1
|
Bozso S, Kang J, R EL-Andari, Fialka N, Moon M, Freed D, Nagendran J, Nagendran J. CREATING THE IDEAL ARTIFICIAL HEART VALVE. Can J Cardiol 2022. [DOI: 10.1016/j.cjca.2022.08.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
2
|
Kim J, Lee S, Ko E, Kim S, Sung K, Ji C, Moon M, Kwon Y, Chung W. PO-1821 Synergistic efficacy by combination of AUTOTAC and low dose radiation in Alzheimer’s disease. Radiother Oncol 2022. [DOI: 10.1016/s0167-8140(22)03784-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
White A, Nguyen Q, Hong Y, Moon M, Wang S, Wang W. RAPID DEPLOYMENT VALVES ARE ADVANTAGEOUS IN THE REDO SETTING: COHORT STUDY. Can J Cardiol 2021. [DOI: 10.1016/j.cjca.2021.07.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
4
|
Ibrahim M, Stevens L, Ouzounian M, Hage A, Dagenais F, Peterson M, El-Hamamsy I, Boodhwani M, Bozinovski J, Moon M, Yamashita MH, Atoui R, Bittira B, Payne D, Lachapelle K, Chu M, Chung J. EVOLVING SURGICAL TECHNIQUES AND IMPROVING OUTCOMES FOR AORTIC ARCH SURGERY IN CANADA. Can J Cardiol 2021. [DOI: 10.1016/j.cjca.2021.07.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
5
|
Lin HB, Naito K, Oh Y, Farber G, Kanaan G, Valaperti A, Dawood F, Zhang L, Li GH, Smyth D, Moon M, Liu Y, Liang W, Rotstein B, Philpott DJ, Kim KH, Harper ME, Liu PP. Innate Immune Nod1/RIP2 Signaling Is Essential for Cardiac Hypertrophy but Requires Mitochondrial Antiviral Signaling Protein for Signal Transductions and Energy Balance. Circulation 2020; 142:2240-2258. [PMID: 33070627 DOI: 10.1161/circulationaha.119.041213] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cardiac hypertrophy is a key biological response to injurious stresses such as pressure overload and, when excessive, can lead to heart failure. Innate immune activation by danger signals, through intracellular pattern recognition receptors such as nucleotide-binding oligomerization domain 1 (Nod1) and its adaptor receptor-interacting protein 2 (RIP2), might play a major role in cardiac remodeling and progression to heart failure. We hypothesize that Nod1/RIP2 are major contributors to cardiac hypertrophy, but may not be sufficient to fully express the phenotype alone. METHODS To elucidate the contribution of Nod1/RIP2 signaling to cardiac hypertrophy, we randomized Nod1-/-, RIP2-/-, or wild-type mice to transverse aortic constriction or sham operations. Cardiac hypertrophy, fibrosis, and cardiac function were examined in these mice. RESULTS Nod1 and RIP2 proteins were upregulated in the heart after transverse aortic constriction, and this was paralleled by increased expression of mitochondrial proteins, including mitochondrial antiviral signaling protein (MAVS). Nod1-/- and RIP2-/- mice subjected to transverse aortic constriction exhibited better survival, improved cardiac function, and decreased cardiac hypertrophy. Downstream signal transduction pathways that regulate inflammation and fibrosis, including NF (nuclear factor) κB and MAPK (mitogen-activated protein kinase)-GATA4/p300, were reduced in both Nod1-/- and RIP2-/- mice after transverse aortic constriction compared with wild-type mice. Coimmunoprecipitation of extracted cardiac proteins and confocal immunofluorescence microscopy showed that Nod1/RIP2 interaction was robust and that this complex also included MAVS as an essential component. Suppression of MAVS expression attenuated the complex formation, NF κB signaling, and myocyte hypertrophy. Interrogation of mitochondrial function compared in the presence or ablation of MAVS revealed that MAVS serves to suppress mitochondrial energy output and mediate fission/fusion related dynamic changes. The latter is possibly linked to mitophagy during cardiomyocytes stress, which may provide an intriguing link between innate immune activation and mitochondrial energy balance under stress or injury conditions. CONCLUSIONS We have identified that innate immune Nod1/RIP2 signaling is a major contributor to cardiac remodeling after stress. This process is critically joined by and regulated through the mitochondrial danger signal adapter MAVS. This novel complex coordinates remodeling, inflammatory response, and mitochondrial energy metabolism in stressed cardiomyocytes. Thus, Nod1/RIP2/MAVS signaling complex may represent an attractive new therapeutic approach toward heart failure.
