1
|
Craft S, Sunderland P, Millea MF, Pudney CR, Sutcliffe OB, Freeman TP. Detection and quantification of synthetic cannabinoids in seven illicitly sourced disposable vapes submitted by an individual presenting to a UK drug and alcohol service. Addiction 2024. [PMID: 39256058 DOI: 10.1111/add.16671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND AND AIMS In the United Kingdom and internationally, synthetic cannabinoids (SCs) are a common adulterant in illicitly sourced vaping products. Recently, their use is increasingly being linked to severe health effects, particularly among children. Here, we aimed to conduct the first detection and quantification of SCs in illicit disposable vaping products. METHODS A cross-section of seven illicitly sourced disposable vape samples that were initially sold as cannabis products was submitted for analysis by a single individual presenting to a drug and alcohol service in the United Kingdom. Qualitative and quantitative analyses of these samples were conducted using nuclear magnetic resonance and gas chromatography/electron ionization-mass spectrometry. RESULTS Qualitative analysis identified the SC 5F-MDMB-PICA in all seven samples, in the absence of any other pharmacologically active compounds. Quantitative analysis revealed that the median concentration of 5F-MDMB-PICA was 0.85 mg/ml (range = 0.59-1.63). The external appearance of these vape samples closely resembled regulated vaping products, and the presence of SCs was not identifiable by any labelling or packaging. CONCLUSIONS The SC 5F-MDMB-PICA was detected at a median concentration of 0.85 mg/ml in seven disposable vapes which were illegally sourced in the United Kingdom, were mis-sold as cannabis products and closely resembled legal, regulated products.
Collapse
|
2
|
Brandon AM, Baginski SR, Peet C, Dugard P, Green H, Sutcliffe OB, Daéid NN, Nisbet LA, Read KD, McKenzie C. Log D 7.4 and plasma protein binding of synthetic cannabinoid receptor agonists and a comparison of experimental and predicted lipophilicity. Drug Test Anal 2024; 16:1012-1025. [PMID: 38062938 DOI: 10.1002/dta.3621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 10/17/2024]
Abstract
The emergence of new synthetic cannabinoid receptor agonists (SCRAs) onto the illicit drugs market continues to cause harm, and the overall availability of physicochemical and pharmacokinetic data for new psychoactive substances is lacking. The lipophilicity of 23 SCRAs and the plasma protein binding (PPB) of 11 SCRAs was determined. Lipophilicity was determined using a validated chromatographic hydrophobicity index (CHI) log D method; tested SCRAs showed moderate to high lipophilicity, with experimental log D7.4 ranging from 2.48 (AB-FUBINACA) to 4.95 (4F-ABUTINACA). These results were also compared to in silico predictions generated using seven commercially available software packages and online tools (Canvas; ChemDraw; Gastroplus; MoKa; PreADMET; SwissADME; and XlogP). Licenced, dedicated software packages provided more accurate lipophilicity predictions than those which were free or had prediction as a secondary function; however, the latter still provided competitive estimates in most cases. PPB of tested SCRAs, as determined by equilibrium dialysis, was in the upper range of the lipophilicity scale, ranging from 90.8% (ADB-BUTINACA) to 99.9% (BZO-HEXOXIZID). The high PPB of these drugs may contribute to reduced rate of clearance and extended durations of pharmacological effects compared to lesser-bound SCRAs. The presented data improve understanding of the behaviour of these drugs in the body. Ultimately, similar data and predictions may be used in the prediction of the structure and properties of drugs yet to emerge on the illicit market.
Collapse
|
3
|
Cozier G, Andrews RC, Frinculescu A, Kumar R, May B, Tooth T, Collins P, Costello A, Haines TSF, Freeman TP, Blagbrough IS, Scott J, Shine T, Sutcliffe OB, Husbands SM, Leach J, Bowman RW, Pudney CR. Instant Detection of Synthetic Cannabinoids on Physical Matrices, Implemented on a Low-Cost, Ultraportable Device. Anal Chem 2023; 95:13829-13837. [PMID: 37642957 PMCID: PMC10515102 DOI: 10.1021/acs.analchem.3c01844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023]
Abstract
Synthetic cannabinoids (SCs) make up a class of novel psychoactive substances (NPS), used predominantly in prisons and homeless communities in the U.K. SCs can have severe side effects, including psychosis, stroke, and seizures, with numerous reported deaths associated with their use. The chemical diversity of SCs presents the major challenge to their detection since approaches relying on specific molecular recognition become outdated almost immediately. Ideally one would have a generic approach to detecting SCs in portable settings. The problem of SC detection is more challenging still because the majority of SCs enter the prison estate adsorbed onto physical matrices such as paper, fabric, or herb materials. That is, regardless of the detection modality used, the necessary extraction step reduces the effectiveness and ability to rapidly screen materials on-site. Herein, we demonstrate a truly instant generic test for SCs, tested against real-world drug seizures. The test is based on two advances. First, we identify a spectrally silent region in the emission spectrum of most physical matrices. Second, the finding that background signals (including from autofluorescence) can be accurately predicted is based on tracking the fraction of absorbed light from the irradiation source. Finally, we demonstrate that the intrinsic fluorescence of a large range of physical substrates can be leveraged to track the presence of other drugs of interest, including the most recent iterations of benzodiazepines and opioids. We demonstrate the implementation of our presumptive test in a portable, pocket-sized device that will find immediate utility in prisons and law enforcement agencies around the world.
