abstract
The evolution of virulence traits is central for the emergence or re-emergence of microbial pathogens and for their adaptation to a specific host 1-5 . Typhoid toxin is an essential virulence factor of the human-adapted bacterial pathogen Salmonella Typhi 6,7 , the cause of typhoid fever in humans 8-12 . Typhoid toxin has a unique A2B5 architecture with two covalently linked enzymatic 'A' subunits, PltA and CdtB, associated with a homopentameric 'B' subunit made up of PltB, which has binding specificity for the N-acetylneuraminic acid (Neu5Ac) sialoglycans 6,13 prominently present in humans 14 . Here, we examine the functional and structural relationship between typhoid toxin and ArtAB, an evolutionarily related AB5 toxin encoded by the broad-host Salmonella Typhimurium 15 . We find that ArtA and ArtB, homologues of PltA and PltB, can form a functional complex with the typhoid toxin CdtB subunit after substitution of a single amino acid in ArtA, while ArtB can form a functional complex with wild-type PltA and CdtB. We also found that, after addition of a single-terminal Cys residue, a CdtB homologue from cytolethal distending toxin can form a functional complex with ArtA and ArtB. In line with the broad host specificity of S. Typhimurium, we found that ArtB binds human glycans, terminated in N-acetylneuraminic acid, as well as glycans terminated in N-glycolylneuraminic acid (Neu5Gc), which are expressed in most other mammals 14 . The atomic structure of ArtB bound to its receptor shows the presence of an additional glycan-binding site, which broadens its binding specificity. Despite equivalent toxicity in vitro, we found that the ArtB/PltA/CdtB chimaeric toxin exhibits reduced lethality in an animal model, indicating that the host specialization of typhoid toxin has optimized its targeting mechanisms to the human host. This is a remarkable example of a toxin evolving to broaden its enzymatic activities and adapt to a specific host.
Collapse
|
17
|
Gao X, Deng L, Stack G, Yu H, Chen X, Naito-Matsui Y, Varki A, Galán JE. Author Correction: Evolution of host adaptation in the Salmonella typhoid toxin. Nat Microbiol 2017; 2:1697. [PMID: 29093550 DOI: 10.1038/s41564-017-0070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The original version of this Letter has been modified in the abstract and main text to better reflect the distribution of Neu5Ac sialoglycans in humans. Additionally, co-author Lingquan Deng's present address has been further clarified.
Collapse
|
18
|
Chang SJ, Song J, Galán JE. Receptor-Mediated Sorting of Typhoid Toxin during Its Export from Salmonella Typhi-Infected Cells. Cell Host Microbe 2017; 20:682-689. [PMID: 27832592 DOI: 10.1016/j.chom.2016.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/16/2016] [Accepted: 10/09/2016] [Indexed: 11/30/2022]
Abstract
Typhoid toxin is an essential virulence factor of Salmonella Typhi, the cause of typhoid fever. Typhoid toxin is secreted into the lumen of Salmonella-containing vacuole (SCV), after which it is packaged into vesicle carrier intermediates and released extracellularly through incompletely understood mechanisms. Following export, the toxin targets cells by interacting with human-specific Neu5Ac-terminated glycan receptors. We show that typhoid toxin is sorted from the SCV into vesicle carrier intermediates via interactions of its B subunit, PltB, with specific lumenal sialylated glycan packaging receptors. Cells deficient in N-glycosylation or the synthesis of specific gangliosides or displaying Neu5Gc-terminated, as opposed to Neu5Ac-terminated, glycans do not support typhoid toxin export. Additionally, typhoid toxin packaging requires the specific SCV environment, as toxin produced by an S. Typhi mutant with impaired trafficking is not properly sorted into vesicles. These results reveal how the exotoxin of an intracellular pathogen engages host pathways for packaging and release.