Collapse
|
6
|
EL-Andari R, Bozso S, Kang J, Freed D, Nagendran J, Moon M, Nagendran J. QUANTIFYING THE IMMUNE RESPONSE TO TISSUE ENGINEERED PORCINE EXTRACELLULAR MATRIX. Can J Cardiol 2020. [DOI: 10.1016/j.cjca.2020.07.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
7
|
Kim HD, Ryu M, Yoon S, Na YS, Moon M, Lee H, Song H, Kang YK. 1466P Clinical implications of neutrophil-to-lymphocyte ratio and MDSC kinetics in gastric cancer patients treated with ramucirumab plus paclitaxel. Ann Oncol 2020. [DOI: 10.1016/j.annonc.2020.08.1972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
8
|
EL-Andari R, Bozso S, Kang J, Moon M, Freed D, Nagendran J, Nagendran J. Quantifying the Immune Response to Tissue Engineered Porcine Matrix. J Heart Lung Transplant 2020. [DOI: 10.1016/j.healun.2020.01.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Lee SH, Hadipour-Lakmehsari S, Murthy HR, Gibb N, Miyake T, Teng ACT, Cosme J, Yu JC, Moon M, Lim S, Wong V, Liu P, Billia F, Fernandez-Gonzalez R, Stagljar I, Sharma P, Kislinger T, Scott IC, Gramolini AO. REEP5 depletion causes sarco-endoplasmic reticulum vacuolization and cardiac functional defects. Nat Commun 2020; 11:965. [PMID: 32075961 PMCID: PMC7031342 DOI: 10.1038/s41467-019-14143-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
The sarco-endoplasmic reticulum (SR/ER) plays an important role in the development and progression of many heart diseases. However, many aspects of its structural organization remain largely unknown, particularly in cells with a highly differentiated SR/ER network. Here, we report a cardiac enriched, SR/ER membrane protein, REEP5 that is centrally involved in regulating SR/ER organization and cellular stress responses in cardiac myocytes. In vitro REEP5 depletion in mouse cardiac myocytes results in SR/ER membrane destabilization and luminal vacuolization along with decreased myocyte contractility and disrupted Ca2+ cycling. Further, in vivo CRISPR/Cas9-mediated REEP5 loss-of-function zebrafish mutants show sensitized cardiac dysfunction upon short-term verapamil treatment. Additionally, in vivo adeno-associated viral (AAV9)-induced REEP5 depletion in the mouse demonstrates cardiac dysfunction. These results demonstrate the critical role of REEP5 in SR/ER organization and function as well as normal heart function and development.
Collapse
|
10
|
Bozso S, Kang J, Adam B, Moon M, Freed D, Hatami S, Nagendran J. RECELLULARIZATION OF ACELLULAR XENOGENIC SCAFFOLD WITH AUTOLOGOUS HUMAN MESENCHYMAL STEM CELLS RESCUES THE XENOREACTIVE IMMUNE RESPONSE. Can J Cardiol 2019. [DOI: 10.1016/j.cjca.2019.07.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Ghoneim A, Bouhout I, Hage A, El-Hamamsy I, M Boodhwani, Bozinovski J, Dagenais F, Kumar K, Payne D, Moon M, Herman C, Ouzounian M, Peterson M, Chu M. CONTEMPORARY OUTCOMES OF AORTIC ARCH REPAIR WITH HYPOTHERMIC CIRCULATORY ARREST: THE IMPACT OF URGENCY STATUS EVIDENCE FROM THE CANADIAN THORACIC AORTIC COLLABORATIVE. Can J Cardiol 2019. [DOI: 10.1016/j.cjca.2019.07.594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
12
|