Collapse
|
4
|
Hindson SA, Andrews RC, Danson MJ, van der Kamp MW, Manley AE, Sutcliffe OB, Haines TSF, Freeman TP, Scott J, Husbands SM, Blagbrough IS, Anderson JLR, Carbery DR, Pudney CR. Synthetic cannabinoid receptor agonists are monoamine oxidase-A selective inhibitors. FEBS J 2023; 290:3243-3257. [PMID: 36708234 PMCID: PMC10952593 DOI: 10.1111/febs.16741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/13/2023] [Accepted: 01/27/2023] [Indexed: 01/29/2023]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are one of the fastest growing classes of recreational drugs. Despite their growth in use, their vast chemical diversity and rapidly changing landscape of structures make understanding their effects challenging. In particular, the side effects for SCRA use are extremely diverse, but notably include severe outcomes such as cardiac arrest. These side effects appear at odds with the main putative mode of action, as full agonists of cannabinoid receptors. We have hypothesized that SCRAs may act as MAO inhibitors, owing to their structural similarity to known monoamine oxidase inhibitors (MAOI's) as well as matching clinical outcomes (hypertensive crisis) of 'monoaminergic toxicity' for users of MAOIs and some SCRA use. We have studied the potential for SCRA-mediated inhibition of MAO-A and MAO-B via a range of SCRAs used commonly in the UK, as well as structural analogues to prove the atomistic determinants of inhibition. By combining in silico and experimental kinetic studies we demonstrate that SCRAs are MAO-A-specific inhibitors and their affinity can vary significantly between SCRAs, most notably affected by the nature of the SCRA 'head' group. Our data allow us to posit a putative mechanism of inhibition. Crucially our data demonstrate that SCRA activity is not limited to just cannabinoid receptor agonism and that alternative interactions might account for some of the diversity of the observed side effects and that these effects can be SCRA-specific.
Collapse
|
5
|
Hulme MC, Hayatbakhsh A, Brignall RM, Gilbert N, Costello A, Schofield CJ, Williamson DC, Kemsley EK, Sutcliffe OB, Mewis RE. Detection, discrimination and quantification of amphetamine, cathinone and nor-ephedrine regioisomers using benchtop 1 H and 19 F nuclear magnetic resonance spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:73-82. [PMID: 33786881 DOI: 10.1002/mrc.5156] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Amphetamine and cathinone derivatives are abused recreationally due to the sense of euphoria they provide to the user. Methodologies for the rapid detection of the drug derivative present in a seized sample, or an indication of the drug class, are beneficial to law enforcement and healthcare providers. Identifying the drug class is prudent because derivatisation of these drugs, to produce regioisomers, for example, occurs frequently to circumvent global and local drug laws. Thus, newly encountered derivatives might not be present in a spectral library. Employment of benchtop nuclear magnetic resonance (NMR) could be used to provide rapid analysis of seized samples as well as identifying the class of drug present. Discrimination of individual amphetamine-, methcathinone-, N-ethylcathinone and nor-ephedrine-derived fluorinated and methylated regioisomers is achieved herein using qualitative automated 1 H NMR analysis and compared to gas chromatography-mass spectrometry (GC-MS) data. Two seized drug samples, SS1 and SS2, were identified to contain 4-fluoroamphetamine by 1 H NMR (match score median = 0.9933) and GC-MS (RRt = 5.42-5.43 min). The amount of 4-fluoroamphetamine present was 42.8%-43.4% w/w and 48.7%-49.2% w/w for SS1 and SS2, respectively, from quantitative 19 F NMR analysis, which is in agreement with the amount determined by GC-MS (39.9%-41.4% w/w and 49.0%-49.3% w/w). The total time for the qualitative 1 H NMR and quantitative 19 F NMR analysis is ~10 min. This contrasts to ~40 min for the GC-MS method. The NMR method also benefits from minimal sample preparation. Thus, benchtop NMR affords rapid, and discriminatory, analysis of the drug present in a seized sample.
