1
|
Streutker EM, Devamoglu U, Vonk MC, Verdurmen WPR, Le Gac S. Fibrosis-on-Chip: A Guide to Recapitulate the Essential Features of Fibrotic Disease. Adv Healthc Mater 2024; 13:e2303991. [PMID: 38536053 DOI: 10.1002/adhm.202303991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/15/2024] [Indexed: 05/05/2024]
Abstract
Fibrosis, which is primarily marked by excessive extracellular matrix (ECM) deposition, is a pathophysiological process associated with many disorders, which ultimately leads to organ dysfunction and poor patient outcomes. Despite the high prevalence of fibrosis, currently there exist few therapeutic options, and importantly, there is a paucity of in vitro models to accurately study fibrosis. This review discusses the multifaceted nature of fibrosis from the viewpoint of developing organ-on-chip (OoC) disease models, focusing on five key features: the ECM component, inflammation, mechanical cues, hypoxia, and vascularization. The potential of OoC technology is explored for better modeling these features in the context of studying fibrotic diseases and the interplay between various key features is emphasized. This paper reviews how organ-specific fibrotic diseases are modeled in OoC platforms, which elements are included in these existing models, and the avenues for novel research directions are highlighted. Finally, this review concludes with a perspective on how to address the current gap with respect to the inclusion of multiple features to yield more sophisticated and relevant models of fibrotic diseases in an OoC format.
Collapse
|
2
|
Pondman K, Le Gac S, Kishore U. Nanoparticle-induced immune response: Health risk versus treatment opportunity? Immunobiology 2023; 228:152317. [PMID: 36592542 DOI: 10.1016/j.imbio.2022.152317] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Nanoparticles (NPs) are not only employed in many biomedical applications in an engineered form, but also occur in our environment, in a more hazardous form. NPs interact with the immune system through various pathways and can lead to a myriad of different scenarios, ranging from their quiet removal from circulation by macrophages without any impact for the body, to systemic inflammatory effects and immuno-toxicity. In the latter case, the function of the immune system is affected by the presence of NPs. This review describes, how both the innate and adaptive immune system are involved in interactions with NPs, together with the models used to analyse these interactions. These models vary between simple 2D in vitro models, to in vivo animal models, and also include complex all human organ on chip models which are able to recapitulate more accurately the interaction in the in vivo situation. Thereafter, commonly encountered NPs in both the environment and in biomedical applications and their possible effects on the immune system are discussed in more detail. Not all effects of NPs on the immune system are detrimental; in the final section, we review several promising strategies in which the immune response towards NPs can be exploited to suit specific applications such as vaccination and cancer immunotherapy.
Collapse
|
3
|
Paggi CA, Hendriks J, Karperien M, Le Gac S. Emulating the chondrocyte microenvironment using multi-directional mechanical stimulation in a cartilage-on-chip. LAB ON A CHIP 2022; 22:1815-1828. [PMID: 35352723 DOI: 10.1039/d1lc01069g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The multi-directional mechanical stimulation experienced by articular cartilage during motion is transferred to the chondrocytes through a thin layer of pericellular matrix around each cell; chondrocytes in turn respond by releasing matrix proteins and/or matrix-degrading enzymes. In the present study we investigated how different types of mechanical stimulation can affect a chondrocyte's phenotype and extracellular matrix (ECM) production. To this end, we employed a cartilage-on-chip system which allows exerting well-defined compressive and multi-directional mechanical stimulation on a 3D chondrocyte-laden agarose hydrogel using a thin deformable membrane and three individually addressed actuation chambers. First, the 3D chondrocyte culture in agarose responded to exposure to mechanical stimulation by an initial increase in IL-6 production and little-to-no change in IL-1β and TNF-α secretion after one day of on-chip culture. Exposure to mechanical stimulation enhanced COL2A1 (hyaline cartilage marker) and decreased COL1A1 (fibrotic cartilage) expression, this being more marked for the multi-directional stimulation. Remarkably, the production of glycosaminoglycans (GAGs), one of the main components of native cartilage ECM, was significantly increased after 15 days of on-chip culture and 14 days of mechanical stimulation. Specifically, a thin pericellular matrix shell (1-5 μm) surrounding the chondrocytes as well as an interstitial matrix, both reminiscent of the in vivo situation, were deposited. Matrix deposition was highest in chips exposed to multi-directional mechanical stimulation. Finally, exposure to mechanical cues enhanced the production of essential cartilage ECM markers, such as aggrecan, collagen II and collagen VI, a marker for the pericellular matrix. Altogether our results highlight the importance of mechanical cues, and using the right type of stimulation, to emulate in vitro, the chondrocyte microenvironment.
