1
|
Makieva S, Fraire-Zamora JJ, Ammar OF, Liperis G, Sanchez F, Kramme CC, Vuong LN, Gilchrist RB, Bortoletto P, Massarotti C. Road to in vitro maturation (IVM), from basic science to an informed clinical practice. Hum Reprod 2024; 39:2638-2643. [PMID: 39111779 DOI: 10.1093/humrep/deae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Indexed: 11/05/2024] Open
|
2
|
Campbell JM, Habibalahi A, Agha A, Handley S, Knab A, Xu X, Bhargava A, Lei Z, Mackevicius M, Tian Y, Mahbub SB, Anwer AG, Gronthos S, Paton S, Grey ST, Wu L, Gilchrist RB, Goldys EM. Single cell, Label free Characterisation of Human Mesenchymal Stromal cell Stemness and Future Growth Potential by Autofluorescence Multispectral Imaging. Stem Cell Rev Rep 2024; 20:2283-2292. [PMID: 39190057 PMCID: PMC11554749 DOI: 10.1007/s12015-024-10778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
AIM To use autofluorescence multispectral imaging (AFMI) to develop a non-invasive assay for the in-depth characterisation of human bone marrow derived mesenchymal stromal cells (hBM-MSCs). METHODS hBM-MSCs were imaged by AFMI on gridded dishes, stained for endpoints of interest (STRO-1 positivity, alkaline phosphatase, beta galactosidase, DNA content) then relocated and results correlated. Intensity, texture and morphological features were used to characterise the colour distribution of regions of interest, and canonical discriminant analysis was used to separate groups. Additionally, hBM-MSC lines were cultured to arrest, with AFMI images taken after each passage to investigate whether an assay could be developed for growth potential. RESULTS STRO-1 positivity could be predicted with a receiver operator characteristic area under the curve (AUC) of 0.67. For spontaneous differentiation this was 0.66, for entry to the cell-cycle it was 0.77 and for senescence it was 0.77. Growth potential (population doublings remaining) was estimated with an RMSPE = 2.296. The Mean Absolute Error of the final prediction model indicated that growth potential could be predicted with an error of ± 1.86 doublings remaining. CONCLUSIONS This non-invasive methodology enabled the in-depth characterisation of hBM-MSCs from a single assay. This approach is advantageous for clinical applications as well as research and stands out for the characterisation of both present status as well as future behaviour. The use of data from five MSC lines with heterogenous AFMI profiles supports potential generalisability.
Collapse
|
3
|
Campbell JM, Mahbub SB, Anwer AG, Habibalahi A, Gronthos S, Paton S, Grey ST, Wu LE, Gilchrist RB, Goldys EM. Multispectral Imaging of Collagen, NAD(P)H and Flavin Autofluorescence in Mesenchymal Stem Cells Undergoing Trilineage Differentiation. Cells 2024; 13:1731. [PMID: 39451249 PMCID: PMC11505937 DOI: 10.3390/cells13201731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Understanding the molecular mechanisms of differentiation is important for regenerative medicine and developmental biology. This study aims to characterise the role of the glycolysis/oxidative phosphorylation balance as a driver of mesenchymal stem cell (MSC) differentiation. Cells were maintained in normal conditions or stimulated towards the MSC trilineage cell types over 21 days. Multispectral imaging of cell autofluorescence was applied as a non-invasive methodology to continuously image cultures in situ. Spectral signals for collagen, NAD(P)H, and flavins were unmixed. MSCs cultured under chondrogenic conditions exhibited increased collagen levels relative to controls. Following osteogenic induction, MSCs showed increased collagen levels relative to controls during the earlier stages of culture; however, control cells increased their collagen levels as they became confluent. MSCs cultured under adipogenic conditions exhibited lower levels of collagen than controls. The redox ratio (RR; NAD(P)H/flavins) immediately decreased during chondrogenesis, with this early effect persisting throughout the culture compared to control cells, which appeared to increase their RR, similar to osteogenesis. Adipogenesis resulted in a small increase in RR on day 2 relative to control cells, followed by a persistent decrease. Chondrogenic and adipogenic differentiation favoured oxidative phosphorylation, whereas osteogenesis and MSC overgrowth resulted in a glycolytic metabolism. Following consideration of these findings, as well as the diverse reports in the literature, it is concluded that neither enhanced oxidative phosphorylation nor glycolysis are fundamental to the canonical modes of differentiation, and researchers should avoid interpreting shifts as indicating differentiation.
Collapse
|
4
|
Vos MD, Segers I, Yuan Y, Gilchrist RB, Kramme CC. Clinical procedures for in vitro maturation treatment. Fertil Steril 2024; 122:753-755. [PMID: 38838807 DOI: 10.1016/j.fertnstert.2024.05.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE To demonstrate clinical techniques for in vitro maturation (IVM) treatment, including stimulation recommendations, small follicle pick-up procedures, and compact cumulus-oocyte complex (COC) search practice. DESIGN This video utilizes live-action footage from surgery and embryology practice for a representative IVM treatment cycle, with step-by-step instructions and recommendations for practice procedures. SETTING In vitro fertilization (IVF) clinic. PATIENT(S) Patients undergoing IVM treatment. The patient(s) included in this video gave consent for publication of the video and posting of the video online, including on social media, the journal website, scientific literature websites, and other applicable sites. INTERVENTION(S) Identification of treatment cohorts, IVM definitions, and recommendations for stimulation treatments. A visual demonstration of COC extraction techniques from small antral follicles includes tubing, needle types, considerations when using double lumen or sheath needles, needle pressure, ultrasound, needle flushing, and aspiration technique. Visual demonstration of oocyte search and IVM preparation, including filtering follicular aspirate, prevention of COC cooling, identification of compact COCs, and general parameters of different IVM approaches. MAIN OUTCOME MEASURE(S) Clinical techniques for small follicle ovum pick up and compact COC identification for IVM treatment. RESULTS Successful IVM treatment of patients can be achieved using minimal ovarian stimulation, effective small follicle retrieval, and efficient compact COC identification with flexibility in approach depending on clinical constraints and preference. CONCLUSION(S) In vitro maturation treatment is an efficacious and safe treatment for high ovarian reserve and hyper-responding patients undergoing IVF treatment, in which the retrieval of multiple immature COCs and their ex vivo maturation can be achieved with little to no in vivo stimulation. Practice procedures vary between treatment centers and IVM techniques. This video provides practice recommendations paired with a visual demonstration of techniques to assist in standardizing the approach and expanding the practice to more centers.