Collapse
|
6
|
Andrews R, May B, Hernández FJ, Cozier GE, Townsend PA, Sutcliffe OB, Haines TSF, Freeman TP, Scott J, Husbands SM, Blagbrough IS, Bowman RW, Lewis SE, Grayson MN, Crespo-Otero R, Carbery DR, Pudney CR. Photochemical Fingerprinting Is a Sensitive Probe for the Detection of Synthetic Cannabinoid Receptor Agonists; toward Robust Point-of-Care Detection. Anal Chem 2023; 95:703-713. [PMID: 36599091 PMCID: PMC9850351 DOI: 10.1021/acs.analchem.2c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
With synthetic cannabinoid receptor agonist (SCRA) use still prevalent across Europe and structurally advanced generations emerging, it is imperative that drug detection methods advance in parallel. SCRAs are a chemically diverse and evolving group, which makes rapid detection challenging. We have previously shown that fluorescence spectral fingerprinting (FSF) has the potential to provide rapid assessment of SCRA presence directly from street material with minimal processing and in saliva. Enhancing the sensitivity and discriminatory ability of this approach has high potential to accelerate the delivery of a point-of-care technology that can be used confidently by a range of stakeholders, from medical to prison staff. We demonstrate that a range of structurally distinct SCRAs are photochemically active and give rise to distinct FSFs after irradiation. To explore this in detail, we have synthesized a model series of compounds which mimic specific structural features of AM-694. Our data show that FSFs are sensitive to chemically conservative changes, with evidence that this relates to shifts in the electronic structure and cross-conjugation. Crucially, we find that the photochemical degradation rate is sensitive to individual structures and gives rise to a specific major product, the mechanism and identification of which we elucidate through density-functional theory (DFT) and time-dependent DFT. We test the potential of our hybrid "photochemical fingerprinting" approach to discriminate SCRAs by demonstrating SCRA detection from a simulated smoking apparatus in saliva. Our study shows the potential of tracking photochemical reactivity via FSFs for enhanced discrimination of SCRAs, with successful integration into a portable device.
Collapse
|
7
|
Sutcliffe OB, Mewis RE, Kemsley EK, Williamson DC. 3,4-Methylenedioxymethamphetamine quantification via benchtop 1H qNMR spectroscopy: Method validation and its application to ecstasy tablets collected at music festivals. J Pharm Biomed Anal 2022; 221:115042. [PMID: 36155482 DOI: 10.1016/j.jpba.2022.115042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 01/07/2023]
|
8
|
Naredo-Gonzalez G, Upreti R, Jansen MA, Semple S, Sutcliffe OB, Marshall I, Walker BR, Andrew R. Non-invasive in vivo assessment of 11β-hydroxysteroid dehydrogenase type 1 activity by 19F-Magnetic Resonance Spectroscopy. Sci Rep 2022; 12:16268. [PMID: 36175417 PMCID: PMC9523021 DOI: 10.1038/s41598-022-18740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) amplifies tissue glucocorticoid levels and is a pharmaceutical target in diabetes and cognitive decline. Clinical translation of inhibitors is hampered by lack of in vivo pharmacodynamic biomarkers. Our goal was to monitor substrates and products of 11β-HSD1 non-invasively in liver via 19Fluorine magnetic resonance spectroscopy (19F-MRS). Interconversion of mono/poly-fluorinated substrate/product pairs was studied in Wistar rats (male, n = 6) and healthy men (n = 3) using 7T and 3T MRI scanners, respectively. Here we show that the in vitro limit of detection, as absolute fluorine content, was 0.625 μmole in blood. Mono-fluorinated steroids, dexamethasone and 11-dehydrodexamethasone, were detected in phantoms but not in vivo in human liver following oral dosing. A non-steroidal polyfluorinated tracer, 2-(phenylsulfonyl)-1-(4-(trifluoromethyl)phenyl)ethanone and its metabolic product were detected in vivo in rat liver after oral administration of the keto-substrate, reading out reductase activity. Administration of a selective 11β-HSD1 inhibitor in vivo in rats altered total liver 19F-MRS signal. We conclude that there is insufficient sensitivity to measure mono-fluorinated tracers in vivo in man with current dosage regimens and clinical scanners. However, since reductase activity was observed in rats using poly-fluorinated tracers, this concept could be pursued for translation to man with further development.