Losenno K, Peterson M, Ouzounian M, Whitlock R, Dagenais F, Boodhwani M, Bhatnagar G, Poostizadeh A, Pozeg Z, Moon M, Kiaii B, Chu M. EARLY CLINICAL OUTCOMES OF A NOVEL FROZEN ELEPHANT TRUNK PROSTHESIS: THE CANADIAN THORACIC AORTIC COLLABORATIVE EXPERIENCE. Can J Cardiol 2017. [DOI: 10.1016/j.cjca.2017.07.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
13
|
Lin H, Naito K, Valaperti A, Dawood F, Zhang L, Li G, Smyth D, Moon M, Liu Y, Liu P. 1984Innate immune nod1/rip2 signaling is essential for cardiac hypertrophic response with a surprising critical interaction with mitochondrial danger activator. Eur Heart J 2017. [DOI: 10.1093/eurheartj/ehx502.1984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Kietzman K, McBride K, Moon M, Bacigalupo A, Benjamin A, Reynoso A, Wallace S, Bacong A. FEE-FOR-SERVICE OR MANAGED CARE? INVESTIGATING DUAL ELIGIBLE CONSUMER PREFERENCES FOR HEALTH CARE. Innov Aging 2017. [DOI: 10.1093/geroni/igx004.2251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Lin H, Naito K, Valaperti A, Dawood F, Zhang L, Li G, Smyth D, Moon M, Liu Y, Liu P. INNATE IMMUNE NOD1/RIP2 SIGNALING IS ESSENTIAL FOR CARDIAC HYPERTROPHIC RESPONSE - WITH A SURPRISING CRITICAL INTERACTION WITH MITOCHONDRIAL DANGER ACTIVATOR. Can J Cardiol 2016. [DOI: 10.1016/j.cjca.2016.07.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Byun J, Son SM, Cha MY, Shong M, Hwang YJ, Kim Y, Ryu H, Moon M, Kim KS, Mook-Jung I. CR6-interacting factor 1 is a key regulator in Aβ-induced mitochondrial disruption and pathogenesis of Alzheimer's disease. Cell Death Differ 2014; 22:959-73. [PMID: 25361083 PMCID: PMC4423180 DOI: 10.1038/cdd.2014.184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/25/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction, often characterized by massive fission and other morphological abnormalities, is a well-known risk factor for Alzheimer's disease (AD). One causative mechanism underlying AD-associated mitochondrial dysfunction is thought to be amyloid-β (Aβ), yet the pathways between Aβ and mitochondrial dysfunction remain elusive. In this study, we report that CR6-interacting factor 1 (Crif1), a mitochondrial inner membrane protein, is a key player in Aβ-induced mitochondrial dysfunction. Specifically, we found that Crif1 levels were downregulated in the pathological regions of Tg6799 mice brains, wherein overexpressed Aβ undergoes self-aggregation. Downregulation of Crif1 was similarly observed in human AD brains as well as in SH-SY5Y cells treated with Aβ. In addition, knockdown of Crif1, using RNA interference, induced mitochondrial dysfunction with phenotypes similar to those observed in Aβ-treated cells. Conversely, Crif1 overexpression prevented Aβ-induced mitochondrial dysfunction and cell death. Finally, we show that Aβ-induced downregulation of Crif1 is mediated by enhanced reactive oxygen species (ROS) and ROS-dependent sumoylation of the transcription factor specificity protein 1 (Sp1). These results identify the ROS-Sp1-Crif1 pathway to be a new mechanism underlying Aβ-induced mitochondrial dysfunction and suggest that ROS-mediated downregulation of Crif1 is a crucial event in AD pathology. We propose that Crif1 may serve as a novel therapeutic target in the treatment of AD.