Collapse
|
5
|
Ho WHJ, Marinova MB, Listijono DR, Bertoldo MJ, Richani D, Kim LJ, Brown A, Riepsamen AH, Cabot S, Frost ER, Bustamante S, Zhong L, Selesniemi K, Wong D, Madawala R, Marchante M, Goss DM, Li C, Araki T, Livingston DJ, Turner N, Sinclair DA, Walters KA, Homer HA, Gilchrist RB, Wu LE. Fertility protection during chemotherapy treatment by boosting the NAD(P) + metabolome. EMBO Mol Med 2024; 16:2583-2618. [PMID: 39169162 PMCID: PMC11473878 DOI: 10.1038/s44321-024-00119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Chemotherapy induced ovarian failure and infertility is an important concern in female cancer patients of reproductive age or younger, and non-invasive, pharmacological approaches to maintain ovarian function are urgently needed. Given the role of reduced nicotinamide adenine dinucleotide phosphate (NADPH) as an essential cofactor for drug detoxification, we sought to test whether boosting the NAD(P)+ metabolome could protect ovarian function. We show that pharmacological or transgenic strategies to replenish the NAD+ metabolome ameliorates chemotherapy induced female infertility in mice, as measured by oocyte yield, follicle health, and functional breeding trials. Importantly, treatment of a triple-negative breast cancer mouse model with the NAD+ precursor nicotinamide mononucleotide (NMN) reduced tumour growth and did not impair the efficacy of chemotherapy drugs in vivo or in diverse cancer cell lines. Overall, these findings raise the possibility that NAD+ precursors could be a non-invasive strategy for maintaining ovarian function in cancer patients, with potential benefits in cancer therapy.
Collapse
|
6
|
Vuong LN, Ho VNA, Le AH, Nguyen NT, Pham TD, Nguyen MHN, Le HL, Le TK, Ha AN, Le XTH, Pham HH, Tran CT, Huynh BG, Smitz JEJ, Gilchrist RB, Ho TM. Hormone-free vs. follicle-stimulating hormone-primed infertility treatment of women with polycystic ovary syndrome using biphasic in vitro maturation: a randomized controlled trial. Fertil Steril 2024:S0015-0282(24)02226-X. [PMID: 39260537 DOI: 10.1016/j.fertnstert.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE To compare oocyte maturation rates and pregnancy outcomes in women with polycystic ovary syndrome (PCOS) undergoing biphasic in vitro maturation (capacitation in vitro maturation [CAPA-IVM]) with vs. without follicle-stimulating hormone (FSH) priming. DESIGN Randomized, controlled, assessor-blinded trial. SETTING Private hospital. PATIENT(S) Women aged 18-37 years with PCOS and an indication for CAPA-IVM. INTERVENTION(S) Participants were randomized (1:1) to undergo CAPA-IVM with or without FSH priming. The FSH priming group had 2 days of FSH injections before oocyte pickup; no FSH was given in the non-FSH group. After CAPA-IVM, day-5 embryos were vitrified for transfer in a subsequent cycle. MAIN OUTCOME MEASURE(S) The primary endpoint was number of matured oocytes. Secondary outcomes included rates of live birth, implantation, clinical pregnancy, ongoing pregnancy, pregnancy complications, obstetric and perinatal complications, and neonatal complications. RESULT(S) The number (interquartile range) of matured oocytes did not differ significantly in the non-FSH vs. FSH group (13 [9-18] vs. 14 [7-18]; absolute difference -1 [95% confidence interval -5 to 4]); other oocyte and embryology outcomes did not differ between groups. Rates of ongoing pregnancy and live birth were 38.3% in the non-FSH group and 31.7% in the FSH group (risk ratio for both outcomes: 1.21, 95% confidence interval 0.74-1.98). Maternal complications were infrequent and occurred at a similar rate in the two groups; there were no preterm deliveries before 32 weeks gestation. CONCLUSION(S) These findings open the possibility of a new, hormone-free approach to infertility treatment of women with PCOS.