Collapse
|
9
|
Dixon DI, Antonides LH, Costello A, Crane B, Embleton A, Fletcher ML, Gilbert N, Hulme MC, James MJ, Lever MA, Maccallum CJ, Millea MF, Pimlott JL, Robertson TBR, Rudge NE, Schofield CJ, Zukowicz F, Kemsley EK, Sutcliffe OB, Mewis RE. Comparative study of the analysis of seized samples by GC-MS, 1H NMR and FT-IR spectroscopy within a Night-Time Economy (NTE) setting. J Pharm Biomed Anal 2022; 219:114950. [PMID: 35914505 DOI: 10.1016/j.jpba.2022.114950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/03/2022] [Accepted: 07/15/2022] [Indexed: 10/17/2022]
Abstract
Rapid analysis of surrendered or seized drug samples provides important intelligence for health (e.g. treatment or harm reduction), and custodial services. Herein, three in-situ techniques, GC-MS, 1H NMR and FT-IR spectroscopy, with searchable libraries, are used to analyse 318 samples qualitatively, using technique specific library-based searches, obtained over the period 24th - 29th August 2019. 259 samples were identified as consisting of a single component, of which cocaine was the most prevalent (n = 158). Median match scores for all three techniques were ≥ 0.84 and showed agreement except for metformin (n = 1), oxandrolone (identified as vitamin K by IR (n = 4)), diazepam (identified as zolpidem by FT-IR (n = 2)) and 2-Br-4,5-DMPEA (n = 1), a structural isomer of 2C-B identified as a polymer of cellulose (cardboard) by FT-IR. 51 samples were found to consist of two or more components, of which 49 were adulterated cocaine samples (45 binary and 4 tertiary samples). GC-MS identified all components present in the 49 adulterated cocaine samples, whereas IR identified only cocaine in 88 % of cases (adulterant only = 12 %). The breakdown for 1H NMR spectroscopy was all components identified (51 %), cocaine only (33 %), adulterant only (10 %), cocaine and one adulterant (tertiary mixtures only, 6 %).
Collapse
|
10
|
McNeill L, Megson D, Linton PE, Norrey J, Bradley L, Sutcliffe OB, Shaw KJ. Lab-on-a-Chip approaches for the detection of controlled drugs, including new psychoactive substances: A systematic review. Forensic Chem 2021. [DOI: 10.1016/j.forc.2021.100370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Gilbert N, Costello A, Ellison JR, Khan U, Knight M, Linnell MJ, Ralphs R, Mewis RE, Sutcliffe OB. Synthesis, characterisation, detection and quantification of a novel hexyl-substituted synthetic cannabinoid receptor agonist: (S)-N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-hexyl-1H-indazole-3-carboxamide (ADB-HINACA). Forensic Chem 2021. [DOI: 10.1016/j.forc.2021.100354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Kronstrand R, Norman C, Vikingsson S, Biemans A, Valencia Crespo B, Edwards D, Fletcher D, Gilbert N, Persson M, Reid R, Semenova O, Al Teneiji F, Wu X, Dahlén J, NicDaéid N, Tarbah F, Sutcliffe OB, McKenzie C, Gréen H. The metabolism of the synthetic cannabinoids ADB-BUTINACA and ADB-4en-PINACA and their detection in forensic toxicology casework and infused papers seized in prisons. Drug Test Anal 2021; 14:634-652. [PMID: 34811926 DOI: 10.1002/dta.3203] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
Early warning systems detect new psychoactive substances (NPS), while dedicated monitoring programs and routine drug and toxicology testing identify fluctuations in prevalence. We report the increasing prevalence of the synthetic cannabinoid receptor agonist (SCRA) ADB-BUTINACA (N-[1-amino-3,3-dimethyl-1-oxobutan-2-yl]-1-butyl-1H-indazole-3-carbox-amide). ADB-BUTINACA was first detected in a seizure in Sweden in 2019, and we report its detection in 13 routine Swedish forensic toxicology cases soon after. In January 2021, ADB-BUTINACA was detected in SCRA-infused papers seized in Scottish prisons and has rapidly increased in prevalence, being detected in 60.4% of the SCRA-infused papers tested between January and July 2021. In this work, ADB-BUTINACA was incubated with human hepatocytes (HHeps), and 21 metabolites were identified in vitro, 14 being detected in authentic case samples. The parent drug and metabolites B9 (mono-hydroxylation on the n-butyl tail) and B16 (mono-hydroxylation on the indazole ring) are recommended biomarkers in blood, while metabolites B4 (dihydrodiol formation on the indazole core), B9, and B16 are suitable biomarkers in urine. ADB-4en-PINACA (N-[1-amino-3,3-dimethyl-1-oxobutan-2-yl]-1-[pent-4-en-1-yl]-1H-indazole-3-carboxamide) was detected in Scottish prisons in December 2020, but, unlike ADB-BUTINACA, prevalence has remained low. ADB-4en-PINACA was incubated with HHeps, and 11 metabolites were identified. Metabolites E3 (dihydrodiol formed in the tail moiety) and E7 (hydroxylation on the linked/head group) are the most abundant metabolites in vitro and are suggested as urinary biomarkers. The in vitro potencies of ADB-BUTINACA (EC50 , 11.5 nM and ADB-4en-PINACA (EC50 , 11.6 nM) are similar to that of MDMB-4en-PINACA (EC50 , 4.3 nM). A third tert-leucinamide SCRA, ADB-HEXINACA was also detected in prison samples and warrants further investigation.
