1
|
Brice NL, Carlton M, Margolin DH, Bexon M, Matthews KL, Dawson LA, Ellenbogen AL, Olanow CW, Dubow J, Kieburtz K. CVN424, a GPR6 inverse agonist, for Parkinson's disease and motor fluctuations: a double-blind, randomized, phase 2 trial. EClinicalMedicine 2024; 77:102882. [PMID: 39469536 PMCID: PMC11513664 DOI: 10.1016/j.eclinm.2024.102882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Background CVN424 is a GPR6 inverse agonist that provides selective pharmacological control of the indirect striatopallidal pathway. We assessed the safety and efficacy of CVN424 as an adjunctive treatment to levodopa for reducing OFF-time in individuals with Parkinson's disease (PD) experiencing motor-fluctuations. Methods This was a randomised, double-blind, placebo-controlled study conducted at 21 sites across the United States to evaluate two doses of CVN424 (NCT04191577). Patients with PD (Hoehn and Yahr stages 2-4) who were on a stable dose of levodopa and experiencing ≥2 h of daily OFF-time were randomised (1:1:1) to receive either once-daily CVN424 (50 mg or 150 mg) or placebo for a 28-day treatment period. The primary endpoints were safety and tolerability. The key secondary endpoint was the change from baseline to Day 27 in OFF-time. Findings The study was conducted from December 23, 2019, to October 14, 2021. Out of 198 participants screened, 141 eligible participants were randomised to one of the three treatment groups (n = 47 per group), and 127 participants completed the 28-day treatment period. The most common treatment emergent adverse events (TEAEs) were headache (2% with CVN424 50 mg, 9% with CVN424 150 mg, and 2% with placebo) and nausea (4% with CVN424 50 mg, 6% with CVN424 150 mg and 2% with placebo). No serious treatment-related adverse events were reported. On Day 27, the mean ± standard deviation (SD) change from baseline in daily OFF-time was -1.3 ± 3.0 h in the CVN424 50 mg group, -1.6 ± 2.5 h in the CVN424 150 mg group, and -0.5 ± 2.9 h in the placebo group. The placebo-adjusted LS mean ± standard error (SE) treatment difference was significant for the CVN424 150 mg dose (1.3 ± 0.56 h, [95 CI% -2.41 to -0.19], nominal p = 0.02). Interpretation Treatment with CVN424 was safe and well-tolerated. Despite the short study duration and small sample size, the 150 mg CVN424 dose provided a clinically meaningful reduction in daily OFF-time. This study supports the development of CVN424 for the treatment of PD. Funding Cerevance.
Collapse
|
2
|
Palmer N, Agnew C, Benn C, Buffham WJ, Castro JN, Chessari G, Clark M, Cons BD, Coyle JE, Dawson LA, Hamlett CCF, Hodson C, Holding F, Johnson CN, Liebeschuetz JW, Mahajan P, McCarthy JM, Murray CW, O'Reilly M, Peakman T, Price A, Rapti M, Reeks J, Schöpf P, St-Denis JD, Valenzano C, Wallis NG, Walser R, Weir H, Wilsher NE, Woodhead A, Bento CF, Tisi D. Fragment-Based Discovery of a Series of Allosteric-Binding Site Modulators of β-Glucocerebrosidase. J Med Chem 2024; 67:11168-11181. [PMID: 38932616 DOI: 10.1021/acs.jmedchem.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
β-Glucocerebrosidase (GBA/GCase) mutations leading to misfolded protein cause Gaucher's disease and are a major genetic risk factor for Parkinson's disease and dementia with Lewy bodies. The identification of small molecule pharmacological chaperones that can stabilize the misfolded protein and increase delivery of degradation-prone mutant GCase to the lysosome is a strategy under active investigation. Here, we describe the first use of fragment-based drug discovery (FBDD) to identify pharmacological chaperones of GCase. The fragment hits were identified by using X-ray crystallography and biophysical techniques. This work led to the discovery of a series of compounds that bind GCase with nM potency and positively modulate GCase activity in cells.
Collapse
|
3
|
Glen A, Bürli RW, Livermore D, Buffham W, Merison S, Rowland AE, Newman R, Fieldhouse C, Miller DJ, Dawson LA, Matthews K, Carlton MB, Brice NL. Discovery and first-time disclosure of CVN766, an exquisitely selective orexin 1 receptor antagonist. Bioorg Med Chem Lett 2024; 100:129629. [PMID: 38295907 DOI: 10.1016/j.bmcl.2024.129629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Modulators of orexin receptors are being developed for neurological illnesses such as sleep disorders, addictive behaviours and other psychiatric diseases. We herein describe the discovery of CVN766, a potent orexin 1 receptor antagonist that has greater than 1000-fold selectivity for the orexin 1 receptor over the orexin 2 receptor and demonstrates low off target hits in a diversity screen. In agreement with its in vitro ADME data, CVN766 demonstrated moderate in vivo clearance in rodents and displayed good brain permeability and target occupancy. This drug candidate is currently being investigated in clinical trials for schizophrenia and related psychiatric conditions.