Collapse
|
19
|
Hannemann S, Galán JE. Salmonella enterica serovar-specific transcriptional reprogramming of infected cells. PLoS Pathog 2017; 13:e1006532. [PMID: 28742135 PMCID: PMC5549772 DOI: 10.1371/journal.ppat.1006532] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/08/2017] [Accepted: 07/13/2017] [Indexed: 01/18/2023] Open
Abstract
Despite their high degree of genomic similarity, different Salmonella enterica serovars are often associated with very different clinical presentations. In humans, for example, the typhoidal S. enterica serovar Typhi causes typhoid fever, a life-threatening systemic disease. In contrast, the non-typhoidal S. enterica serovar Typhimurium causes self-limiting gastroenteritis. The molecular bases for these different clinical presentations are incompletely understood. The ability to re-program gene expression in host cells is an essential virulence factor for typhoidal and non-typhoidal S. enterica serovars. Here, we have compared the transcriptional profile of cultured epithelial cells infected with S. Typhimurium or S. Typhi. We found that both serovars stimulated distinct transcriptional responses in infected cells that are associated with the stimulation of specific signal transduction pathways. These specific responses were associated with the presence of a distinct repertoire of type III secretion effector proteins. These observations provide major insight into the molecular bases for potential differences in the pathogenic mechanisms of typhoidal and non-typhoidal S. enterica serovars. Salmonella Typhimurium and Salmonella Typhi are associated with very different clinical presentations. While S. Typhimurium causes self-limiting gastroenteritis (i. e. “food poisoning”), S. Typhi causes typhoid fever, a systemic, life-threatening disease. The bases for these major differences are not fully understood but are likely to involve many factors. We have compared the transcriptional responses of cultured cells infected with S. Typhimurium or S. Typhi. We found that these Salmonella serovars stimulated distinct transcriptional responses, which could be correlated with their ability to stimulate serovar-specific signal transduction pathways. Importantly, the ability to stimulate these cellular responses was correlated with the presence or absence of specific type III secretion effector proteins. These observations provide major insight into the molecular bases for the differences in the pathogenic mechanisms of typhoidal and non-typhoidal S. enterica serovars.
Collapse
|
20
|
Abstract
Intracellular bacterial pathogens survive and replicate within specialized eukaryotic cell organelles. To establish their intracellular niches these pathogens have adopted sophisticated strategies to control intracellular membrane trafficking. Since Rab-family GTPases are critical regulators of endocytic and secretory membrane trafficking events, many intracellular pathogens have evolved specific mechanisms to modulate or hijack Rab GTPases dynamics and trafficking functions. One such strategy is the delivery of bacterial effectors through specialized machines to specifically target Rab GTPases. Some of these effectors functionally mimic host proteins that regulate the Rab GTP cycle, while others regulate Rabs proteins through their post-translation modifications or proteolysis. In this review, we examine how the localization and function of Rab-family GTPases are altered during infection with 3 well-studied intracellular bacterial pathogens, Mycobacterium tuberculosis, Salmonella enterica and Legionella pneumophila. We also discuss recent findings about specific mechanisms by which these intracellular pathogens target this protein family.
Collapse
|
21
|
Gao B, Vorwerk H, Huber C, Lara-Tejero M, Mohr J, Goodman AL, Eisenreich W, Galán JE, Hofreuter D. Metabolic and fitness determinants for in vitro growth and intestinal colonization of the bacterial pathogen Campylobacter jejuni. PLoS Biol 2017; 15:e2001390. [PMID: 28542173 PMCID: PMC5438104 DOI: 10.1371/journal.pbio.2001390] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/24/2017] [Indexed: 01/07/2023] Open
Abstract
Campylobacter jejuni is one of the leading infectious causes of food-borne illness around the world. Its ability to persistently colonize the intestinal tract of a broad range of hosts, including food-producing animals, is central to its epidemiology since most infections are due to the consumption of contaminated food products. Using a highly saturated transposon insertion library combined with next-generation sequencing and a mouse model of infection, we have carried out a comprehensive genome-wide analysis of the fitness determinants for growth in vitro and in vivo of a highly pathogenic strain of C. jejuni. A comparison of the C. jejuni requirements to colonize the mouse intestine with those necessary to grow in different culture media in vitro, combined with isotopologue profiling and metabolic flow analysis, allowed us to identify its metabolic requirements to establish infection, including the ability to acquire certain nutrients, metabolize specific substrates, or maintain intracellular ion homeostasis. This comprehensive analysis has identified metabolic pathways that could provide the basis for the development of novel strategies to prevent C. jejuni colonization of food-producing animals or to treat human infections.