Collapse
|
17
|
Heimansohn D, Roselli E, Thourani V, Wang S, Voisine P, Ye J, Dabir R, Moon M. 339 * NORTH AMERICAN FDA TRIAL RESULTS AT ONE YEAR OF THE SORIN(R) FREEDOM SOLO PERICARDIAL AORTIC VALVE. Interact Cardiovasc Thorac Surg 2014. [DOI: 10.1093/icvts/ivu276.339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Kook SY, Jeong H, Kang MJ, Park R, Shin HJ, Han SH, Son SM, Song H, Baik SH, Moon M, Yi EC, Hwang D, Mook-Jung I. Crucial role of calbindin-D28k in the pathogenesis of Alzheimer's disease mouse model. Cell Death Differ 2014; 21:1575-87. [PMID: 24853300 PMCID: PMC4158683 DOI: 10.1038/cdd.2014.67] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 03/03/2014] [Accepted: 04/04/2014] [Indexed: 01/22/2023] Open
Abstract
Calbindin-D28k (CB), one of the major calcium-binding and buffering proteins, has a critical role in preventing a neuronal death as well as maintaining calcium homeostasis. Although marked reductions of CB expression have been observed in the brains of mice and humans with Alzheimer disease (AD), it is unknown whether these changes contribute to AD-related dysfunction. To determine the pathogenic importance of CB depletions in AD models, we crossed 5 familial AD mutations (5XFAD; Tg) mice with CB knock-out (CBKO) mice and generated a novel line CBKO·5XFAD (CBKOTg) mice. We first identified the change of signaling pathways and differentially expressed proteins globally by removing CB in Tg mice using mass spectrometry and antibody microarray. Immunohistochemistry showed that CBKOTg mice had significant neuronal loss in the subiculum area without changing the magnitude (number) of amyloid β-peptide (Aβ) plaques deposition and elicited significant apoptotic features and mitochondrial dysfunction compared with Tg mice. Moreover, CBKOTg mice reduced levels of phosphorylated mitogen-activated protein kinase (extracellular signal-regulated kinase) 1/2 and cAMP response element-binding protein at Ser-133 and synaptic molecules such as N-methyl-D-aspartate receptor 1 (NMDA receptor 1), NMDA receptor 2A, PSD-95 and synaptophysin in the subiculum compared with Tg mice. Importantly, this is the first experimental evidence that removal of CB from amyloid precursor protein/presenilin transgenic mice aggravates AD pathogenesis, suggesting that CB has a critical role in AD pathogenesis.
Collapse
|
19
|
Zhang L, Chen X, Sharma P, Moon M, Sheftel AD, Dawood F, Nghiem MP, Wu J, Li RK, Gramolini AO, Sorensen PH, Penninger JM, Brumell JH, Liu PP. HACE1-dependent protein degradation provides cardiac protection in response to haemodynamic stress. Nat Commun 2014; 5:3430. [PMID: 24614889 PMCID: PMC3959209 DOI: 10.1038/ncomms4430] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/11/2014] [Indexed: 01/10/2023] Open
Abstract
The HECT E3 ubiquitin ligase HACE1
is a tumour suppressor known to regulate Rac1 activity under stress conditions. HACE1 is increased in the serum of patients
with heart failure. Here we show that HACE1 protects the heart under pressure stress by controlling
protein degradation. Hace1
deficiency in mice results in accelerated heart failure and increased mortality
under haemodynamic stress. Hearts from Hace1−/− mice
display abnormal cardiac hypertrophy, left ventricular dysfunction, accumulation of
LC3, p62 and ubiquitinated proteins enriched for
cytoskeletal species, indicating impaired autophagy. Our data suggest that
HACE1 mediates p62-dependent selective autophagic turnover
of ubiquitinated proteins by its ankyrin repeat domain through
protein–protein interaction, which is independent of its E3 ligase
activity. This would classify HACE1 as a dual-function E3 ligase. Our finding that
HACE1 has a protective
function in the heart in response to haemodynamic stress suggests that HACE1 may be a potential diagnostic and
therapeutic target for heart disease. HACE1 is an E3 ubiquitin ligase known to regulate various cell
biological processes. Here, Zhang et al. identify HACE1 as a protective factor in
the heart, demonstrating that HACE1 inhibits the development of heart failure in
response to haemodynamic stress by regulating protein degradation pathways.
Collapse
|
20
|
Lodewyks C, White C, Bay G, Hiebert B, Wu B, Barker M, Kirkpatrick I, Arora R, Moon M, Pascoe E. Vocal Cord Paralysis Following Surgery of the Thoracic Aorta: Incidence and Impact on Clinical Outcomes. Can J Cardiol 2013. [DOI: 10.1016/j.cjca.2013.07.356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
21
|
Sun M, Ouzounian M, de Couto G, Chen M, Yan R, Fukuoka M, Li G, Moon M, Liu Y, Gramolini A, Wells GJ, Liu PP. Cathepsin-L ameliorates cardiac hypertrophy through activation of the autophagy-lysosomal dependent protein processing pathways. J Am Heart Assoc 2013; 2:e000191. [PMID: 23608608 PMCID: PMC3647266 DOI: 10.1161/jaha.113.000191] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Autophagy is critical in the maintenance of cellular protein quality control, the final step of which involves the fusion of autophagosomes with lysosomes. Cathepsin-L (CTSL) is a key member of the lysosomal protease family that is expressed in the murine and human heart, and it may play an important role in protein turnover. We hypothesized that CTSL is important in regulating protein processing in the heart, particularly under pathological stress. METHODS AND RESULTS Phenylephrine-induced cardiac hypertrophy in vitro was more pronounced in CTSL-deficient neonatal cardiomyocytes than in in controls. This was accompanied by a significant accumulation of autophagosomes, increased levels of ubiquitin-conjugated protein, as well as impaired protein degradation and decreased cell viability. These effects were partially rescued with CTSL1 replacement via adeno-associated virus-mediated gene transfer. In the in vivo murine model of aortic banding (AB), a deficiency in CTSL markedly exacerbated cardiac hypertrophy, worsened cardiac function, and increased mortality. Ctsl(-/-) AB mice demonstrated significantly decreased lysosomal activity and increased sarcomere-associated protein aggregation. Homeostasis of the endoplasmic reticulum was also altered by CTSL deficiency, with increases in Bip and GRP94 proteins, accompanied by increased ubiquitin-proteasome system activity and higher levels of ubiquitinated proteins in response to AB. These changes ultimately led to a decrease in cellular ATP production, enhanced oxidative stress, and increased cellular apoptosis. CONCLUSIONS Lysosomal CTSL attenuates cardiac hypertrophy and preserves cardiac function through facilitation of autophagy and proteasomal protein processing.