Collapse
|
4
|
Rifat A, Ossola B, Bürli RW, Dawson LA, Brice NL, Rowland A, Lizio M, Xu X, Page K, Fidzinski P, Onken J, Holtkamp M, Heppner FL, Geiger JRP, Madry C. Differential contribution of THIK-1 K + channels and P2X7 receptors to ATP-mediated neuroinflammation by human microglia. J Neuroinflammation 2024; 21:58. [PMID: 38409076 PMCID: PMC10895799 DOI: 10.1186/s12974-024-03042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
Neuroinflammation is highly influenced by microglia, particularly through activation of the NLRP3 inflammasome and subsequent release of IL-1β. Extracellular ATP is a strong activator of NLRP3 by inducing K+ efflux as a key signaling event, suggesting that K+-permeable ion channels could have high therapeutic potential. In microglia, these include ATP-gated THIK-1 K+ channels and P2X7 receptors, but their interactions and potential therapeutic role in the human brain are unknown. Using a novel specific inhibitor of THIK-1 in combination with patch-clamp electrophysiology in slices of human neocortex, we found that THIK-1 generated the main tonic K+ conductance in microglia that sets the resting membrane potential. Extracellular ATP stimulated K+ efflux in a concentration-dependent manner only via P2X7 and metabotropic potentiation of THIK-1. We further demonstrated that activation of P2X7 was mandatory for ATP-evoked IL-1β release, which was strongly suppressed by blocking THIK-1. Surprisingly, THIK-1 contributed only marginally to the total K+ conductance in the presence of ATP, which was dominated by P2X7. This suggests a previously unknown, K+-independent mechanism of THIK-1 for NLRP3 activation. Nuclear sequencing revealed almost selective expression of THIK-1 in human brain microglia, while P2X7 had a much broader expression. Thus, inhibition of THIK-1 could be an effective and, in contrast to P2X7, microglia-specific therapeutic strategy to contain neuroinflammation.
Collapse
|
5
|
Hewer RC, Christie LA, Doyle KJ, Xu X, Roberts MJ, Dickson L, Cheung T, Cadwalladr DH, Pickford P, Teall M, Powell JAC, Sheardown S, Narayana L, Brice NL, Dawson LA, Carlton M, Bürli RW. Discovery and Characterization of Novel CNS-Penetrant GPR55 Agonists. J Med Chem 2023; 66:12858-12876. [PMID: 37708305 DOI: 10.1021/acs.jmedchem.3c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
From our NETSseq-derived human brain transcriptomics data, we identified GPR55 as a potential molecular target for the treatment of motor symptoms in patients with Parkinson's disease. From a high-throughput screen, we identified and optimized agonists with nanomolar potency against both human and rat GPR55. We discovered compounds with either strong or limited β-arrestin signaling and receptor desensitization, indicating biased signaling. A compound that showed minimal GPR55 desensitization demonstrated a reduction in firing frequency of medium spiny neurons cultured from rat striatum but did not reverse motor deficits in a rat hypolocomotion model. Further profiling of several desensitizing and non-desensitizing lead compounds showed that they are selective over related cannabinoid receptors CB1 and CB2 and that unbound brain concentrations well above the respective GPR55 EC50 can be readily achieved following oral administration. The novel brain-penetrant GPR55 agonists disclosed can be used to probe the role of this receptor in the brain.
Collapse
|
6
|
Christie LA, Brice NL, Rowland A, Dickson L, Anand R, Teall M, Doyle KJ, Narayana L, Mitchell C, Harvey JRM, Mulligan V, Dawson LA, Cragg SJ, Carlton M, Bürli RW. Discovery of CVN417, a Novel Brain-Penetrant α6-Containing Nicotinic Receptor Antagonist for the Modulation of Motor Dysfunction. J Med Chem 2023; 66:11718-11731. [PMID: 37651656 DOI: 10.1021/acs.jmedchem.3c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Nicotinic acetylcholine receptor (nAChR) α6 subunit RNA expression is relatively restricted to midbrain regions and is located presynaptically on dopaminergic neurons projecting to the striatum. This subunit modulates dopamine neurotransmission and may have therapeutic potential in movement disorders. We aimed to develop potent and selective α6-containing nAChR antagonists to explore modulation of dopamine release and regulation of motor function in vivo. High-throughput screening (HTS) identified novel α6-containing nAChR antagonists and led to the development of CVN417. This molecule blocks α6-containing nAChR activity in recombinant cells and reduces firing frequency of noradrenergic neurons in the rodent locus coeruleus. CVN417 modulated phasic dopaminergic neurotransmission in an impulse-dependent manner. In a rodent model of resting tremor, CVN417 attenuated this behavioral phenotype. These data suggest that selective antagonism of α6-containing nAChR, with molecules such as CVN417, may have therapeutic utility in treating the movement dysfunctions observed in conditions such as Parkinson's disease.