Collapse
|
13
|
Ralphs R, Gray P, Sutcliffe OB. The impact of the 2016 Psychoactive Substances Act on synthetic cannabinoid use within the homeless population: Markets, content and user harms. THE INTERNATIONAL JOURNAL OF DRUG POLICY 2021; 97:103305. [PMID: 34146792 DOI: 10.1016/j.drugpo.2021.103305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND On 26 May 2016, the UK introduced the Psychoactive Substances Act. The Act made it an offence to produce, supply, or offer to supply, any psychoactive substance likely to be used for its psychoactive effects. While a Home Office review of the Act in 2018 proclaimed that the Act had been successful in achieving its main goal of preventing the open sale of psychoactive substances, significantly, the review acknowledged that high levels of synthetic cannabinoid use remain amongst vulnerable user groups, in particular the homeless population. METHODS The research adopted an innovative interdisciplinary approach drawing on sociology and chemistry. The sociological element involved 82 face-to-face qualitative semi-structured interviews with 37 homeless synthetic cannabinoid users, 45 stakeholders, and over 100 h of fieldwork observations. The chemical analysis element involved the testing (using Gas Chromatography-Mass Spectrometry) of 69 synthetic cannabinoid street samples obtained by a local police force. RESULTS The introduction of the Act was associated with a number of significant changes to the synthetic cannabinoid market, including the integration of synthetic cannabinoids into the existing illicit street market, new dealers, the adoption of more targeted and aggressive supply practices, and variability in the content and potency of synthetic cannabinoids. Combined, these changes have increased the risk of harm to homeless users and homeless sector staff and resulted in a concomitant increase in the demand on emergency services. CONCLUSION The foreseen concerns that the Act would result in detrimental market changes and increased harms to vulnerable user groups have been manifested in the homeless population. The failure of the Act to reduce synthetic cannabinoid use within this group, combined with the increased risk of individual and societal harm, highlights the importance of reducing the demand for synthetic cannabinoids.
Collapse
|
14
|
Robertson TBR, Gilbert N, Sutcliffe OB, Mewis RE. Hyperpolarisation of Mirfentanil by SABRE in the Presence of Heroin. Chemphyschem 2021; 22:1059-1064. [PMID: 33871116 DOI: 10.1002/cphc.202100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/05/2021] [Indexed: 11/06/2022]
Abstract
Mirfentanil, a fentanyl derivative that is a μ-opioid partial agonist, is hyperpolarised via Signal Amplification By Reversible Exchange (SABRE), a para-hydrogen-based technique. [Ir(IMes)(COD)Cl] (IMes=1,3-bis(2,4,6-trimethylphenyl)imidazole-2-ylidene, COD=cyclooctadiene) was employed as the polarisation transfer catalyst. Following polarisation transfer at 6.5 mT, the pyrazine-protons were enhanced by 78-fold (polarisation, P=0.04 %). The complex [Ir(IMes)(H)2 (mirfentanil)2 (MeOH)]+ is proposed to form based on the observation of two hydrides at δ -22.9 (trans to mirfentanil) and -24.7 (trans to methanol). In a mixture of mirfentanil and heroin, the former could be detected using SABRE at concentrations less than 1 % w/w. At the lowest concentration analyzed, the amount of mirfentanil present was 0.18 mg (812 μM) and produced a signal enhancement of -867-fold (P=0.42 %). following polarisation transfer at 6.5 mT.
Collapse
|
15
|
Antonides LH, Cannaert A, Norman C, NicDáeid N, Sutcliffe OB, Stove CP, McKenzie C. Shape matters: The application of activity-based in vitro bioassays and chiral profiling to the pharmacological evaluation of synthetic cannabinoid receptor agonists in drug-infused papers seized in prisons. Drug Test Anal 2020; 13:628-643. [PMID: 33161649 DOI: 10.1002/dta.2965] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) elicit many of their psychoactive effects via type-1 human cannabinoid (CB1 ) receptors. Enantiomer pairs of eight tert-leucinate or valinate indole- and indazole-3-carboxamide SCRAs were synthesized and their CB1 potency and efficacy assessed using an in vitro β-arrestin recruitment assay in a HEK239T stable cell system. A chiral high-performance liquid chromatography method with photodiode array and/or quadrupole time-of-flight-mass spectrometry detection (HPLC-PDA and HPLC-PDA-QToF-MS) was applied to 177 SCRA-infused paper samples seized in Scottish prisons between 2018 and 2020. In most samples, SCRAs were almost enantiopure (S)-enantiomer (>98% of total chromatographic peak area), although in some (n = 18), 2% to 16% of the (R)-enantiomer was detected. (S)-enantiomers are consistently more potent than (R)-enantiomers and often more efficacious. The importance of SCRA-CB1 receptor interactions in the "head" or "linked group" moiety is demonstrated, with the conformation of the "bulky" tert-leucinate group greatly affecting potency (by up to a factor of 374), significantly greater than the difference observed between valinate SCRA enantiomers. (S)-MDMB-4en-PINACA, (S)-4F-MDMB-BINACA, and (S)-5F-MDMB-PICA are currently the most prevalent SCRAs in Scottish prisons, and all have similar high potency (EC50 , 1-5 nM) and efficacy. Infused paper samples were compared using estimated intrinsic efficacy at the CB1 receptor (EIECB1 ) to evaluate samples with variable SCRA content. Given their similar potency and efficacy, any variation in CB1 receptor-mediated psychoactive effects are likely to derive from variation in dose, mode of use, pharmacokinetic differences, and individual factors affecting the user, rather than differences in the specific SCRA present.