Collapse
|
4
|
Palacio-Castañeda V, Velthuijs N, Le Gac S, Verdurmen WPR. Oxygen control: the often overlooked but essential piece to create better in vitro systems. LAB ON A CHIP 2022; 22:1068-1092. [PMID: 35084420 DOI: 10.1039/d1lc00603g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Variations in oxygen levels play key roles in numerous physiological and pathological processes, but are often not properly controlled in in vitro models, introducing a significant bias in experimental outcomes. Recent developments in microfluidic technology have introduced a paradigm shift by providing new opportunities to better mimic physiological and pathological conditions, which is achieved by both regulating and monitoring oxygen levels at the micrometre scale in miniaturized devices. In this review, we first introduce the nature and relevance of oxygen-dependent pathways in both physiological and pathological contexts. Subsequently, we discuss strategies to control oxygen in microfluidic devices, distinguishing between engineering approaches that operate at the device level during its fabrication and chemical approaches that involve the active perfusion of fluids oxygenated at a precise level or supplemented with oxygen-producing or oxygen-scavenging materials. In addition, we discuss readout approaches for monitoring oxygen levels at the cellular and tissue levels, focusing on electrochemical and optical detection schemes for high-resolution measurements directly on-chip. An overview of different applications in which microfluidic devices have been utilized to answer biological research questions is then provided. In the final section, we provide our vision for further technological refinements of oxygen-controlling devices and discuss how these devices can be employed to generate new fundamental insights regarding key scientific problems that call for emulating oxygen levels as encountered in vivo. We conclude by making the case that ultimately emulating physiological or pathological oxygen levels should become a standard feature in all in vitro cell, tissue, and organ models.
Collapse
|
5
|
Beekman P, Enciso-Martinez A, Pujari SP, Terstappen LWMM, Zuilhof H, Le Gac S, Otto C. Publisher Correction: Organosilicon uptake by biological membranes. Commun Biol 2021; 4:813. [PMID: 34163005 PMCID: PMC8222367 DOI: 10.1038/s42003-021-02344-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
6
|
Beekman P, Enciso-Martinez A, Pujari SP, Terstappen LWMM, Zuilhof H, Le Gac S, Otto C. Author Correction: Organosilicon uptake by biological membranes. Commun Biol 2021; 4:812. [PMID: 34162995 PMCID: PMC8222378 DOI: 10.1038/s42003-021-02338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
7
|
Beekman P, Enciso-Martinez A, Pujari SP, Terstappen LWMM, Zuilhof H, Le Gac S, Otto C. Organosilicon uptake by biological membranes. Commun Biol 2021; 4:704. [PMID: 34108634 PMCID: PMC8190035 DOI: 10.1038/s42003-021-02155-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 01/14/2021] [Indexed: 11/22/2022] Open
Abstract
Organosilicon compounds are ubiquitous in everyday use. Application of some of these compounds in food, cosmetics and pharmaceuticals is widespread on the assumption that these materials are not systemically absorbed. Here the interactions of various organosilicon compounds (simeticone, hexamethyldisilazane and polydimethylsiloxane) with cell membranes and models thereof were characterized with a range of analytical techniques, demonstrating that these compounds were retained in or on the cell membrane. The increasing application of organosilicon compounds as replacement of other plastics calls for a better awareness and understanding of these interactions. Moreover, with many developments in biotechnology relying on organosilicon materials, it becomes important to scrutinize the potential effect that silicone leaching may have on biological systems. Beekman et al. investigate whether low molecular weight organosilicon compounds leaching out of commonly used biological laboratory materials and household items can interact with molecules found in cellular membranes. The results suggest this is a passive process by physicochemical forces rather than active uptake.
Collapse
|
8
|
Venzac B, Deng S, Mahmoud Z, Lenferink A, Costa A, Bray F, Otto C, Rolando C, Le Gac S. PDMS Curing Inhibition on 3D-Printed Molds: Why? Also, How to Avoid It? Anal Chem 2021; 93:7180-7187. [PMID: 33961394 PMCID: PMC8153387 DOI: 10.1021/acs.analchem.0c04944] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D)-printing techniques such as stereolithography (SLA) are currently gaining momentum for the production of miniaturized analytical devices and molds for soft lithography. However, most commercially available SLA resins inhibit polydimethylsiloxane (PDMS) curing, impeding reliable replication of the 3D-printed structures in this elastomeric material. Here, we report a systematic study, using 16 commercial resins, to identify a fast and straightforward treatment of 3D-printed structures and to support accurate PDMS replication using UV and/or thermal post-curing. In-depth analysis using Raman spectroscopy, nuclear magnetic resonance, and high-resolution mass spectrometry revealed that phosphine oxide-based photo-initiators, leaching out of the 3D-printed structures, are poisoning the Pt-based PDMS catalyst. Yet, upon UV and/or thermal treatments, photo-initiators were both eliminated and recombined into high molecular weight species that were sequestered in the molds.