Collapse
|
7
|
Dickson L, Teall M, Chevalier E, Cheung T, Liwicki GM, Mack S, Stephenson A, White K, Fosbeary R, Harrison DC, Brice NL, Doyle K, Ciccocioppo R, Wu C, Almond S, Patel TR, Mitchell P, Barnes M, Ayscough AP, Dawson LA, Carlton M, Bürli RW. Discovery of CVN636: A Highly Potent, Selective, and CNS Penetrant mGluR 7 Allosteric Agonist. ACS Med Chem Lett 2023; 14:442-449. [PMID: 37077399 PMCID: PMC10107911 DOI: 10.1021/acsmedchemlett.2c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
The low affinity metabotropic glutamate receptor mGluR7 has been implicated in numerous CNS disorders; however, a paucity of potent and selective activators has hampered full delineation of the functional role and therapeutic potential of this receptor. In this work, we present the identification, optimization, and characterization of highly potent, novel mGluR7 agonists. Of particular interest is the chromane CVN636, a potent (EC50 7 nM) allosteric agonist which demonstrates exquisite selectivity for mGluR7 compared to not only other mGluRs, but also a broad range of targets. CVN636 demonstrated CNS penetrance and efficacy in an in vivo rodent model of alcohol use disorder. CVN636 thus has potential to progress as a drug candidate in CNS disorders involving mGluR7 and glutamatergic dysfunction.
Collapse
|
8
|
Ossola B, Rifat A, Rowland A, Hunter H, Drinkall S, Bender C, Hamlischer M, Teall M, Burley R, Barker DF, Cadwalladr D, Dickson L, Lawrence JMK, Harvey JRM, Lizio M, Xu X, Kavanagh E, Cheung T, Sheardown S, Lawrence CB, Harte M, Brough D, Madry C, Matthews K, Doyle K, Page K, Powell J, Brice NL, Bürli RW, Carlton MB, Dawson LA. Characterisation of C101248: A novel selective THIK-1 channel inhibitor for the modulation of microglial NLRP3-inflammasome. Neuropharmacology 2023; 224:109330. [PMID: 36375694 PMCID: PMC9841576 DOI: 10.1016/j.neuropharm.2022.109330] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Neuroinflammation, specifically the NLRP3 inflammasome cascade, is a common underlying pathological feature of many neurodegenerative diseases. Evidence suggests that NLRP3 activation involves changes in intracellular K+. Nuclear Enriched Transcript Sort Sequencing (NETSseq), which allows for deep sequencing of purified cell types from human post-mortem brain tissue, demonstrated a highly specific expression of the tandem pore domain halothane-inhibited K+ channel 1 (THIK-1) in microglia compared to other glial and neuronal cell types in the human brain. NETSseq also showed a significant increase of THIK-1 in microglia isolated from cortical regions of brains with Alzheimer's disease (AD) relative to control donors. Herein, we report the discovery and pharmacological characterisation of C101248, the first selective small-molecule inhibitor of THIK-1. C101248 showed a concentration-dependent inhibition of both mouse and human THIK-1 (IC50: ∼50 nM) and was inactive against K2P family members TREK-1 and TWIK-2, and Kv2.1. Whole-cell patch-clamp recordings of microglia from mouse hippocampal slices showed that C101248 potently blocked both tonic and ATP-evoked THIK-1 K+ currents. Notably, C101248 had no effect on other constitutively active resting conductance in slices from THIK-1-depleted mice. In isolated microglia, C101248 prevented NLRP3-dependent release of IL-1β, an effect not seen in THIK-1-depleted microglia. In conclusion, we demonstrated that inhibiting THIK-1 (a microglia specific gene that is upregulated in brains from donors with AD) using a novel selective modulator attenuates the NLRP3-dependent release of IL-1β from microglia, which suggests that this channel may be a potential therapeutic target for the modulation of neuroinflammation in AD.
Collapse
|
9
|
Drinkall S, Lawrence CB, Ossola B, Russell S, Bender C, Brice NB, Dawson LA, Harte M, Brough D. The two pore potassium channel THIK-1 regulates NLRP3 inflammasome activation. Glia 2022; 70:1301-1316. [PMID: 35353387 PMCID: PMC9314991 DOI: 10.1002/glia.24174] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
The NLRP3 (NLR family, pyrin domain containing 3) inflammasome is a multi-protein complex responsible for the activation of caspase-1 and the subsequent cleavage and activation of the potent proinflammatory cytokines IL-1β and IL-18, and pyroptotic cell death. NLRP3 is implicated as a driver of inflammation in a range of disorders including neurodegenerative diseases, type 2 diabetes, and atherosclerosis. A commonly reported mechanism contributing to NLRP3 inflammasome activation is potassium ion (K+ ) efflux across the plasma membrane. Identification of K+ channels involved in NLRP3 activation remains incomplete. Here, we investigated the role of the K+ channel THIK-1 in NLRP3 activation. Both pharmacological inhibitors and cells from THIK-1 knockout (KO) mice were used to assess THIK-1 contribution to macrophage NLRP3 activation in vitro. Pharmacological inhibition of THIK-1 inhibited caspase-1 activation and IL-1β release from mouse bone-marrow-derived macrophages (BMDMs), mixed glia, and microglia in response to NLRP3 agonists. Similarly, BMDMs and microglia from THIK-1 KO mice had reduced NLRP3-dependent IL-1β release in response to P2X7 receptor activation with ATP. Overall, these data suggest that THIK-1 is a regulator of NLRP3 inflammasome activation in response to ATP and identify THIK-1 as a potential therapeutic target for inflammatory disease.