Collapse
|
22
|
Shi Y, Moon M, Dawood S, McManus B, Liu PP. Mechanisms and management of doxorubicin cardiotoxicity. Herz 2012; 36:296-305. [PMID: 21656050 DOI: 10.1007/s00059-011-3470-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Doxorubicin is an effective anti-tumor agent with a cumulative dose-dependent cardiotoxicity. In addition to its principal toxic mechanisms involving iron and redox reactions, recent studies have described new mechanisms of doxorubicin-induced cell death, including abnormal protein processing, hyper-activated innate immune responses, inhibition of neuregulin-1 (NRG1)/ErbB(HER) signalling, impaired progenitor cell renewal/cardiac repair, and decreased vasculogenesis. Although multiple mechanisms involved in doxorubicin cardiotoxicity have been studied, there is presently no clinically proven treatment established for doxorubicin cardiomyopathy. Iron chelator dexrazoxane, angiotensin converting enzyme (ACE) inhibitors, and β-blockade have been proposed as potential preventive strategies for doxorubicin cardiotoxicity. Novel approaches such as anti-miR-146 or recombinant NRG1 to increase cardiomyocyte resistance to toxicity may be of interest in the future.
Collapse
|
23
|
Babai MZ, Moon M. Demand Forecasting and Planning in the Supply Chain. SUPPLY CHAIN FORUM 2011. [DOI: 10.1080/16258312.2011.11517275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Li H, Tang QZ, Liu C, Moon M, Chen M, Yan L, Bian ZY, Zhang Y, Wang AB, Nghiem MP, Liu PP. Cellular FLICE-inhibitory protein protects against cardiac remodeling induced by angiotensin II in mice. Hypertension 2010; 56:1109-17. [PMID: 20975036 DOI: 10.1161/hypertensionaha.110.157412] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of cardiac hypertrophy in response to increased hemodynamic load and neurohormonal stress is initially a compensatory response that may eventually lead to ventricular dilatation and heart failure. Cellular FLICE-inhibitory protein (cFLIP) is a homologue of caspase 8 without caspase activity that inhibits apoptosis initiated by death receptor signaling. Previous studies showed that cFLIP expression was markedly decreased in the ventricular myocardium of patients with end-stage heart failure. However, the critical role of cFLIP on cardiac remodeling remains unclear. To specifically determine the role of cFLIP in pathological cardiac remodeling, we used heterozygote cFLIP(+/-) mice and transgenic mice with cardiac-specific overexpression of the human cFLIP(L) gene. Our results demonstrated that the cFLIP(+/-) mice were susceptible to cardiac hypertrophy and fibrosis through inhibition of mitogen-activated protein kinase kinase-extracellular signal-regulated kinase 1/2 signaling, whereas the transgenic mice displayed the opposite phenotype in response to angiotensin II stimulation. These studies indicate that cFLIP protein is a crucial component of the signaling pathway involved in cardiac remodeling and heart failure.
Collapse
|
25
|
Wong DM, Scarratt WK, Maxwell V, Moon M. Incomplete ossification of the carpal, tarsal and navicular bones in a dysmature foal. EQUINE VET EDUC 2010. [DOI: 10.1111/j.2042-3292.2003.tb00219.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|