Collapse
|
7
|
Mihalas BP, Marston AL, Wu LE, Gilchrist RB. Reproductive Ageing: Metabolic contribution to age-related chromosome missegregation in mammalian oocytes. Reproduction 2024; 168:e230510. [PMID: 38718822 PMCID: PMC11301428 DOI: 10.1530/rep-23-0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/07/2024] [Indexed: 06/29/2024]
Abstract
In brief Chromosome missegregation and declining energy metabolism are considered to be unrelated features of oocyte ageing that contribute to poor reproductive outcomes. Given the bioenergetic cost of chromosome segregation, we propose here that altered energy metabolism during ageing may be an underlying cause of age-related chromosome missegregation and aneuploidy. Abstract Advanced reproductive age in women is a major cause of infertility, miscarriage and congenital abnormalities. This is principally caused by a decrease in oocyte quality and developmental competence with age. Oocyte ageing is characterised by an increase in chromosome missegregation and aneuploidy. However, the underlying mechanisms of age-related aneuploidy have not been fully elucidated and are still under active investigation. In addition to chromosome missegregation, oocyte ageing is also accompanied by metabolic dysfunction. In this review, we integrate old and new perspectives on oocyte ageing, chromosome segregation and metabolism in mammalian oocytes and make direct links between these processes. We consider age-related alterations to chromosome segregation machinery, including the loss of cohesion, microtubule stability and the integrity of the spindle assembly checkpoint. We focus on how metabolic dysfunction in the ageing oocyte disrupts chromosome segregation machinery to contribute to and exacerbate age-related aneuploidy. More specifically, we discuss how mitochondrial function, ATP production and the generation of free radicals are altered during ageing. We also explore recent developments in oocyte metabolic ageing, including altered redox reactions (NAD+ metabolism) and the interactions between oocytes and their somatic nurse cells. Throughout the review, we integrate the mechanisms by which changes in oocyte metabolism influence age-related chromosome missegregation.
Collapse
|
8
|
Sucquart IE, Coyle C, Rodriguez Paris V, Prescott M, Glendining KA, Potapov K, Begg DP, Gilchrist RB, Walters KA, Campbell RE. Investigating GABA Neuron-Specific Androgen Receptor Knockout in two Hyperandrogenic Models of PCOS. Endocrinology 2024; 165:bqae060. [PMID: 38788194 PMCID: PMC11151696 DOI: 10.1210/endocr/bqae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Androgen excess is a hallmark feature of polycystic ovary syndrome (PCOS), the most common form of anovulatory infertility. Clinical and preclinical evidence links developmental or chronic exposure to hyperandrogenism with programming and evoking the reproductive and metabolic traits of PCOS. While critical androgen targets remain to be determined, central GABAergic neurons are postulated to be involved. Here, we tested the hypothesis that androgen signaling in GABAergic neurons is critical in PCOS pathogenesis in 2 well-characterized hyperandrogenic mouse models of PCOS. Using cre-lox transgenics, GABA-specific androgen receptor knockout (GABARKO) mice were generated and exposed to either acute prenatal androgen excess (PNA) or chronic peripubertal androgen excess (PPA). Females were phenotyped for reproductive and metabolic features associated with each model and brains of PNA mice were assessed for elevated GABAergic input to gonadotropin-releasing hormone (GnRH) neurons. Reproductive and metabolic dysfunction induced by PPA, including acyclicity, absence of corpora lutea, obesity, adipocyte hypertrophy, and impaired glucose homeostasis, was not different between GABARKO and wild-type (WT) mice. In PNA mice, acyclicity remained in GABARKO mice while ovarian morphology and luteinizing hormone secretion was not significantly impacted by PNA or genotype. However, PNA predictably increased the density of putative GABAergic synapses to GnRH neurons in adult WT mice, and this PNA-induced plasticity was absent in GABARKO mice. Together, these findings suggest that while direct androgen signaling in GABA neurons is largely not required for the development of PCOS-like traits in androgenized models of PCOS, developmental programming of GnRH neuron innervation is dependent upon androgen signaling in GABA neurons.
Collapse
|
9
|
Richani D, Poljak A, Wang B, Mahbub SB, Biazik J, Campbell JM, Habibalahi A, Stocker WA, Marinova MB, Nixon B, Bustamante S, Skerrett-Byrne D, Harrison CA, Goldys E, Gilchrist RB. Oocyte and cumulus cell cooperativity and metabolic plasticity under the direction of oocyte paracrine factors. Am J Physiol Endocrinol Metab 2024; 326:E366-E381. [PMID: 38197792 DOI: 10.1152/ajpendo.00148.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Mammalian oocytes develop and mature in a mutually dependent relationship with surrounding cumulus cells. The oocyte actively regulates cumulus cell differentiation and function by secreting soluble paracrine oocyte-secreted factors (OSFs). We characterized the molecular mechanisms by which two model OSFs, cumulin and BMP15, regulate oocyte maturation and cumulus-oocyte cooperativity. Exposure to these OSFs during mouse oocyte maturation in vitro altered the proteomic and multispectral autofluorescence profiles of both the oocyte and cumulus cells. In oocytes, cumulin significantly upregulated proteins involved in nuclear function. In cumulus cells, both OSFs elicited marked upregulation of a variety of metabolic processes (mostly anabolic), including lipid, nucleotide, and carbohydrate metabolism, whereas mitochondrial metabolic processes were downregulated. The mitochondrial changes were validated by functional assays confirming altered mitochondrial morphology, respiration, and content while maintaining ATP homeostasis. Collectively, these data demonstrate that cumulin and BMP15 remodel cumulus cell metabolism, instructing them to upregulate their anabolic metabolic processes, while routine cellular functions are minimized in the oocyte during maturation, in preparation for ensuing embryonic development.NEW & NOTEWORTHY Oocyte-secreted factors (OSFs) promote oocyte and cumulus cell cooperativity by altering the molecular composition of both cell types. OSFs downregulate protein catabolic processes and upregulate processes associated with DNA binding, translation, and ribosome assembly in oocytes. In cumulus cells, OSFs alter mitochondrial number, morphology, and function, and enhance metabolic plasticity by upregulating anabolic pathways. Hence, the oocyte via OSFs, instructs cumulus cells to increase metabolic processes on its behalf, thereby subduing oocyte metabolism.
