1
|
Brunetti G, De Pastina A, Hegner M. Quantitative epitope analysis reveals drastic 63% reduced immuno-affinity and 60% enhanced transmissibility for SARS-CoV-2 variants. NANOSCALE ADVANCES 2021; 3:6903-6911. [PMID: 36132357 PMCID: PMC9419875 DOI: 10.1039/d1na00554e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/22/2021] [Indexed: 06/15/2023]
Abstract
SARS-CoV-2 is the cause of a global pandemic that has led to more than 4 million deaths, continues to spread and holds the world in a tight grip. The virus has developed substantial mutations that undermine the efficacy of current vaccines and monoclonal antibody therapies. Semi-quantitative immuno - and neutralization assays are unable to provide direct quantitative insights about the minute variations of emerging mutants. Here, we develop a quantitative assay that enables synchronous screening of emerging variant epitopes with single amino acid resolution. We report on specific label-free quantitative nanomechanical analysis of pseudovirus spike interaction with ACE2 receptors. Within minutes, we can characterize the B.1.1.7 variant transmissibility due to its 63% increased binding, and measure a 60% reduced efficacy of antibodies towards B.1.351 and P.1 variants. Our technology can assist vaccine development studies, with focus on comparing protection patterns and novel vaccine candidates and tracking of immunity over time.
Collapse
|
2
|
De Pastina A, Padovani F, Brunetti G, Rotella C, Niosi F, Usov V, Hegner M. Multimodal real-time frequency tracking of cantilever arrays in liquid environment for biodetection: Comprehensive setup and performance analysis. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:065001. [PMID: 34243575 DOI: 10.1063/5.0047631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
We present a nanomechanical platform for real-time quantitative label-free detection of target biomolecules in a liquid environment with mass sensitivity down to few pg. Newly fabricated arrays of up to 18 cantilevers are integrated in a micromachined fluidic chamber, connected to software-controlled fluidic pumps for automated sample injections. We discuss two functionalization approaches to independently sensitize the interface of different cantilevers. A custom piezo-stack actuator and optical readout system enable the measurement of resonance frequencies up to 2 MHz. We implement a new measurement strategy based on a phase-locked loop (PLL), built via in-house developed software. The PLL allows us to track, within the same experiment, the evolution of resonance frequency over time of up to four modes for all the cantilevers in the array. With respect to the previous measurement technique, based on standard frequency sweep, the PLL enhances the estimated detection limit of the device by a factor of 7 (down to 2 pg in 5 min integration time) and the time resolution by more than threefold (below 15 s), being on par with commercial gold-standard techniques. The detection limit and noise of the new setup are investigated via Allan deviation and standard deviation analysis, considering different resonance modes and interface chemistries. As a proof-of-concept, we show the immobilization and label-free in situ detection of live bacterial cells (E. coli), demonstrating qualitative and quantitative agreement in the mechanical response of three different resonance modes.
Collapse
|
3
|
Brunetti G, Padovani F, De Pastina A, Rotella C, Monahan A, Hoffman SL, Jongo SA, Abdulla S, Corradin G, Pluschke G, Daubenberger C, Hegner M. Nanotechnological immunoassay for rapid label-free analysis of candidate malaria vaccines. NANOSCALE 2021; 13:2338-2349. [PMID: 33438712 DOI: 10.1039/d0nr08083g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Malaria is a life-threatening epidemic disease with half of the world's population at risk. Although its incidence rate has fallen since 2010, this ratio dramatically stalled between 2014 and 2018. New fast and optimized tools in vaccine analysis and seroconversion testing are critically needed. We developed a clinical diagnostic device based on piezo-actuated nanoresonators that perform as quantitative in situ calibrated nano-bio sensors for specific detection of multiple target molecules in serum samples. The immunoassay successfully diagnoses humoral immune responses induced by malaria vaccine candidates and reveals the timeline and stage of the infection. We applied the newly developed strategy to a variety of different samples, from pure antibody/vaccine solutions, to blood samples from clinical trials on both naïve and pre-exposed malaria volunteers from sub-Saharan countries. Our nanomechanical assay provides a direct one-step label-free quantitative immunoassay that is on par with the gold-standard, multi-step enzyme-linked immunosorbent assay (ELISA). We achieve a limit of detection of few pg ml-1, or sub-pM concentrations. The 6 μl sample volume allows more than 50 experiments from one finger prick. Furthermore, we simultaneously detected multiple analytes by differential functionalization of multiple sensors in parallel. The inherent differential read-out with in situ controls reduces false positive results. Due to the faster turnaround time, the minimal volume required and the automatized handling system, this technique has great potential for miniaturization and routine diagnostics in pandemic emergencies.