Collapse
|
22
|
Fowler CC, Chang SJ, Gao X, Geiger T, Stack G, Galán JE. Emerging insights into the biology of typhoid toxin. Curr Opin Microbiol 2017; 35:70-77. [PMID: 28213043 DOI: 10.1016/j.mib.2017.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 11/25/2022]
Abstract
Typhoid toxin is a unique A2B5 exotoxin and an important virulence factor for Salmonella Typhi, the cause of typhoid fever. In the decade since its initial discovery, great strides have been made in deciphering the unusual biological program of this toxin, which is fundamentally different from related toxins in many ways. Purified typhoid toxin administered to laboratory animals causes many of the symptoms of typhoid fever, suggesting that typhoid toxin is a central factor in this disease. Further advances in understanding the biology of this toxin will help guide the development of badly needed diagnostics and therapeutic interventions that target this toxin to detect, prevent or treat typhoid fever.
Collapse
|
23
|
Dietsche T, Tesfazgi Mebrhatu M, Brunner MJ, Abrusci P, Yan J, Franz-Wachtel M, Schärfe C, Zilkenat S, Grin I, Galán JE, Kohlbacher O, Lea S, Macek B, Marlovits TC, Robinson CV, Wagner S. Structural and Functional Characterization of the Bacterial Type III Secretion Export Apparatus. PLoS Pathog 2016; 12:e1006071. [PMID: 27977800 PMCID: PMC5158082 DOI: 10.1371/journal.ppat.1006071] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/17/2016] [Indexed: 02/04/2023] Open
Abstract
Bacterial type III protein secretion systems inject effector proteins into eukaryotic host cells in order to promote survival and colonization of Gram-negative pathogens and symbionts. Secretion across the bacterial cell envelope and injection into host cells is facilitated by a so-called injectisome. Its small hydrophobic export apparatus components SpaP and SpaR were shown to nucleate assembly of the needle complex and to form the central “cup” substructure of a Salmonella Typhimurium secretion system. However, the in vivo placement of these components in the needle complex and their function during the secretion process remained poorly defined. Here we present evidence that a SpaP pentamer forms a 15 Å wide pore and provide a detailed map of SpaP interactions with the export apparatus components SpaQ, SpaR, and SpaS. We further refine the current view of export apparatus assembly, consolidate transmembrane topology models for SpaP and SpaR, and present intimate interactions of the periplasmic domains of SpaP and SpaR with the inner rod protein PrgJ, indicating how export apparatus and needle filament are connected to create a continuous conduit for substrate translocation. Many Gram-negative bacteria use type III secretion systems to inject bacterial proteins into eukaryotic host cells in order to promote their own survival and colonization. These systems are large molecular machines with the ability to transport proteins across three cell membranes in one step. It is believed that the only gated barrier of these systems lies in the bacterial cytoplasmic membrane but it was unclear so far how this gate looks like and of which components it is composed. Here we present evidence based on in depth biochemical and genetic characterization that an assembly of five SpaP proteins forms this gate in the cytoplasmic membrane of the type III secretion system of Salmonella pathogenicity island 1. We further show that one subunit each of the proteins SpaQ, SpaR, and SpaS are closely associated to the SpaP gate and may function in the gating mechanism, and that the protein PrgJ is attached to this gate on the outside to connect it to the hollow needle filament projecting towards the host cell. Our findings elucidate a hitherto ill-defined aspect of type III secretion systems and may help to develop novel antiinfective therapies targeting these virulence-associated molecular devices.