Collapse
|
16
|
Tennant T, Hulme MC, Robertson TBR, Sutcliffe OB, Mewis RE. Benchtop NMR analysis of piperazine-based drugs hyperpolarised by SABRE. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:1151-1159. [PMID: 31945193 DOI: 10.1002/mrc.4999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Piperazine-based drugs, such as N-benzylpiperazine (BZP), became attractive in the 2000s due to possessing effects similar to amphetamines. Herein, BZP, in addition to its pyridyl analogues, 2-, 3-, and 4-pyridylmethylpiperidine (2-PMP, 3-PMP, and 4-PMP respectively) was subjected to the hyperpolarisation technique Signal Amplification By Reversible Exchange (SABRE) in order to demonstrate the use of this technique to detect these piperazine-based drugs. Although BZP was not hyperpolarised via SABRE, 2-PMP, 3-PMP, and 4-PMP were, with the ortho- and meta-pyridyl protons of 4-PMP showing the largest enhancement of 313-fold and 267-fold, respectively, in a 1.4-T detection field, following polarisation transfer at Earth's magnetic field. In addition to the freebase, 4-PMP.3HCl was also appraised by SABRE and was found not to polarise, however, the addition of increasing equivalents of triethylamine (TEA) produced the freebase, with a maximum enhancement observed upon the addition of 3 equivalents of TEA. Further addition of TEA led to a reduction in the observed enhancement. SABRE was also employed to polarise 4-PMP.3HCl (~20% w/w) in a simulated tablet to demonstrate the forensic application of the technique (138-fold enhancement for the ortho-pyridyl protons). The amount of 4-PMP.3HCl present in the simulated tablet was quantified via NMR using D2 O as a solvent and compared well to complimentary gas chromatography-mass spectrometry data. Exchanging D2 O for CD3 OD as the solvent utilised for analysis resulted in a significantly lower amount of 4-PMP.3HCl being determined, thus highlighting safeguarding issues linked to drug abuse in relation to determining the amount of active pharmaceutical ingredient present.
Collapse
|
17
|
Gilbert N, Mewis RE, Sutcliffe OB. Classification of fentanyl analogues through principal component analysis (PCA) and hierarchical clustering of GC–MS data. Forensic Chem 2020. [DOI: 10.1016/j.forc.2020.100287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Hussain JH, Gilbert N, Costello A, Schofield CJ, Kemsley EK, Sutcliffe OB, Mewis RE. Quantification of MDMA in seized tablets using benchtop 1H NMR spectroscopy in the absence of internal standards. Forensic Chem 2020. [DOI: 10.1016/j.forc.2020.100263] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Norman C, Walker G, McKirdy B, McDonald C, Fletcher D, Antonides LH, Sutcliffe OB, Nic Daéid N, McKenzie C. Detection and quantitation of synthetic cannabinoid receptor agonists in infused papers from prisons in a constantly evolving illicit market. Drug Test Anal 2020; 12:538-554. [DOI: 10.1002/dta.2767] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 01/04/2023]
|
20
|
Gilbert N, Antonides LH, Schofield CJ, Costello A, Kilkelly B, Cain AR, Dalziel PR, Horner K, Mewis RE, Sutcliffe OB. Hitting the Jackpot – development of gas chromatography–mass spectrometry (GC–MS) and other rapid screening methods for the analysis of 18 fentanyl‐derived synthetic opioids. Drug Test Anal 2020; 12:798-811. [DOI: 10.1002/dta.2771] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/03/2023]
|
21
|
Robertson TBR, Antonides LH, Gilbert N, Benjamin SL, Langley SK, Munro LJ, Sutcliffe OB, Mewis RE. Hyperpolarization of Pyridyl Fentalogues by Signal Amplification By Reversible Exchange (SABRE). ChemistryOpen 2019; 8:1375-1382. [PMID: 31844604 PMCID: PMC6892445 DOI: 10.1002/open.201900273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/24/2019] [Indexed: 11/06/2022] Open
Abstract
Fentanyl, also known as 'jackpot', is a synthetic opiate that is 50-100 times more potent than morphine. Clandestine laboratories produce analogues of fentanyl, known as fentalogues to circumvent legislation regarding its production. Three pyridyl fentalogues were synthesized and then hyperpolarized by signal amplification by reversible exchange (SABRE) to appraise the forensic potential of the technique. A maximum enhancement of -168-fold at 1.4 T was recorded for the ortho pyridyl 1H nuclei. Studies of the activation parameters for the three fentalogues revealed that the ratio of ligand loss trans to hydride and hydride loss in the complex [Ir(IMes)(L)3(H)2]+ (IMes=1,3-bis(2,4,6-trimethylphenyl)imidazole-2-ylidene) ranged from 0.52 to 1.83. The fentalogue possessing the ratio closest to unity produced the largest enhancement subsequent to performing SABRE at earth's magnetic field. It was possible to hyperpolarize a pyridyl fentalogue selectively from a matrix that consisted largely of heroin (97 : 3 heroin:fentalogue) to validate the use of SABRE as a forensic tool.