Collapse
|
4
|
Duffy J, Padovani F, Brunetti G, Noy P, Certa U, Hegner M. Towards personalised rapid label free miRNA detection for cancer and liver injury diagnostics in cell lysates and blood based samples. NANOSCALE 2018; 10:12797-12804. [PMID: 29947396 DOI: 10.1039/c8nr03604g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Advances in prevention, diagnosis and therapy are coupled to innovation and development of new medical tools, leading to improved patient prognosis. We developed an automatic biosensor platform that could provide a non-invasive, rapid and personalised diagnosis using nanomechanical cantilever sensors. miRNA are involved in gene expression and are extractable biomarkers for multiple diseases. We detected specific expression patterns of miRNA relevant to cancer and adverse drug effects directly in cell lysates or blood based samples using only a few microliters of sample within one hour. Specific miRNA hybridisation to the upper cantilever surface induces physical bending of the sensor which is detected by monitoring the position of a laser that reflects from the sensors surface. Internal reference sensors negate environmental and nonspecific effects. We showed that the sensitivity of label free cantilever nanomechanical sensing of miRNA surpasses that of surface plasmon resonance by more than three orders of magnitude. A cancer associated miRNA expression profile from cell lysates and one associated with hepatocytes derived from necrotic liver tissue in blood-based samples has been successfully detected. Our label free mechanical approach displays the capability to perform in relevant clinical samples while also obtaining comparable results to PCR based techniques. Without the need to individually extend, amplify or label each target allowing multitarget analysis from one sample.
Collapse
|
5
|
Zheng LQ, Wang X, Shao F, Hegner M, Zenobi R. Nanoscale Chemical Imaging of Reversible Photoisomerization of an Azobenzene-Thiol Self-Assembled Monolayer by Tip-Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2017; 57:1025-1029. [DOI: 10.1002/anie.201710443] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/25/2017] [Indexed: 11/06/2022]
|
6
|
Zheng LQ, Wang X, Shao F, Hegner M, Zenobi R. Nanoscale Chemical Imaging of Reversible Photoisomerization of an Azobenzene-Thiol Self-Assembled Monolayer by Tip-Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Padovani F, Duffy J, Hegner M. Nanomechanical clinical coagulation diagnostics and monitoring of therapies. NANOSCALE 2017; 9:17939-17947. [PMID: 29125171 DOI: 10.1039/c7nr06992h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Clinical coagulation diagnostics often requires multiple tests. Coagulation times are a first indication of an abnormal coagulation process, such as a coagulation factor deficiency. To determine the specific deficient factor, additional immuno- and/or enzyme assays are necessary. Currently, every clinical laboratory has to normalize their assays (international normalized ratio, INR), and therefore, certain variability within the clinical analytics exists. We report a novel strategy for a quick, reliable and quantitative diagnosis of blood coagulation diseases (e.g. haemophilia) and for monitoring factor replacement and anticoagulant therapies (e.g. heparin treatment). We exploit nano-oscillations of microcantilevers for real-time measurements of the evolving blood plasma clot strength (viscosity). The sensors are oscillated at multiple high resonance mode numbers, in order to minimise the oscillation amplitude (a few nanometers), to provide direct internal control and to increase the quality factor. Along with the activated thromboplastin time (aPTT) and prothrombin time (PT) other parameters important for thrombosis diagnostics can be obtained, including the final clot strength and the fibrinolysis time. We demonstrate the dependence of the parameters on factor deficiencies and we diagnose a specific factor deficiency through an integrated and quantitative in situ immunoassay. This approach does not require continuous calibration since it delivers an absolute quantity (clot strength). The low sample volume required (a few μl) and the ability to measure different parameters within the same test (PT, aPTT and global coagulation assay) make the presented technique a versatile point-of-care device for clinical coagulation diagnostics.