Collapse
|
10
|
Brice NL, Schiffer HH, Monenschein H, Mulligan VJ, Page K, Powell J, Xu X, Cheung T, Burley JR, Sun H, Dickson L, Murphy ST, Kaushal N, Sheardown S, Lawrence J, Chen Y, Bartkowski D, Kanta A, Russo J, Hosea N, Dawson LA, Hitchcock SH, Carlton MB. Development of CVN424: A Selective and Novel GPR6 Inverse Agonist Effective in Models of Parkinson Disease. J Pharmacol Exp Ther 2021; 377:407-416. [PMID: 33795395 DOI: 10.1124/jpet.120.000438] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/29/2021] [Indexed: 07/25/2024] Open
Abstract
GPR6 is an orphan G-protein-coupled receptor that has enriched expression in the striatopallidal, indirect pathway and medium spiny neurons of the striatum. This pathway is greatly impacted by the loss of the nigro-striatal dopaminergic neurons in Parkinson disease, and modulating this neurocircuitry can be therapeutically beneficial. In this study, we describe the in vitro and in vivo pharmacological characterization of (R)-1-(2-(4-(2,4-difluorophenoxy)piperidin-1-yl)-3-((tetrahydrofuran-3-yl)amino)-7,8-dihydropyrido[3,4-b]pyrazin-6(5H)-yl)ethan-1-one (CVN424), a highly potent and selective small-molecule inverse agonist for GPR6 that is currently undergoing clinical evaluation. CVN424 is brain-penetrant and shows dose-dependent receptor occupancy that attained brain 50% of receptor occupancy at plasma concentrations of 6.0 and 7.4 ng/ml in mice and rats, respectively. Oral administration of CVN424 dose-dependently increases locomotor activity and reverses haloperidol-induced catalepsy. Furthermore, CVN424 restored mobility in bilateral 6-hydroxydopamine lesion model of Parkinson disease. The presence and localization of GPR6 in medium spiny neurons of striatum postmortem samples from both nondemented control and patients with Parkinson disease were confirmed at the level of both RNA (using Nuclear Enriched Transcript Sort sequencing) and protein. This body of work demonstrates that CVN424 is a potent, orally active, and brain-penetrant GPR6 inverse agonist that is effective in preclinical models and is a potential therapeutic for improving motor function in patients with Parkinson disease. SIGNIFICANCE STATEMENT: CVN424 represents a nondopaminergic novel drug for potential use in patients with Parkinson disease.
Collapse
|
11
|
Poon A, Saini H, Sethi S, O'Sullivan GA, Plun-Favreau H, Wray S, Dawson LA, McCarthy JM. The role of SQSTM1 (p62) in mitochondrial function and clearance in human cortical neurons. Stem Cell Reports 2021; 16:1276-1289. [PMID: 33891871 PMCID: PMC8185463 DOI: 10.1016/j.stemcr.2021.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/22/2022] Open
Abstract
Sequestosome-1 (SQSTM1/p62) is involved in cellular processes such as autophagy and metabolic reprogramming. Mutations resulting in the loss of function of SQSTM1 lead to neurodegenerative diseases including frontotemporal dementia. The pathogenic mechanism that contributes to SQSTM1-related neurodegeneration has been linked to its role as an autophagy adaptor, but this is poorly understood, and its precise role in mitochondrial function and clearance remains to be clarified. Here, we assessed the importance of SQSTM1 in human induced pluripotent stem cell (iPSC)-derived cortical neurons through the knockout of SQSTM1. We show that SQSTM1 depletion causes altered mitochondrial gene expression and functionality, as well as autophagy flux, in iPSC-derived neurons. However, SQSTM1 is not essential for mitophagy despite having a significant impact on early PINK1-dependent mitophagy processes including PINK1 recruitment and phosphorylation of ubiquitin on depolarized mitochondria. These findings suggest that SQSTM1 is important for mitochondrial function rather than clearance. SQSTM1 is dispensable for cortical neuron differentiation, modeled with human iPSCs Expression of bioenergetic genes is altered in human cortical neurons lacking SQSTM1 Loss of SQSTM1 causes aberration in mitochondrial functionality SQSTM1 affects mitophagic processes but is not required for mitochondrial clearance
Collapse
|
12
|
Elamir AM, Hutchinson S, Albaba H, Keshavarzi S, Xu W, Moulton CA, McGilvary I, Cleary S, Wei A, Dodd A, Knox J, O'Kane G, Prince RM, Kalimuthu S, Kim J, Ringash J, Dawson LA, Wong R, Barry A, Brierley J, Gallinger S, Hosni A. A Risk Score Model for Locoregional Recurrence Following Upfront Surgery for Pancreatic Adenocarcinoma: Implications for Adjuvant Therapy. Clin Oncol (R Coll Radiol) 2021; 33:527-535. [PMID: 33875360 DOI: 10.1016/j.clon.2021.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/21/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
AIMS The aims of the study were to identify predictors of locoregional failure (LRF) following surgery for pancreatic adenocarcinoma, develop a prediction risk score model of LRF and evaluate the impact of postoperative radiation therapy (PORT) on LRF. MATERIALS AND METHODS A retrospective review was conducted on patients with stages I-III pancreatic adenocarcinoma who underwent surgery at our institution (2005-2016). Univariable and then multivariable analyses were used to evaluate clinicopathological factors associated with LRF for patients who did not receive PORT. The risk score of LRF was calculated based on the sum of coefficients of the predictors of LRF. The model was applied to the entire cohort to evaluate the impact of PORT on the high- and low-risk groups for LRF. RESULTS In total, 467 patients were identified (median follow-up 22 months). Among patients who did not receive PORT (n = 440), predictors of LRF were pN+, involved or close ≤1 mm margin(s), moderately and poorly differentiated tumour grade and lymphovascular invasion. After adding patients who received PORT, the 2-year LRF in the high-risk group was 57% for patients who did not receive PORT (n = 242) and 32% among patients who received PORT (n = 22), with an absolute benefit to LRF of 25% (95% confidence interval 5-52%, P = 0.07). The 2-year overall survival for the high-versus the low-risk group was 36% versus 67% (P < 0.001). CONCLUSION This risk group classification could be used to identify pancreatic adenocarcinoma patients with higher risk of LRF who may benefit from PORT. However, validation and prospective evaluation are warranted.