Collapse
|
24
|
Spanò S, Gao X, Hannemann S, Lara-Tejero M, Galán JE. A Bacterial Pathogen Targets a Host Rab-Family GTPase Defense Pathway with a GAP. Cell Host Microbe 2016; 19:216-26. [PMID: 26867180 DOI: 10.1016/j.chom.2016.01.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/24/2015] [Accepted: 01/19/2016] [Indexed: 12/21/2022]
Abstract
Cell-autonomous defense mechanisms are potent strategies that protect individual cells against intracellular pathogens. The Rab-family GTPase Rab32 was previously shown to restrict the intracellular human pathogen Salmonella Typhi, but its potential broader role in antimicrobial defense remains unknown. We show that Rab32 represents a general cell-autonomous, antimicrobial defense that is counteracted by two Salmonella effectors. Mice lacking Rab-32 or its nucleotide exchange factor BLOC-3 are permissive to S. Typhi infection and exhibit increased susceptibility to S. Typhimurium. S. Typhimurium counters this defense pathway by delivering two type III secretion effectors, SopD2, a Rab32 GAP, and GtgE, a specific Rab32 protease. An S. Typhimurium mutant strain lacking these two effectors exhibits markedly reduced virulence, which is fully restored in BLOC-3-deficient mice. These results demonstrate that a cell-autonomous, Rab32-dependent host defense pathway plays a central role in the defense against vacuolar pathogens and describe a mechanism evolved by a bacterial pathogen to counter it.
Collapse
|
25
|
Kamanova J, Sun H, Lara-Tejero M, Galán JE. The Salmonella Effector Protein SopA Modulates Innate Immune Responses by Targeting TRIM E3 Ligase Family Members. PLoS Pathog 2016; 12:e1005552. [PMID: 27058235 PMCID: PMC4825927 DOI: 10.1371/journal.ppat.1005552] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
Salmonella Typhimurium stimulates inflammatory responses in the intestinal epithelium, which are essential for its ability to replicate within the intestinal tract. Stimulation of these responses is strictly dependent on the activity of a type III secretion system encoded within its pathogenicity island 1, which through the delivery of effector proteins, triggers signaling pathways leading to inflammation. One of these effectors is SopA, a HECT-type E3 ligase, which is required for the efficient stimulation of inflammation in an animal model of Salmonella Typhimurium infection. We show here that SopA contributes to the stimulation of innate immune responses by targeting two host E3 ubiquitin ligases, TRIM56 and TRIM65. We also found that TRIM65 interacts with the innate immune receptor MDA5 enhancing its ability to stimulate interferon-β signaling. Therefore, by targeting TRIM56 and TRIM65, SopA can stimulate signaling through two innate immune receptors, RIG-I and MDA5. These findings describe a Salmonella mechanism to modulate inflammatory responses by directly targeting innate immune signaling mechanisms. Salmonella Typhimurium, one of the main causes of food-borne illnesses, stimulates inflammatory responses in the intestinal epithelium. These responses are very important for the pathogen’s ability to secure nutrients within the intestinal tract. The ability of this pathogen to stimulate intestinal inflammation depends on a protein-delivery machine known as the type III secretion system. This system “injects” bacterial effector protein into host cells to modulate a variety of cellular functions for the pathogen’s benefit. We show here that one of these effector proteins, SopA, stimulates signaling pathways that can lead to inflammation. We report that SopA exerts its function by targeting two host E3 ubiquitin ligases, TRIM56 and TRIM65, which have the ability to enhance interferon-β expression through the innate immune receptors RIG-I and MDA5. These findings describe a Salmonella mechanism to stimulate inflammation by directly targeting innate immune signaling mechanisms.
Collapse
|