Collapse
|
8
|
|
9
|
Padovani F, Duffy J, Hegner M. Microrheological Coagulation Assay Exploiting Micromechanical Resonators. Anal Chem 2016; 89:751-758. [DOI: 10.1021/acs.analchem.6b03347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Katranidis A, Wruck F, Nierhaus KH, Büldt G, Hegner M. Following Translation and Folding of Individual Proteins by Single Ribosomes in Real-Time using Optical Tweezers. Biophys J 2016. [DOI: 10.1016/j.bpj.2015.11.1893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
11
|
Jadhav VS, Brüggemann D, Wruck F, Hegner M. Single-molecule mechanics of protein-labelled DNA handles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:138-148. [PMID: 26925362 PMCID: PMC4734302 DOI: 10.3762/bjnano.7.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/18/2016] [Indexed: 05/07/2023]
Abstract
DNA handles are often used as spacers and linkers in single-molecule experiments to isolate and tether RNAs, proteins, enzymes and ribozymes, amongst other biomolecules, between surface-modified beads for nanomechanical investigations. Custom DNA handles with varying lengths and chemical end-modifications are readily and reliably synthesized en masse, enabling force spectroscopic measurements with well-defined and long-lasting mechanical characteristics under physiological conditions over a large range of applied forces. Although these chemically tagged DNA handles are widely used, their further individual modification with protein receptors is less common and would allow for additional flexibility in grabbing biomolecules for mechanical measurements. In-depth information on reliable protocols for the synthesis of these DNA-protein hybrids and on their mechanical characteristics under varying physiological conditions are lacking in literature. Here, optical tweezers are used to investigate different protein-labelled DNA handles in a microfluidic environment under different physiological conditions. Digoxigenin (DIG)-dsDNA-biotin handles of varying sizes (1000, 3034 and 4056 bp) were conjugated with streptavidin or neutravidin proteins. The DIG-modified ends of these hybrids were bound to surface-modified polystyrene (anti-DIG) beads. Using different physiological buffers, optical force measurements showed consistent mechanical characteristics with long dissociation times. These protein-modified DNA hybrids were also interconnected in situ with other tethered biotinylated DNA molecules. Electron-multiplying CCD (EMCCD) imaging control experiments revealed that quantum dot-streptavidin conjugates at the end of DNA handles remain freely accessible. The experiments presented here demonstrate that handles produced with our protein-DNA labelling procedure are excellent candidates for grasping single molecules exposing tags suitable for molecular recognition in time-critical molecular motor studies.
Collapse
|
12
|
Winters S, Berner NC, Mishra R, Dümbgen KC, Backes C, Hegner M, Hirsch A, Duesberg GS. On-surface derivatisation of aromatic molecules on graphene: the importance of packing density. Chem Commun (Camb) 2015; 51:16778-81. [DOI: 10.1039/c5cc06433c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the production of high packing density molecular monolayers on graphene through a modified transfer process and demonstrate their increased stability during derivatisation.
Collapse
|
13
|
Maloney N, Lukacs G, Jensen J, Hegner M. Nanomechanical sensors for single microbial cell growth monitoring. NANOSCALE 2014; 6:8242-8249. [PMID: 24931547 DOI: 10.1039/c4nr01610f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A nanomechanical technique for rapid real time detection and monitoring of microorganism growth will significantly reduce costs and diagnosis times in industrial and clinical settings. Owing to their label free detection mechanism and unprecedented sensitivity to the mass and elastic modulus of biological structures, dynamically operated cantilever arrays provide an opportunity to rapidly detect and track the evolution of microbial growth. Here we report the monitoring of the growth of single Aspergillus niger spores via the multimode response of microcantilevers. The fungal hyphal structure affects the cantilevers' nanomechanical properties as it propagates along the sensor. We demonstrate, for the first time, the mapping of cellular events with great accuracy using a cantilever frequency response. Imaging of growth conditions on the cantilever, which is performed in parallel, allows for verification of these results. Theoretical comparison and finite element modelling confirm experimental findings and allow for determination of the hyphal elastic modulus.