Collapse
|
10
|
Frost ER, Gilchrist RB. Making human eggs in a dish: are we close? Trends Biotechnol 2024; 42:168-178. [PMID: 37625913 DOI: 10.1016/j.tibtech.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023]
Abstract
In the space of 50 years, we have seen incredible achievements in human reproductive medicine. With these leaps forward, it is no wonder that there is a major interest in women's reproductive health research, including extension of reproductive lifespan. Substantial effort is currently being made to address this challenge, including from the commercial sector. In vitro gametogenesis (IVG) in mice is a spectacular breakthrough and has the potential to offer hope to women with intractable infertility. However, with such lofty goals, some reflection may be called for: mastering all of the techniques required for complete and safe IVG in women is likely to be extraordinarily difficult.
Collapse
|
11
|
Gilchrist RB, Ho TM, De Vos M, Sanchez F, Romero S, Ledger WL, Anckaert E, Vuong LN, Smitz J. A fresh start for IVM: capacitating the oocyte for development using pre-IVM. Hum Reprod Update 2024; 30:3-25. [PMID: 37639630 DOI: 10.1093/humupd/dmad023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/08/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND While oocyte IVM is practiced sporadically it has not achieved widespread clinical practice globally. However, recently there have been some seminal advances in our understanding of basic aspects of oocyte biology and ovulation from animal studies that have led to novel approaches to IVM. A significant recent advance in IVM technology is the use of biphasic IVM approaches. These involve the collection of immature oocytes from small antral follicles from minimally stimulated patients/animals (without hCG-priming) and an ∼24 h pre-culture of oocytes in an advanced culture system ('pre-IVM') prior to IVM, followed by routine IVF procedures. If safe and efficacious, this novel procedure may stand to make a significant impact on human ART practices. OBJECTIVE AND RATIONALE The objectives of this review are to examine the major scientific advances in ovarian biology with a unique focus on the development of pre-IVM methodologies, to provide an insight into biphasic IVM procedures, and to report on outcomes from animal and clinical human data, including safety data. The potential future impact of biphasic IVM on ART practice is discussed. SEARCH METHODS Peer review original and review articles were selected from PubMed and Web of Science searches for this narrative review. Searches were performed using the following keywords: oocyte IVM, pre-IVM, biphasic IVM, CAPA-IVM, hCG-triggered/primed IVM, natural cycle IVF/M, ex-vivo IVM, OTO-IVM, oocyte maturation, meiotic competence, oocyte developmental competence, oocyte capacitation, follicle size, cumulus cell (CC), granulosa cell, COC, gap-junction communication, trans-zonal process, cAMP and IVM, cGMP and IVM, CNP and IVM, EGF-like peptide and IVM, minimal stimulation ART, PCOS. OUTCOMES Minimizing gonadotrophin use means IVM oocytes will be collected from small antral (pre-dominant) follicles containing oocytes that are still developing. Standard IVM yields suboptimal clinical outcomes using such oocytes, whereas pre-IVM aims to continue the oocyte's development ex vivo, prior to IVM. Pre-IVM achieves this by eliciting profound cellular changes in the oocyte's CCs, which continue to meet the oocyte's developmental needs during the pre-IVM phase. The literature contains 25 years of animal research on various pre-IVM and biphasic IVM procedures, which serves as a large knowledge base for new approaches to human IVM. A pre-IVM procedure based on c-type natriuretic peptide (named 'capacitation-IVM' (CAPA-IVM)) has undergone pre-clinical human safety and efficacy trials and its adoption into clinical practice resulted in healthy live birth rates not different from conventional IVF. WIDER IMPLICATIONS Over many decades, improvements in clinical IVM have been gradual and incremental but there has likely been a turning of the tide in the past few years, with landmark discoveries in animal oocyte biology finally making their way into clinical practice leading to improved outcomes for patients. Demonstration of favorable clinical results with CAPA-IVM, as the first clinically tested biphasic IVM system, has led to renewed interest in IVM as an alternative, low-intervention, low-cost, safe, patient-friendly ART approach, and especially for patients with PCOS. The same new approach is being used as part of fertility preservation in patients with cancer and holds promise for social oocyte freezing.
Collapse
|
12
|
Gong X, Shen L, Zhang H, Ai J, Gilchrist RB, Zhao Y. CAPA-IVM improves the cytoplasmic quality of in vitro-matured oocytes from unstimulated mice. Theriogenology 2023; 212:117-128. [PMID: 37717515 DOI: 10.1016/j.theriogenology.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/20/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
Ovarian tissue oocyte (OTO) in vitro maturation (IVM) is a strategy to improve fertility preservation efficiency. Here, the effects of capacitation IVM (CAPA-IVM) on OTO function were investigated. Immature cumulus-oocyte complexes (COCs) from unstimulated 28-day-old mouse ovaries (mimicking OTOs) underwent CAPA-IVM, standard IVM (S-IVM) or in vivo maturation following ovarian stimulation (OS; positive control), and oocyte meiotic maturation and cytoplasmic quality were assessed. CAPA-IVM resulted in improved oocyte meiotic maturation (P < 0.05) and cumulus expansion (P < 0.0001) compared to S-IVM, with expansion comparable to the OS group. MII OTO ROS was lower after CAPA-IVM than S-IVM (P < 0.0001) but not as low as in the OS group (P = 0.036). CAPA-IVM resulted in a better oocyte mitochondrial distribution than S-IVM (P < 0.05) and was similar to the OS group (P > 0.05). Mitochondrial membrane potential in MII OTOs was higher after CAPA-IVM than S-IVM and OS (P < 0.0001). Compared with S-IVM, CAPA-IVM resulted in lower rates of spindle/chromosome configuration and cortical granule distribution abnormalities (P < 0.05), which were similar to OS levels (P > 0.05). MII OTO intracellular Ca2+ levels were similar in the CAPA-IVM and OS groups (P > 0.05), while S-IVM decreased intracellular Ca2+ (P < 0.05). CAPA-IVM and S-IVM decreased mitochondrial Ca2+ levels (P < 0.05). CAPA-IVM increased expression of antioxidant genes (Sod2 and Sirt1) and Egfr (P < 0.05) but not apoptotic genes (Bcl2, Bax and Bcl2/Bax; P > 0.05). CAPA-IVM increased the OTO maturation rate and quality of oocytes from unstimulated mice to the extent that many features of oocyte cytoplasmic quality were comparable to superovulated in vivo matured oocytes.