Collapse
|
13
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|
14
|
Barron MR, Gartlon J, Dawson LA, Atkinson PJ, Pardon MC. Increasing Tau 4R Tau Levels Exacerbates Hippocampal Tau Hyperphosphorylation in the hTau Model of Tauopathy but Also Tau Dephosphorylation Following Acute Systemic Inflammation. Front Immunol 2020; 11:293. [PMID: 32194553 PMCID: PMC7066213 DOI: 10.3389/fimmu.2020.00293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/05/2020] [Indexed: 11/13/2022] Open
Abstract
Inflammation is considered a mechanistic driver of Alzheimer's disease, thought to increase tau phosphorylation, the first step to the formation of neurofibrillary tangles (NFTs). To further understand how inflammation impacts the development of tau pathology, we used (hTau) mice, which express all six, non-mutated, human tau isoforms, but with an altered ratio of tau isoforms favoring 3R tau due to the concomitant loss of murine tau (mTau) that is predominantly 4R. Such an imbalance pattern has been related to susceptibility to NFTs formation, but whether or not this also affects susceptibility to systemic inflammation and related changes in tau phosphorylation is not known. To reduce the predominance of 3R tau by increasing 4R tau availability, we bred hTau mice on a heterozygous mTau background and compared the impact of systemic inflammation induced by lipopolysaccharide (LPS) in hTau mice hetero- or homozygous mTau knockout. Three-month-old male wild-type (Wt), mTau+/-, mTau-/-, hTau/mTau+/-, and hTau/mTau-/- mice were administered 100, 250, or 330 μg/kg of LPS or its vehicle phosphate buffer saline (PBS) [intravenously (i.v.), n = 8-9/group]. Sickness behavior, reflected by behavioral suppression in the spontaneous alternation task, hippocampal tau phosphorylation, measured by western immunoblotting, and circulating cytokine levels were quantified 4 h after LPS administration. The persistence of the LPS effects (250 μg/kg) on these measures, and food burrowing behavior, was assessed at 24 h post-inoculation in Wt, mTau+/-, and hTau/mTau+/- mice (n = 9-10/group). In the absence of immune stimulation, increasing 4R tau levels in hTau/mTau+/- exacerbated pS202 and pS396/404 tau phosphorylation, without altering total tau levels or worsening early behavioral perturbations characteristic of hTau/mTau-/- mice. We also show for the first time that modulating 4R tau levels in hTau mice affects the response to systemic inflammation. Behavior was suppressed in all genotypes 4 h following LPS administration, but hTau/mTau+/- exhibited more severe sickness behavior at the 100 μg/kg dose and a milder behavioral and cytokine response than hTau/mTau-/- mice at the 330 μg/kg dose. All LPS doses decreased tau phosphorylation at both epitopes in hTau/mTau+/- mice, but pS202 levels were selectively reduced at the 100 μg/kg dose in hTau/mTau-/- mice. Behavioral suppression and decreased tau phosphorylation persisted at 24 h following LPS administration in hTau/mTau+/- mice.
Collapse
|
15
|
Mauricio R, Benn C, Davis J, Dawson G, Dawson LA, Evans A, Fox N, Gallacher J, Hutton M, Isaac J, Jones DN, Jones L, Lalli G, Libri V, Lovestone S, Moody C, Noble W, Perry H, Pickett J, Reynolds D, Ritchie C, Rohrer JD, Routledge C, Rowe J, Snyder H, Spires-Jones T, Swartz J, Truyen L, Whiting P. Tackling gaps in developing life-changing treatments for dementia. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2019; 5:241-253. [PMID: 31297438 PMCID: PMC6597931 DOI: 10.1016/j.trci.2019.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since the G8 dementia summit in 2013, a number of initiatives have been established with the aim of facilitating the discovery of a disease-modifying treatment for dementia by 2025. This report is a summary of the findings and recommendations of a meeting titled "Tackling gaps in developing life-changing treatments for dementia", hosted by Alzheimer's Research UK in May 2018. The aim of the meeting was to identify, review, and highlight the areas in dementia research that are not currently being addressed by existing initiatives. It reflects the views of leading experts in the field of neurodegeneration research challenged with developing a strategic action plan to address these gaps and make recommendations on how to achieve the G8 dementia summit goals. The plan calls for significant advances in (1) translating newly identified genetic risk factors into a better understanding of the impacted biological processes; (2) enhanced understanding of selective neuronal resilience to inform novel drug targets; (3) facilitating robust and reproducible drug-target validation; (4) appropriate and evidence-based selection of appropriate subjects for proof-of-concept clinical trials; (5) improving approaches to assess drug-target engagement in humans; and (6) innovative approaches in conducting clinical trials if we are able to detect disease 10-15 years earlier than we currently do today.