Collapse
|
14
|
Mishra R, Hegner M. Effect of non-specific species competition from total RNA on the static mode hybridization response of nanomechanical assays of oligonucleotides. NANOTECHNOLOGY 2014; 25:225501. [PMID: 24807191 DOI: 10.1088/0957-4484/25/22/225501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We investigate here the nanomechanical response of microcantilever sensors in real-time for detecting a range of ultra-low concentrations of oligonucleotides in a complex background of total cellular RNA extracts from cell lines without labeling or amplification. Cantilever sensor arrays were functionalized with probe single stranded DNA (ssDNA) and reference ssDNA to obtain a differential signal. They were then exposed to complementary target ssDNA strands that were spiked in a fragmented total cellular RNA background in biologically relevant concentrations so as to provide clinically significant analysis. We present a model for prediction of the sensor behavior in competitive backgrounds with parameters that are indicators of the change in nanomechanical response with variation in the target and background concentration. For nanomechanical assays to compete with current technologies it is essential to comprehend such responses with eventual impact on areas like understanding non-coding RNA pharmacokinetics, nucleic acid biomarker assays and miRNA quantification for disease monitoring and diagnosis to mention a few. Additionally, we also achieved a femtomolar sensitivity limit for online oligonucleotide detection in a non-competitive environment with these sensors.
Collapse
|
15
|
Maloney N, Lukacs G, Ball SL, Hegner M. Device for filamentous fungi growth monitoring using the multimodal frequency response of cantilevers. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:015003. [PMID: 24517802 DOI: 10.1063/1.4854655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Filamentous fungi cause opportunistic infections in hospital patients. A fast assay to detect viable spores is of great interest. We present a device that is capable of monitoring fungi growth in real time via the dynamic operation of cantilevers in an array. The ability to detect minute frequency shifts for higher order flexural resonance modes is demonstrated using hydrogel functionalised cantilevers. The use of higher order resonance modes sees the sensor dependent mass responsivity enhanced by a factor of 13 in comparison to measurements utilizing the fundamental resonance mode only. As a proof of principle measurement, Aspergillus niger growth is monitored using the first two flexural resonance modes. The detection of single spore growth within 10 h is reported for the first time. The ability to detect and monitor the growth of single spores, within a small time frame, is advantageous in both clinical and industrial settings.
Collapse
|
16
|
Katranidis A, Grange W, Schlesinger R, Hegner M, Bueldt G. Force Measurements of the Disruption of the Nascent Polypeptide Chain from the Ribosome by Optical Tweezers. Biophys J 2011. [DOI: 10.1016/j.bpj.2010.12.2399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
17
|
Haas P, Then P, Wild A, Grange W, Zorman S, Hegner M, Calame M, Aebi U, Flammer J, Hecht B. Fast quantitative single-molecule detection at ultralow concentrations. Anal Chem 2010; 82:6299-302. [PMID: 20568715 DOI: 10.1021/ac100779c] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The applicability of single-molecule fluorescence assays in liquids is limited by diffusion to concentrations in the low picomolar range. Here, we demonstrate quantitative single-molecule detection at attomolar concentrations within 1 min by excitation and detection of fluorescence through a single-mode optical fiber in presence of turbulent flow. The combination of high detectability and short measurement times promises applications in ultrasensitive assays, sensors, and point-of-care medical diagnostics.