Collapse
|
13
|
Krysta-Matter AE, Riepsamen AH, Lien S, Wong WYT, Richani D, Kilani S, Harrison CA, Mallitt KA, Ledger WL, Robertson DM, Gilchrist RB. Application of specific ELISAs for BMP15 and GDF9 to cumulus cell extracts from infertile women. Mol Cell Endocrinol 2023; 578:112049. [PMID: 37666445 DOI: 10.1016/j.mce.2023.112049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) are oocyte-specific paracrine factors which regulate ovarian cumulus cell (CC) functions. This study aimed to investigate if BMP15 and GDF9 bound to CCs can be characterized, quantified, and show an association with IVF outcomes in infertile women. BMP15 and GDF9 ELISAs were validated and applied to discarded CC extracts. Pooled CCs from individual patients were collected from 120 (cohort 1; BMP15 only) and 81 infertility patients (cohort 2; BMP15 and GDF9) undergoing superovulation. BMP15 and GDF9 levels expressed per CC DNA were correlated with maternal age, clinical and embryology data. Total BMP15 and GDF9 were highly correlated with each other (r = 0.9, p < 0.001). The GDF9:BMP15 ratio was unrelated to oocyte number or age. BMP15/CC DNA and GDF9/CC DNA were unaffected by the type of superovulation and were not related to oocyte/embryo outcomes.
Collapse
|
14
|
Mihalas BP, Frost ER, Kadam KM, Sucquart IE, Sirigeri P, Ledger WL, Gilchrist RB. A strong foundation for the next generation. Mol Reprod Dev 2023; 90:773. [PMID: 37812575 DOI: 10.1002/mrd.23709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
|
15
|
Riepsamen AH, Donoghoe MW, Indran IR, Hechtman L, Robertson DM, Gilchrist RB, Ledger WL, Yong E. Serum GDF9 and BMP15 as potential markers of ovarian function in women with and without polycystic ovary syndrome. Clin Endocrinol (Oxf) 2023; 98:567-577. [PMID: 36372988 PMCID: PMC10952143 DOI: 10.1111/cen.14851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Growth differentiation factor-9 (GDF9) and bone morphogenetic protein-15 (BMP15) are critical paracrine regulators of female fertility and are predominantly expressed by oocytes. However, it is unknown if serum concentrations reflect changes in ovarian function and/or reproductive endocrine disorders. This study aimed to determine if serum GDF9/BMP15 are associated with ovarian, pituitary, oestrogenic, androgenic and metabolic characteristics and the ovarian pathologies, polycystic ovarian morphology (PCOM) and polycystic ovary syndrome (PCOS). DESIGN Women aged 21-45 years (n = 381) were included from a cross-sectional study at the National University Hospital, Singapore. PATIENTS Participants were volunteers and patients with possible PCOS. MEASUREMENTS Anthropometric measurements, transvaginal ultrasound scans and serum sampling were performed and a questionnairecompleted. Serum GDF9 and BMP15 concentrations were matched with menstrual cycle length, ovarian protein and steroid hormone production, pituitary hormone production and metabolic assessments in women with PCOM or PCOS and those with neither (control). RESULTS Serum GDF9 and BMP15 were detectable in 40% and 41% of women, respectively and were positively correlated with each other (r = 0.08, p = 0.003). GDF9, but not BMP15, was positively correlated with ovarian volume (p = 0.02) and antral follicle count (AFC) (p = 0.004), but not with anti-Müllerian hormone (p = 0.05). However, serum GDF9 and BMP15 concentrations were not significantly different between control, PCOM and PCOS women, nor associated with androgenic or metabolic PCOS features. However, the relationship between GDF9 and AFC differed between control, PCOM and PCOS women (p = 0.02). CONCLUSIONS Serum GDF9 and BMP15 concentrations somewhat reflect ovarian but not androgenic or metabolic characteristics of PCOS, with increased GDF9 reflecting high AFC as seen in PCOM/PCOS.
Collapse
|
16
|
Gilchrist RB, Smitz J. Oocyte in vitro maturation (IVM): physiological basis and application to clinical practice. Fertil Steril 2023; 119:524-539. [PMID: 36804961 DOI: 10.1016/j.fertnstert.2023.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Oocyte in vitro maturation (IVM) is an assisted reproductive technology with a long and sometimes checked history. It is a minimally invasive technique involving the deliberate collection of immature oocytes from patients that have received no or minimal ovarian stimulation and the culture of oocytes to maturity in vitro, prior to standard procedures thereafter. IVM is now classified as non-experimental and is primarily indicated for patients with a high antral follicle count, especially PCO/PCOS patients, and also for fertility preservation in cancer patients. In the recent past, IVM practice has had a confusing array of clinical protocols and has been slow to adapt to new scientific insights, but recently significant advances have been made in IVM culture methods based on new knowledge from animal studies, combined with defining a simple patient treatment protocol. These improvements have led to significant recent progress in IVM practice to the extent that IVM is now routinely practiced in a growing number of centres with specialized expertise around the world.