Collapse
|
16
|
McCulloch G, Dawson LA, Ross JM, Morgan RM. The discrimination of geoforensic trace material from close proximity locations by organic profiling using HPLC and plant wax marker analysis by GC. Forensic Sci Int 2018; 288:310-326. [PMID: 29778501 DOI: 10.1016/j.forsciint.2018.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 01/08/2018] [Accepted: 02/12/2018] [Indexed: 11/15/2022]
Abstract
There is a need to develop a wider empirical research base to expand the scope for utilising the organic fraction of soil in forensic geoscience, and to demonstrate the capability of the analytical techniques used in forensic geoscience to discriminate samples at close proximity locations. The determination of wax markers from soil samples by GC analysis has been used extensively in court and is known to be effective in discriminating samples from different land use types. A new HPLC method for the analysis of the organic fraction of forensic sediment samples has also been shown recently to add value in conjunction with existing inorganic techniques for the discrimination of samples derived from close proximity locations. This study compares the ability of these two organic techniques to discriminate samples derived from close proximity locations and finds the GC technique to provide good discrimination at this scale, providing quantification of known compounds, whilst the HPLC technique offered a shorter and simpler sample preparation method and provided very good discrimination between groups of samples of different provenance in most cases. The use of both data sets together gave further improved accuracy rates in some cases, suggesting that a combined organic approach can provide added benefits in certain case scenarios and crime reconstruction contexts.
Collapse
|
17
|
McCulloch G, Dawson LA, Brewer MJ, Morgan RM. The identification of markers for Geoforensic HPLC profiling at close proximity sites. Forensic Sci Int 2017; 272:127-141. [PMID: 28152441 DOI: 10.1016/j.forsciint.2017.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 12/24/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
Abstract
Soil is a highly transferable source of trace physical material that is both persistent in the environment and varied in composition. This inherent variability can provide useful information to determine the geographical origin of a questioned sample or when comparing and excluding samples, since the composition of soil is dependent on geographical factors such as climate, bedrock geology and land use. Previous studies have limited forensic relevance due to the requirement for large sample amounts and unrealistic differences between the land use and geographical location of the sample sites. In addition the philosophical differences between the disciplines of earth sciences, for which most analytical techniques have been designed, and forensic sciences, particularly with regard to sample preparation and data interpretation have not been fully considered. This study presents an enhanced technique for the analysis of organic components of geoforensic samples by improving the sample preparation and data analysis strategies used in previous research into the analysis of soil samples by high performance liquid chromatography (HPLC). This study provides two alternative sets of marker peaks to generate HPLC profiles which allow both easy visual comparison of samples and the correct assignment of 100% of the samples to their location of origin when discriminating between locations of interest in multivariate statistical analyses. This technique thereby offers an independent form of analysis that is complementary to inorganic geoforensic techniques and offers an easily accessible method for discriminating between close proximity forensically relevant locations.
Collapse
|
18
|
Ward SE, Beswick P, Calcinaghi N, Dawson LA, Gartlon J, Graziani F, Jones DNC, Lacroix L, Selina Mok MH, Oliosi B, Pardoe J, Starr K, Woolley ML, Harries MH. Pharmacological characterization of N-[(2S)-5-(6-fluoro-3-pyridinyl)-2, 3-dihydro-1H-inden-2-yl]-2-propanesulfonamide: a novel, clinical AMPA receptor positive allosteric modulator. Br J Pharmacol 2017; 174:370-385. [PMID: 28009436 DOI: 10.1111/bph.13696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/28/2016] [Accepted: 12/11/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE AMPA receptor positive allosteric modulators represent a potential therapeutic strategy to improve cognition in people with schizophrenia. These studies collectively constitute the preclinical pharmacology data package used to build confidence in the pharmacology of this molecule and enable a clinical trial application. EXPERIMENTAL APPROACH [N-[(2S)-5-(6-fluoro-3-pyridinyl)-2,3-dihydro 1H-inden-2-yl]-2-propanesulfonamide] (UoS12258) was profiled in a number of in vitro and in vivo studies to highlight its suitability as a novel therapeutic agent. KEY RESULTS We demonstrated that UoS12258 is a selective, positive allosteric modulator of the AMPA receptor. At rat native hetero-oligomeric AMPA receptors, UoS12258 displayed a minimum effective concentration of approximately 10 nM in vitro and enhanced AMPA receptor-mediated synaptic transmission at an estimated free brain concentration of approximately 15 nM in vivo. UoS12258 reversed a delay-induced deficit in novel object recognition in rats after both acute and sub-chronic dosing. Sub-chronic dosing reduced the minimum effective dose from 0.3 to 0.03 mg·kg-1 . UoS12258 was also effective at improving performance in two other cognition models, passive avoidance in scopolamine-impaired rats and water maze learning and retention in aged rats. In side-effect profiling studies, UoS12258 did not produce significant changes in the maximal electroshock threshold test at doses below 10 mg·kg-1 . CONCLUSION AND IMPLICATIONS We conclude that UoS12258 is a potent and selective AMPA receptor modulator exhibiting cognition enhancing properties in several rat behavioural models superior to other molecules that have previously entered clinical evaluation.