Collapse
|
18
|
Abstract
Microfabricated cantilever sensors have attracted much interest in recent years as devices for the fast and reliable detection of small concentrations of molecules in air and solution. In addition to application of such sensors for gas and chemical-vapor sensing, for example as an artificial nose, they have also been employed to measure physical properties of tiny amounts of materials in miniaturized versions of conventional standard techniques such as calorimetry, thermogravimetry, weighing, photothermal spectroscopy, as well as for monitoring chemical reactions such as catalysis on small surfaces. In the past few years, the cantilever-sensor concept has been extended to biochemical applications and as an analytical device for measurements of biomaterials. Because of the label-free detection principle of cantilever sensors, their small size and scalability, this kind of device is advantageous for diagnostic applications and disease monitoring, as well as for genomics or proteomics purposes. The use of microcantilever arrays enables detection of several analytes simultaneously and solves the inherent problem of thermal drift often present when using single microcantilever sensors, as some of the cantilevers can be used as sensor cantilevers for detection, and other cantilevers serve as passivated reference cantilevers that do not exhibit affinity to the molecules to be detected.
Collapse
|
19
|
Braun T, Ghatkesar MK, Backmann N, Grange W, Boulanger P, Letellier L, Lang HP, Bietsch A, Gerber C, Hegner M. Quantitative time-resolved measurement of membrane protein-ligand interactions using microcantilever array sensors. NATURE NANOTECHNOLOGY 2009; 4:179-85. [PMID: 19265848 DOI: 10.1038/nnano.2008.398] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 12/03/2008] [Indexed: 05/17/2023]
Abstract
Membrane proteins are central to many biological processes, and the interactions between transmembrane protein receptors and their ligands are of fundamental importance in medical research. However, measuring and characterizing these interactions is challenging. Here we report that sensors based on arrays of resonating microcantilevers can measure such interactions under physiological conditions. A protein receptor--the FhuA receptor of Escherichia coli--is crystallized in liposomes, and the proteoliposomes then immobilized on the chemically activated gold-coated surface of the sensor by ink-jet spotting in a humid environment, thus keeping the receptors functional. Quantitative mass-binding measurements of the bacterial virus T5 at subpicomolar concentrations are performed. These experiments demonstrate the potential of resonating microcantilevers for the specific, label-free and time-resolved detection of membrane protein-ligand interactions in a micro-array format.
Collapse
|
20
|
Hegner M, Grange W, Husale S, Duckely M. VirE2: A Unique ssDNA-Compacting Molecular Machine. Biophys J 2009. [DOI: 10.1016/j.bpj.2008.12.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
21
|
Ghatkesar MK, Lang HP, Gerber C, Hegner M, Braun T. Comprehensive characterization of molecular interactions based on nanomechanics. PLoS One 2008; 3:e3610. [PMID: 18978938 PMCID: PMC2572191 DOI: 10.1371/journal.pone.0003610] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/08/2008] [Indexed: 11/18/2022] Open
Abstract
Molecular interaction is a key concept in our understanding of the biological mechanisms of life. Two physical properties change when one molecular partner binds to another. Firstly, the masses combine and secondly, the structure of at least one binding partner is altered, mechanically transducing the binding into subsequent biological reactions. Here we present a nanomechanical micro-array technique for bio-medical research, which not only monitors the binding of effector molecules to their target but also the subsequent effect on a biological system in vitro. This label-free and real-time method directly and simultaneously tracks mass and nanomechanical changes at the sensor interface using micro-cantilever technology. To prove the concept we measured lipid vesicle (approximately 748*10(6) Da) adsorption on the sensor interface followed by subsequent binding of the bee venom peptide melittin (2840 Da) to the vesicles. The results show the high dynamic range of the instrument and that measuring the mass and structural changes simultaneously allow a comprehensive discussion of molecular interactions.