Collapse
|
17
|
Aflatounian A, Paris VR, Richani D, Edwards MC, Cochran BJ, Ledger WL, Gilchrist RB, Bertoldo MJ, Wu LE, Walters KA. Declining muscle NAD + in a hyperandrogenism PCOS mouse model: Possible role in metabolic dysregulation. Mol Metab 2022; 65:101583. [PMID: 36096453 PMCID: PMC9490589 DOI: 10.1016/j.molmet.2022.101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/12/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder, defined by reproductive and endocrine abnormalities, with metabolic dysregulation including obesity, insulin resistance and hepatic steatosis. Recently, it was found that skeletal muscle insulin sensitivity could be improved in obese, post-menopausal, pre-diabetic women through treatment with nicotinamide mononucleotide (NMN), a precursor to the prominent redox cofactor nicotinamide adenine dinucleotide (NAD+). Given that PCOS patients have a similar endocrine profile to these patients, we hypothesised that declining NAD levels in muscle might play a role in the pathogenesis of the metabolic syndrome associated with PCOS, and that this could be normalized through NMN treatment. Here, we tested the impact of NMN treatment on the metabolic syndrome of the dihydrotestosterone (DHT) induced mouse model of PCOS. We observed lower NAD levels in the muscle of PCOS mice, which was normalized by NMN treatment. PCOS mice were hyperinsulinaemic, resulting in increased adiposity and hepatic lipid deposition. Strikingly, NMN treatment completely normalized these aspects of metabolic dysfunction. We propose that addressing the decline in skeletal muscle NAD levels associated with PCOS can normalize insulin sensitivity, preventing compensatory hyperinsulinaemia, which drives obesity and hepatic lipid deposition, though we cannot discount an impact of NMN on other tissues to mediate these effects. These findings support further investigation into NMN treatment as a new therapy for normalizing the aberrant metabolic features of PCOS.
Collapse
|
18
|
Xiong T, Rodriguez Paris V, Edwards MC, Hu Y, Cochran BJ, Rye KA, Ledger WL, Padmanabhan V, Handelsman DJ, Gilchrist RB, Walters KA. Androgen signaling in adipose tissue, but less likely skeletal muscle, mediates development of metabolic traits in a PCOS mouse model. Am J Physiol Endocrinol Metab 2022; 323:E145-E158. [PMID: 35658542 DOI: 10.1152/ajpendo.00418.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common, multifactorial disorder characterized by endocrine, reproductive, and metabolic dysfunction. As the etiology of PCOS is unknown, there is no cure and symptom-oriented treatments are suboptimal. Hyperandrogenism is a key diagnostic trait, and evidence suggests that androgen receptor (AR)-mediated actions are critical to PCOS pathogenesis. However, the key AR target sites involved remain to be fully defined. Adipocyte and muscle dysfunction are proposed as important sites involved in the manifestation of PCOS traits. We investigated the role of AR signaling in white adipose tissue (WAT), brown adipose tissue (BAT), and skeletal muscle in the development of PCOS in a hyperandrogenic PCOS mouse model. As expected, dihydrotestosterone (DHT) exposure induced key reproductive and metabolic PCOS traits in wild-type (WT) females. Transplantation of AR-insensitive (AR-/-) WAT or BAT from AR knockout females (ARKO) into DHT-treated WT mice ameliorated some metabolic PCOS features, including increased body weight, adiposity, and adipocyte hypertrophy, but not reproductive PCOS traits. In contrast, DHT-treated ARKO female mice transplanted with AR-responsive (AR+/+) WAT or BAT continued to resist developing PCOS traits. DHT-treated skeletal muscle-specific AR knockout females (SkMARKO) displayed a comparable phenotype with that of DHT-treated WT females, with full development of PCOS traits. Taken together, these findings infer that both WAT and BAT, but less likely skeletal muscle, are key sites of AR-mediated actions involved in the experimental pathogenesis of metabolic PCOS traits. These data further support targeting adipocyte AR-driven pathways in future research aimed at developing novel therapeutic interventions for PCOS.NEW & NOTEWORTHY Hyperandrogenism is a key feature in the pathogenesis of polycystic ovary syndrome (PCOS); however, the tissue sites of androgen receptor (AR) signaling are unclear. In this study, AR signaling in white and brown adipose tissue, but less likely in skeletal muscle, was found to be involved in the development of metabolic PCOS traits, highlighting the importance of androgen actions in adipose tissue and obesity in the manifestation of metabolic disturbances.