Collapse
|
19
|
Bossé D, Ng T, Ahmad C, Alfakeeh A, Alruzug I, Biagi J, Brierley J, Chaudhury P, Cleary S, Colwell B, Cripps C, Dawson LA, Dorreen M, Ferland E, Galiatsatos P, Girard S, Gray S, Halwani F, Kopek N, Mahmud A, Martel G, Robillard L, Samson B, Seal M, Siddiqui J, Sideris L, Snow S, Thirwell M, Vickers M, Goodwin R, Goel R, Hsu T, Tsvetkova E, Ward B, Asmis T. Eastern Canadian Gastrointestinal Cancer Consensus Conference 2016. ACTA ACUST UNITED AC 2016; 23:e605-e614. [PMID: 28050151 DOI: 10.3747/co.23.3394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The annual Eastern Canadian Gastrointestinal Cancer Consensus Conference 2016 was held in Montreal, Quebec, 5-7 February. Experts in radiation oncology, medical oncology, surgical oncology, and infectious diseases involved in the management of patients with gastrointestinal malignancies participated in presentations and discussion sessions for the purpose of developing the recommendations presented here. This consensus statement addresses multiple topics: ■ Follow-up and survivorship of patients with resected colorectal cancer■ Indications for liver metastasectomy■ Treatment of oligometastases by stereotactic body radiation therapy■ Treatment of borderline resectable and unresectable pancreatic cancer■ Transarterial chemoembolization in hepatocellular carcinoma■ Infectious complications of antineoplastic agents.
Collapse
|
20
|
Barron M, Gartlon J, Dawson LA, Atkinson PJ, Pardon MC. A state of delirium: Deciphering the effect of inflammation on tau pathology in Alzheimer's disease. Exp Gerontol 2016; 94:103-107. [PMID: 27979768 PMCID: PMC5479936 DOI: 10.1016/j.exger.2016.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD), the predominant form of dementia, is highly correlated with the abnormal hyperphosphorylation and aggregation of tau. Immune responses are key drivers of AD and how they contribute to tau pathology in human disease remains largely unknown. This review summarises current knowledge on the association between inflammatory processes and tau pathology. While, preclinical evidence suggests that inflammation can indeed induce tau hyperphosphorylation at both pre- and post-tangles epitopes, a better understanding of whether this develops into advanced pathological features such as neurofibrillary tangles is needed. Microglial cells, the immune phagocytes in the central nervous system, appear to play a key role in regulating tau pathology, but the underlying mechanisms are not fully understood. Their activation can be detrimental via the secretion of pro-inflammatory mediators, particularly interleukin-1β, but also potentially beneficial through phagocytosis of extracellular toxic tau oligomers. Nevertheless, anti-inflammatory treatments in animal models were found protective, but whether or not they affect microglial phagocytosis of tau species is unknown. However, one major challenge to our understanding of the role of inflammation in the progression of tau pathology is the preclinical models used to address this question. They mostly rely on the use of septic doses of lipopolysaccharide that do not reflect the inflammatory conditions experienced AD patients, questioning whether the impact of inflammation on tau pathology in these models is dose-dependent and relevant to the human disease. The use of more translational models of inflammation corroborated with verification in clinical investigations are necessary to progress our understanding of the interplay between inflammation and tau pathology. Inflammation modulates tau function in Alzheimer's disease. LPS induces tau phosphorylation in vivo. Modulation of late stage tau pathology is less clear. Microglial shows potential to slow spread of extracellular tau. A holistic approach will determine the role of inflammation in Alzheimer's disease.
Collapse
|
21
|
Ellard JM, Madin A, Philps O, Hopkin M, Henderson S, Birch L, O'Connor D, Arai T, Takase K, Morgan L, Reynolds D, Talma S, Howley E, Powney B, Payne AH, Hall A, Gartlon JE, Dawson LA, Castro L, Atkinson PJ. Identification and optimisation of a series of tetrahydrobenzotriazoles as metabotropic glutamate receptor 5-selective positive allosteric modulators that improve performance in a preclinical model of cognition. Bioorg Med Chem Lett 2015; 25:5792-6. [PMID: 26531152 DOI: 10.1016/j.bmcl.2015.10.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 11/17/2022]
Abstract
Herein we describe a series of tetrahydrobenzotriazoles as novel, potent metabotropic glutamate receptor subtype 5 (mGlu5) positive allosteric modulators (PAMs). Exploration of the SAR surrounding the tetrahydrobenzotriazole core ultimately led to the identification of 29 as a potent mGlu5 PAM with a low maximal glutamate potency fold shift, acceptable in vitro DMPK parameters and in vivo PK profile and efficacy in the rat novel object recognition (NOR) assay. As a result 29 was identified as a suitable compound for progression to in vivo safety evaluation.