Collapse
|
22
|
Grange W, Duckely M, Husale S, Jacob S, Engel A, Hegner M. VirE2: a unique ssDNA-compacting molecular machine. PLoS Biol 2008; 6:e44. [PMID: 18303950 PMCID: PMC2253637 DOI: 10.1371/journal.pbio.0060044] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 01/08/2008] [Indexed: 11/18/2022] Open
Abstract
The translocation of single-stranded DNA (ssDNA) across membranes of two cells is a fundamental biological process occurring in both bacterial conjugation and Agrobacterium pathogenesis. Whereas bacterial conjugation spreads antibiotic resistance, Agrobacterium facilitates efficient interkingdom transfer of ssDNA from its cytoplasm to the host plant cell nucleus. These processes rely on the Type IV secretion system (T4SS), an active multiprotein channel spanning the bacterial inner and outer membranes. T4SSs export specific proteins, among them relaxases, which covalently bind to the 5' end of the translocated ssDNA and mediate ssDNA export. In Agrobacterium tumefaciens, another exported protein-VirE2-enhances ssDNA transfer efficiency 2000-fold. VirE2 binds cooperatively to the transferred ssDNA (T-DNA) and forms a compact helical structure, mediating T-DNA import into the host cell nucleus. We demonstrated-using single-molecule techniques-that by cooperatively binding to ssDNA, VirE2 proteins act as a powerful molecular machine. VirE2 actively pulls ssDNA and is capable of working against 50-pN loads without the need for external energy sources. Combining biochemical and cell biology data, we suggest that, in vivo, VirE2 binding to ssDNA allows an efficient import and pulling of ssDNA into the host. These findings provide a new insight into the ssDNA translocation mechanism from the recipient cell perspective. Efficient translocation only relies on the presence of ssDNA binding proteins in the recipient cell that compacts ssDNA upon binding. This facilitated transfer could hence be a more general ssDNA import mechanism also occurring in bacterial conjugation and DNA uptake processes.
Collapse
|
23
|
Huber F, Lang HP, Hegner M, Despont M, Drechsler U, Gerber C. Analyzing refractive index changes and differential bending in microcantilever arrays. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2008; 79:086110. [PMID: 19044391 DOI: 10.1063/1.2969912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A new microcantilever array design is investigated comprising eight flexible microcantilevers introducing two solid bars, enabling to subtract contributions from differences in refractive index in an optical laser read out system. Changes in the refractive index do not contribute undesirably to bending signals at picomolar to micromolar DNA or protein concentrations. However, measurements of samples with high salt concentrations or serum are affected, requiring corrections for refractive index artifacts. Moreover, to obtain a deeper understanding of molecular stress formation, the differential curvature of cantilevers is analyzed by positioning the laser spots along the surface of the levers during pH experiments.
Collapse
|
24
|
Grange W, Haas P, Wild A, Lieb MA, Calame M, Hegner M, Hecht B. Detection of transient events in the presence of background noise. J Phys Chem B 2008; 112:7140-4. [PMID: 18476735 DOI: 10.1021/jp7114862] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a method to detect and count transient burstlike signals in the presence of a significant stationary noise. To discriminate a transient signal from the background noise, an optimum threshold is determined using an iterative algorithm that yields the probability distribution of the background noise. Knowledge of the probability distribution of the noise then allows the determination of the number of transient events with a quantifiable error (wrong-positives). We apply the method, which does not rely on the choice of free parameters, to the detection and counting of transient single-molecule fluorescence events in the presence of a strong background noise. The method will be of importance in various ultra sensing applications.
Collapse
|
25
|
Husale S, Grange W, Karle M, Bürgi S, Hegner M. Interaction of cationic surfactants with DNA: a single-molecule study. Nucleic Acids Res 2008; 36:1443-9. [PMID: 18203749 PMCID: PMC2275125 DOI: 10.1093/nar/gkm1146] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The interaction of cationic surfactants with single dsDNA molecules has been studied using force-measuring optical tweezers. For hydrophobic chains of length 12 and greater, pulling experiments show characteristic features (e.g. hysteresis between the pulling and relaxation curves, force-plateau along the force curves), typical of a condensed phase (compaction of a long DNA into a micron-sized particle). Depending on the length of the hydrophobic chain of the surfactant, we observe different mechanical behaviours of the complex (DNA-surfactants), which provide evidence for different binding modes. Taken together, our measurements suggest that short-chain surfactants, which do not induce any condensation, could lie down on the DNA surface and directly interact with the DNA grooves through hydrophobic–hydrophobic interactions. In contrast, long-chain surfactants could have their aliphatic tails pointing away from the DNA surface, which could promote inter-molecular interactions between hydrophobic chains and subsequently favour DNA condensation.
Collapse
|