Collapse
|
19
|
Ataman LM, Laronda MM, Gowett M, Trotter K, Anvari H, Fei F, Ingram A, Minette M, Suebthawinkul C, Taghvaei Z, Torres-Vélez M, Velez K, Adiga SK, Anazodo A, Appiah L, Bourlon MT, Daniels N, Dolmans MM, Finlayson C, Gilchrist RB, Gomez-Lobo V, Greenblatt E, Halpern JA, Hutt K, Johnson EK, Kawamura K, Khrouf M, Kimelman D, Kristensen S, Mitchell RT, Moravek MB, Nahata L, Orwig KE, Pavone ME, Pépin D, Pesce R, Quinn GP, Rosen MP, Rowell E, Smith K, Venter C, Whiteside S, Xiao S, Zelinski M, Goldman KN, Woodruff TK, Duncan FE. A synopsis of global frontiers in fertility preservation. J Assist Reprod Genet 2022; 39:1693-1712. [PMID: 35870095 PMCID: PMC9307970 DOI: 10.1007/s10815-022-02570-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Since 2007, the Oncofertility Consortium Annual Conference has brought together a diverse network of individuals from a wide range of backgrounds and professional levels to disseminate emerging basic and clinical research findings in fertility preservation. This network also developed enduring educational materials to accelerate the pace and quality of field-wide scientific communication. Between 2007 and 2019, the Oncofertility Consortium Annual Conference was held as an in-person event in Chicago, IL. The conference attracted approximately 250 attendees each year representing 20 countries around the world. In 2020, however, the COVID-19 pandemic disrupted this paradigm and precluded an in-person meeting. Nevertheless, there remained an undeniable demand for the oncofertility community to convene. To maintain the momentum of the field, the Oncofertility Consortium hosted a day-long virtual meeting on March 5, 2021, with the theme of "Oncofertility Around the Globe" to highlight the diversity of clinical care and translational research that is ongoing around the world in this discipline. This virtual meeting was hosted using the vFairs ® conference platform and allowed over 700 people to participate, many of whom were first-time conference attendees. The agenda featured concurrent sessions from presenters in six continents which provided attendees a complete overview of the field and furthered our mission to create a global community of oncofertility practice. This paper provides a synopsis of talks delivered at this event and highlights the new advances and frontiers in the fields of oncofertility and fertility preservation around the globe from clinical practice and patient-centered efforts to translational research.
Collapse
|
20
|
Ataman LM, Laronda MM, Gowett M, Trotter K, Anvari H, Fei F, Ingram A, Minette M, Suebthawinkul C, Taghvaei Z, Torres-Vélez M, Velez K, Adiga SK, Anazodo A, Appiah L, Bourlon MT, Daniels N, Dolmans MM, Finlayson C, Gilchrist RB, Gomez-Lobo V, Greenblatt E, Halpern JA, Hutt K, Johnson EK, Kawamura K, Khrouf M, Kimelman D, Kristensen S, Mitchell RT, Moravek MB, Nahata L, Orwig KE, Pavone ME, Pépin D, Pesce R, Quinn GP, Rosen MP, Rowell E, Smith K, Venter C, Whiteside S, Xiao S, Zelinski M, Goldman KN, Woodruff TK, Duncan FE. Correction to: A synopsis of global frontiers in fertility preservation. J Assist Reprod Genet 2022; 39:1713-1714. [PMID: 35920992 PMCID: PMC9428069 DOI: 10.1007/s10815-022-02586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/08/2022] [Indexed: 10/16/2022] Open
|
21
|
Rodriguez Paris V, Wong XYD, Solon-Biet SM, Edwards MC, Aflatounian A, Gilchrist RB, Simpson SJ, Handelsman DJ, Kaakoush NO, Walters KA. The interplay between PCOS pathology and diet on gut microbiota in a mouse model. Gut Microbes 2022; 14:2085961. [PMID: 35787106 PMCID: PMC9450977 DOI: 10.1080/19490976.2022.2085961] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome has been implicated in polycystic ovary syndrome (PCOS) pathophysiology. PCOS is a disorder with reproductive, endocrine and metabolic irregularities, and several studies report that PCOS is associated with a decrease in microbial diversity and composition. Diet is an important regulator of the gut microbiome, as alterations in macronutrient composition impact the balance of gut microbial communities. This study investigated the interplay between macronutrient balance and PCOS on the gut microbiome of control and dihydrotestosterone (DHT)-induced PCOS-like mice exposed to diets that varied in protein (P), carbohydrate (C) and fat (F) content. The amount of dietary P, C and F consumed significantly altered alpha (α) and beta (β) diversity of the gut microbiota of control and PCOS-like mice. However, α-diversity between control and PCOS-like mice on the same diet did not differ significantly. In contrast, β-diversity was significantly altered by PCOS pathology. Further analysis identified an operational taxonomic unit (OTU) within Bacteroides (OTU3) with 99.2% similarity to Bacteroides acidifaciens, which is inversely associated with obesity, to be significantly decreased in PCOS-like mice. Additionally, this study investigated the role of the gut microbiome in the development of PCOS traits, whereby PCOS-like mice were transplanted with healthy fecal microbiota from control mice. Although the PCOS gut microbiome shifted toward that of control mice, PCOS traits were not ameliorated. Overall, these findings demonstrate that while diet exerts a stronger influence over gut microbiota diversity than PCOS pathology, overall gut microbiota composition is affected by PCOS pathology.
Collapse
|
22
|
Campbell JM, Mahbub SB, Bertoldo MJ, Habibalahi A, Goss DM, Ledger WL, Gilchrist RB, Wu LE, Goldys EM. Multispectral autofluorescence characteristics of reproductive aging in old and young mouse oocytes. Biogerontology 2022; 23:237-249. [PMID: 35211812 PMCID: PMC9023381 DOI: 10.1007/s10522-022-09957-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/14/2022] [Indexed: 12/16/2022]
Abstract
Increasing age has a major detrimental impact on female fertility, which, with an ageing population, has major sociological implications. This impact is primarily mediated through deteriorating quality of the oocyte. Deteriorating oocyte quality with biological age is the greatest rate-limiting factor to female fertility. Here we have used label-free, non-invasive multi-spectral imaging to identify unique autofluorescence profiles of oocytes from young and aged animals. Discriminant analysis demonstrated that young oocytes have a distinct autofluorescent profile which accurately distinguishes them from aged oocytes. We recently showed that treatment with the nicotinamide adenine dinucleotide (NAD+) precursor nicotinamide mononucleotide (NMN) restored oocyte quality and fertility in aged animals, and when our analysis was applied to oocytes from aged animals treated with NMN, 85% of these oocytes were classified as having the autofluorescent signature of young animals. Spectral unmixing using the Robust Dependent Component Analysis (RoDECA) algorithm demonstrated that NMN treatment altered the metabolic profile of oocytes, increasing free NAD(P)H, protein bound NAD(P)H, redox ratio and the ratio of bound to free NAD(P)H. The frequency of oocytes with simultaneously high NAD(P)H and flavin content was also significantly increased in mice treated with NMN. Young and Aged + NMN oocytes had a smoother spectral distribution, with the distribution of NAD(P)H in young oocytes specifically differing from that of aged oocytes. Identifying the multispectral profile of oocyte autofluorescence during aging could have utility as a non-invasive and sensitive measure of oocyte quality.