Collapse
|
22
|
Elbardisy H, Foster CW, Marron J, Mewis RE, Sutcliffe OB, Belal TS, Talaat W, Daabees HG, Banks CE. Quick Test for Determination of N-Bombs (Phenethylamine Derivatives, NBOMe) Using High-Performance Liquid Chromatography: A Comparison between Photodiode Array and Amperometric Detection. ACS OMEGA 2019; 4:14439-14450. [PMID: 31528797 PMCID: PMC6740171 DOI: 10.1021/acsomega.9b01366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/23/2019] [Indexed: 05/02/2023]
Abstract
The emergence of a new class of novel psychoactive substances, N-benzyl-substituted phenethylamine derivatives so-called "NBOMes" or "Smiles", in the recreational drug market has forced the development of new sensitive analytical methodologies for their detection and quantitation. NBOMes' hallucinogenic effects mimic those of the illegal psychedelic drug lysergic acid diethylamide (LSD) and are typically sold as LSD on blotter papers, resulting in a remarkable number of fatalities worldwide. In this article, four halide derivatives of NBOMe, namely, 2-(4-fluoro-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethan-1-amine, 2-(4-chloro-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethan-1-amine, 2-(4-bromo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethan-1-amine, and 2-(4-iodo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethan-1-amine, were detected and quantified simultaneously using a high-performance liquid chromatographic method, and two detection systems were compared: photodiode array detection (detection system I) and amperometric detection via a commercially available impinging jet flow-cell system incorporating embedded graphite screen-printed macroelectrodes (detection system II). Under optimized experimental conditions, linear calibration plots were obtained in the concentration range of 10-300 and 20-300 μg mL-1, for detection systems I and II, respectively. Detection limit (limit of detection) values were between 4.6-6.7 and 9.7-18 μg mL-1, for detection systems I and II, respectively. Both detectors were employed for the analysis of the four NBOMe derivatives in the bulk form, in the presence of LSD and adulterants commonly found in street samples (e.g. paracetamol, caffeine, and benzocaine). Furthermore, the method was applied for the analysis of simulated blotter papers, and the obtained percentage recoveries were satisfactory, emphasizing its advantageous applicability for the routine analysis of NBOMes in forensic laboratories.
Collapse
|
23
|
Muhamadali H, Watt A, Xu Y, Chisanga M, Subaihi A, Jones C, Ellis DI, Sutcliffe OB, Goodacre R. Rapid Detection and Quantification of Novel Psychoactive Substances (NPS) Using Raman Spectroscopy and Surface-Enhanced Raman Scattering. Front Chem 2019; 7:412. [PMID: 31275919 PMCID: PMC6593286 DOI: 10.3389/fchem.2019.00412] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
With more than a million seizures of illegal drugs reported annually across Europe, the variety of psychoactive compounds available is vast and ever-growing. The multitude of risks associated with these compounds are well-known and can be life threatening. Hence the need for the development of new analytical techniques and approaches that allow for the rapid, sensitive, and specific quantitative detection and discrimination of such illicit materials, ultimately with portability for field testing, is of paramount importance. The aim of this study was to demonstrate the application of Raman spectroscopy and surface-enhanced Raman scattering (SERS) combined with chemometrics approaches, as rapid and portable techniques for the quantitative detection and discrimination of a wide range of novel psychoactive substances (methcathinone and aminoindane derivatives), both in powder form and in solution. The Raman spectra of the psychoactive compounds provided clear separation and classification of the compounds based on their core chemical structures; viz. methcathinones, aminoindanes, diphenidines, and synthetic cannabinoids. The SERS results also displayed similar clustering patterns, with improved limits of detections down to ~2 mM (0.41 g L−1). As mephedrone is currently very popular for recreational use we performed multiplexed quantitative detection of mephedrone (4-methylmethcathinone), and its two major metabolites (nor-mephedrone and 4-methylephedrine), as tertiary mixtures in water and healthy human urine. These findings readily illustrate the potential application of SERS for simultaneous detection of multiple NPS as mixtures without the need for lengthy prior chromatographic separation or enrichment methods.