Collapse
|
22
|
Klein J, Dawson LA, Tran TH, Adeyi O, Purdie T, Sherman M, Brade A. Metabolic syndrome-related hepatocellular carcinoma treated by volumetric modulated arc therapy. ACTA ACUST UNITED AC 2014; 21:e340-4. [PMID: 24764717 DOI: 10.3747/co.21.1756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (hcc) is a leading cause of cancer mortality, and its incidence is increasing in developed countries. Risk factors include cirrhosis from viral hepatitis or alcohol abuse. Metabolic syndrome is a newly recognized, but important, risk factor that is likely contributing to the increased incidence of hcc. Surgery is the therapy of choice for hcc, but local therapies are often contraindicated, usually because of advanced disease or comorbid conditions such as cardiac disease (which is associated with metabolic syndrome). Current radiation therapy techniques such as stereotactic body radiotherapy allow for treatment plans that highly conform to the target and provide excellent sparing of normal structures. Radiation therapy is emerging as a viable option in patients not eligible for surgery or other locoregional therapies. Here, we report a case of a large hcc presenting in a patient with metabolic syndrome without significant alcohol history or biochemical liver dysfunction. The patient was not a candidate for locoregional therapies because of cardiac and renal comorbidities typical of patients experiencing the long-term sequelae of metabolic syndrome. Treatment using an arc-based volumetric-modulated arc therapy technique allowed for the highest dose of radiation to be delivered to the tumour while the peripheral radiation dose was minimized. A complete local response was confirmed by computed tomography imaging 21 months after treatment completion.
Collapse
|
23
|
Youl M, Hashem S, Brade A, Cummings B, Dawson LA, Gallinger S, Hedley D, Jiang H, Kim J, Krzyzanowska MK, Ringash J, Wong R, Brierley J. Induction gemcitabine plus concurrent gemcitabine and radiotherapy for locally advanced unresectable or resected pancreatic cancer. Clin Oncol (R Coll Radiol) 2014; 26:203-9. [PMID: 24462333 DOI: 10.1016/j.clon.2014.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 12/12/2022]
Abstract
AIMS To determine the efficacy of induction gemcitabine followed by biweekly gemcitabine concurrent with radiotherapy for locally advanced pancreatic cancer. MATERIALS AND METHODS Between March 2001 and August 2009, 90 patients with unresectable (78) or resected (12) pancreatic cancer were treated with a standard treatment policy of induction gemcitabine (seven doses of weekly gemcitabine at 1000 mg/m(2)) followed by concurrent radiotherapy (52.5 Gy) and biweekly gemcitabine (40 mg/m(2)). RESULTS After induction gemcitabine, 17.8% of patients did not proceed to chemoradiotherapy, due to either disease progression, performance status deterioration or gemcitabine toxicity. Of the patients who received chemoradiotherapy, 68.9% completed the course of 52.5 Gy, whereas 79.7% received more than 45 Gy. Chemoradiotherapy was stopped early due to treatment toxicity in 22.9% of patients. On intention to treat analysis, the median overall survival was 12.7 months in the locally advanced group and 18.2 months in the resected group. On multivariate analysis for the unresectable patients, a larger gross tumour volume was a significant poor prognostic factor for overall survival and local progression-free survival. CONCLUSION This large series confirms, in a standard practice setting, similar efficacy and tolerability of treatment as previously reported in our phase I-II study. The benefit to patients with a gross tumour volume >48 cm(3) may be limited.
Collapse
|
24
|
Dawson LA. The discovery and development of vilazodone for the treatment of depression: a novel antidepressant or simply another SSRI? Expert Opin Drug Discov 2013; 8:1529-39. [DOI: 10.1517/17460441.2013.855195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Sahgal A, Roberge D, Schellenberg D, Purdie TG, Swaminath A, Pantarotto J, Filion E, Gabos Z, Butler J, Letourneau D, Masucci GL, Mulroy L, Bezjak A, Dawson LA, Parliament M. The Canadian Association of Radiation Oncology scope of practice guidelines for lung, liver and spine stereotactic body radiotherapy. Clin Oncol (R Coll Radiol) 2012; 24:629-39. [PMID: 22633542 DOI: 10.1016/j.clon.2012.04.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/29/2012] [Accepted: 04/25/2012] [Indexed: 12/12/2022]
Abstract
AIMS The Canadian Association of Radiation Oncology-Stereotactic Body Radiotherapy (CARO-SBRT) Task Force was established in 2010. The aim was to define the scope of practice guidelines for the profession to ensure safe practice specific for the most common sites of lung, liver and spine SBRT. MATERIALS AND METHODS A group of Canadian SBRT experts were charged by our national radiation oncology organisation (CARO) to define the basic principles and technologies for SBRT practice, to propose the minimum technological requirements for safe practice with a focus on simulation and image guidance and to outline procedural considerations for radiation oncology departments to consider when establishing an SBRT programme. RESULTS We recognised that SBRT should be considered as a specific programme within a radiation department, and we provide a definition of SBRT according to a Canadian consensus. We outlined the basic requirements for safe simulation as they pertain to spine, lung and liver tumours, and the fundamentals of image guidance. The roles of the radiation oncologist, medical physicist and dosimetrist have been detailed such that we strongly recommend the development of SBRT-specific teams. Quality assurance is a key programmatic aspect for safe SBRT practice, and we outline the basic principles of appropriate quality assurance specific to SBRT. CONCLUSION This CARO scope of practice guideline for SBRT is specific to liver, lung and spine tumours. The task force recommendations are designed to assist departments in establishing safe and robust SBRT programmes.
Collapse
|