Collapse
|
23
|
Richani D, Gilchrist RB. Approaches to oocyte meiotic arrest in vitro and impact on oocyte developmental competence. Biol Reprod 2021; 106:243-252. [PMID: 34534265 DOI: 10.1093/biolre/ioab176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/16/2021] [Indexed: 01/07/2023] Open
Abstract
Oocytes are maintained in a state of meiotic arrest following the first meiotic division until ovulation is triggered. Within the antral follicle, meiotic arrest is actively suppressed in a process facilitated by the cyclic nucleotides cGMP and cAMP. If removed from this inhibitory follicular environment and cultured in vitro, mammalian oocytes undergo spontaneous meiotic resumption in the absence of the usual stimulatory follicular stimuli, leading to asynchronicity with oocyte cytoplasmic maturation and lower developmental competence. For more than 50 years, pharmacological agents have been used to attenuate oocyte germinal vesicle (GV) breakdown in vitro. Agents which increase intra-oocyte cAMP or prevent its degradation have been predominantly used, however agents such as kinase and protein synthesis inhibitors have also been trialled. Twenty years of research demonstrates that maintaining GV arrest for a period before in vitro maturation (IVM) improves oocyte developmental competence, and is likely attributed to maintenance of bidirectional communication with cumulus cells leading to improved oocyte metabolic function. However, outcomes are influenced by various factors including the mode of action of the modulators, dose, treatment duration, species, and the degree of hormonal priming of the oocyte donor. Cyclic GMP and/or cAMP modulation in a prematuration step (called pre-IVM) prior to IVM has shown the greatest consistency in improving oocyte developmental competence, whereas kinase and protein synthesis inhibitors have proven less effective at improving IVM outcomes. Such pre-IVM approaches have shown potential to alter current use of artificial reproductive technologies in medical and veterinary practice.
Collapse
|
24
|
De Vos M, Grynberg M, Ho TM, Yuan Y, Albertini DF, Gilchrist RB. Perspectives on the development and future of oocyte IVM in clinical practice. J Assist Reprod Genet 2021; 38:1265-1280. [PMID: 34218388 PMCID: PMC8266966 DOI: 10.1007/s10815-021-02263-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
Oocyte in vitro maturation (IVM) is an assisted reproductive technology designed to obtain mature oocytes following culture of immature cumulus-oocyte complexes collected from antral follicles. Although IVM has been practiced for decades and is no longer considered experimental, the uptake of IVM in clinical practice is currently limited. The purpose of this review is to ensure reproductive medicine professionals understand the appropriate use of IVM drawn from the best available evidence supporting its clinical potential and safety in selected patient groups. This group of scientists and fertility specialists, with expertise in IVM in the ART laboratory and/or clinic, explore here the development of IVM towards acquisition of a non-experimental status and, in addition, critically appraise the current and future role of IVM in human ART.
Collapse
|
25
|
Rodriguez Paris V, Edwards MC, Aflatounian A, Bertoldo MJ, Ledger WL, Handelsman DJ, Gilchrist RB, Walters KA. Pathogenesis of Reproductive and Metabolic PCOS Traits in a Mouse Model. J Endocr Soc 2021; 5:bvab060. [PMID: 34056500 PMCID: PMC8152184 DOI: 10.1210/jendso/bvab060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 01/02/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common and heterogeneous disorder; however, the etiology and pathogenesis of PCOS are poorly understood and current management is symptom-based. Defining the pathogenesis of PCOS traits is important for developing early PCOS detection markers and new treatment strategies. Hyperandrogenism is a defining characteristic of PCOS, and studies support a role for androgen-driven actions in the development of PCOS. Therefore, we aimed to determine the temporal pattern of development of PCOS features in a well-characterized dihydrotestosterone (DHT)-induced PCOS mouse model after 2, 4, and 8 weeks of DHT exposure. Following 2 weeks of treatment, DHT induced the key PCOS reproductive features of acyclicity, anovulation, and multifollicular ovaries as well as a decrease in large antral follicle health. DHT-treated mice displayed the metabolic PCOS characteristics of increased body weight and exhibited increased visceral adiposity after 8 weeks of DHT treatment. DHT treatment also led to an increase in circulating cholesterol after 2 weeks of exposure and had an overall effect on fasting glucose levels, but not triglycerides, aspartate transaminase (AST) and alanine transaminase (ALT) levels, or hepatic steatosis. These data reveal that in this experimental PCOS mouse model, acyclicity, anovulation, and increased body weight are early features of a developing PCOS phenotype whereas adiposity, impaired glucose tolerance, dyslipidemia, and hepatic steatosis are later developing features of PCOS. These findings provide insights into the likely sequence of PCOS trait development and support the addition of body weight criteria to the early diagnosis of PCOS.
Collapse
|