Collapse
|
24
|
Antonides LH, Cannaert A, Norman C, Vives L, Harrison A, Costello A, Nic Daeid N, Stove CP, Sutcliffe OB, McKenzie C. Enantiospecific Synthesis, Chiral Separation, and Biological Activity of Four Indazole-3-Carboxamide-Type Synthetic Cannabinoid Receptor Agonists and Their Detection in Seized Drug Samples. Front Chem 2019; 7:321. [PMID: 31157203 PMCID: PMC6532652 DOI: 10.3389/fchem.2019.00321] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/23/2019] [Indexed: 01/05/2023] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) have been the largest group of illicit psychoactive substances reported to international monitoring and early warning systems for many years. Carboxamide-type SCRAs are amongst the most prevalent and potent. Enantiospecific synthesis and characterization of four indazole-3-carboxamides, AMB-FUBINACA, AB-FUBINACA, 5F-MDMB-PINACA (5F-ADB), and AB-CHMINACA is reported. The interactions of the compounds with CB1 and CB2 receptors were investigated using a G-protein coupled receptor (GPCR) activation assay based on functional complementation of a split NanoLuc luciferase and EC50 (a measure of potency) and Emax (a measure of efficacy) values determined. All compounds demonstrated higher potency at the CB2 receptor than at the CB1 receptor and (S)-enantiomers had an enhanced potency to both receptors over the (R)-enantiomers. The relative potency of the enantiomers to the CB2 receptor is affected by structural features. The difference was more pronounced for compounds with an amine moiety (AB-FUBINACA and AB-CHMINACA) than those with an ester moiety (AMB-FUBINACA and 5F-MDMB-PINACA). An HPLC method was developed to determine the prevalence of (R)-enantiomers in seized samples. Lux® Amylose-1 [Amylose tris(3,5-dimethylphenylcarbamate)] has the greatest selectivity for the SCRAs with a terminal methyl ester moiety and a Lux® i-Cellulose-5 column for SCRAs with a terminal amide moiety. Optimized isocratic separation methods yielded enantiomer resolution values (Rs) ≥ 1.99. Achiral GC-MS analysis of seized herbal materials (n = 16), found 5F-MDMB-PINACA (<1.0-91.5 mg/g herbal material) and AMB-FUBINACA (15.5-58.5 mg/g herbal material), respectively. EMB-FUBINACA, AMB-CHMICA, 5F-ADB-PINACA isomer 2, and ADB-CHMINACA were also tentatively identified. Analysis using chiral chromatography coupled to photodiode array and quadrupole time of flight mass spectrometry (chiral HPLC-PDA-QToF-MS/MS) confirmed that the (S)-enantiomer predominated in all samples (93.6-99.3% (S)-enantiomer). Small but significant differences in synthesis precursor enantiopurity may provide significant differences between synthesis batches or suppliers and warrants further study. A method to compare potency between samples containing different SCRAs at varying concentrations was developed and applied in this small preliminary study. A 10-fold difference in the "intrinsic" potency of samples in the study was noted. With the known heterogeneity of SCRA infused materials, the approach provides a simplified method for assessing and communicating the risk of their use.
Collapse
|
25
|
Antonides LH, Brignall RM, Costello A, Ellison J, Firth SE, Gilbert N, Groom BJ, Hudson SJ, Hulme MC, Marron J, Pullen ZA, Robertson TBR, Schofield CJ, Williamson DC, Kemsley EK, Sutcliffe OB, Mewis RE. Rapid Identification of Novel Psychoactive and Other Controlled Substances Using Low-Field 1H NMR Spectroscopy. ACS OMEGA 2019; 4:7103-7112. [PMID: 31179411 PMCID: PMC6547625 DOI: 10.1021/acsomega.9b00302] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/19/2019] [Indexed: 05/03/2023]
Abstract
An automated approach to the collection of 1H NMR (nuclear magnetic resonance) spectra using a benchtop NMR spectrometer and the subsequent analysis, processing, and elucidation of components present in seized drug samples are reported. An algorithm is developed to compare spectral data to a reference library of over 300 1H NMR spectra, ranking matches by a correlation-based score. A threshold for identification was set at 0.838, below which identification of the component present was deemed unreliable. Using this system, 432 samples were surveyed and validated against contemporaneously acquired GC-MS (gas chromatography-mass spectrometry) data. Following removal of samples which possessed no peaks in the GC-MS trace or in both the 1H NMR spectrum and GC-MS trace, the remaining 416 samples matched in 93% of cases. Thirteen of these samples were binary mixtures. A partial match (one component not identified) was obtained for 6% of samples surveyed whilst only 1% of samples did not match at all.
Collapse
|