Collapse
|
9
|
Le Gac S, Lu H. Musings on the future of scientific (physical but not socially distanced) conferences: testing the water with organizing the on-line MicroTAS2020. LAB ON A CHIP 2021; 21:987-993. [PMID: 33683264 DOI: 10.1039/d1lc90012a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The purpose of this article is to reflect on and share our on-line MicroTAS2020 adventure and our view on new opportunities and best practices, and hopefully prompt the community to contribute to the conversations about how we move forward in the post-pandemic world.
Collapse
|
10
|
Sharma S, Venzac B, Burgers T, Le Gac S, Schlatt S. Microfluidics in male reproduction: is ex vivo culture of primate testis tissue a future strategy for ART or toxicology research? Mol Hum Reprod 2021; 26:179-192. [PMID: 31977028 DOI: 10.1093/molehr/gaaa006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/03/2020] [Indexed: 01/09/2023] Open
Abstract
The significant rise in male infertility disorders over the years has led to extensive research efforts to recapitulate the process of male gametogenesis in vitro and to identify essential mechanisms involved in spermatogenesis, notably for clinical applications. A promising technology to bridge this research gap is organ-on-chip (OoC) technology, which has gradually transformed the research landscape in ART and offers new opportunities to develop advanced in vitro culture systems. With exquisite control on a cell or tissue microenvironment, customized organ-specific structures can be fabricated in in vitro OoC platforms, which can also simulate the effect of in vivo vascularization. Dynamic cultures using microfluidic devices enable us to create stimulatory effect and non-stimulatory culture conditions. Noteworthy is that recent studies demonstrated the potential of continuous perfusion in OoC systems using ex vivo mouse testis tissues. Here we review the existing literature and potential applications of such OoC systems for male reproduction in combination with novel bio-engineering and analytical tools. We first introduce OoC technology and highlight the opportunities offered in reproductive biology in general. In the subsequent section, we discuss the complex structural and functional organization of the testis and the role of the vasculature-associated testicular niche and fluid dynamics in modulating testis function. Next, we review significant technological breakthroughs in achieving in vitro spermatogenesis in various species and discuss the evidence from microfluidics-based testes culture studies in mouse. Lastly, we discuss a roadmap for the potential applications of the proposed testis-on-chip culture system in the field of primate male infertility, ART and reproductive toxicology.
Collapse
|
11
|
Picollet-D'hahan N, Zuchowska A, Lemeunier I, Le Gac S. Multiorgan-on-a-Chip: A Systemic Approach To Model and Decipher Inter-Organ Communication. Trends Biotechnol 2021; 39:788-810. [PMID: 33541718 DOI: 10.1016/j.tibtech.2020.11.014] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
Multiorgan-on-a-chip (multi-OoC) platforms have great potential to redefine the way in which human health research is conducted. After briefly reviewing the need for comprehensive multiorgan models with a systemic dimension, we highlight scenarios in which multiorgan models are advantageous. We next overview existing multi-OoC platforms, including integrated body-on-a-chip devices and modular approaches involving interconnected organ-specific modules. We highlight how multi-OoC models can provide unique information that is not accessible using single-OoC models. Finally, we discuss remaining challenges for the realization of multi-OoC platforms and their worldwide adoption. We anticipate that multi-OoC technology will metamorphose research in biology and medicine by providing holistic and personalized models for understanding and treating multisystem diseases.
Collapse
|
12
|
Ripken RM, Wood JA, Schlautmann S, Günther A, Gardeniers HJGE, Le Gac S. Towards controlled bubble nucleation in microreactors for enhanced mass transport. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00092f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The exact location of bubbles with respect to the catalytic layer impacts the microreactor performance. In this work, we propose to control bubble nucleation using micropits to maximize the microreactor efficiency.
Collapse
|
13
|
Rho HS, Yang Y, Terstappen LW, Gardeniers H, Le Gac S, Habibović P. Programmable droplet-based microfluidic serial dilutor. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Le Gac S, Ferraz M, Venzac B, Comizzoli P. Understanding and Assisting Reproduction in Wildlife Species Using Microfluidics. Trends Biotechnol 2020; 39:584-597. [PMID: 33039163 DOI: 10.1016/j.tibtech.2020.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022]
Abstract
Conservation breeding and assisted reproductive technologies (ARTs) are invaluable tools to save wild animal species that are on the brink of extinction. Microfluidic devices recently developed for human or domestic animal reproductive medicine could significantly help to increase knowledge about fertility and contribute to the success of ART in wildlife. Some of these microfluidic tools could be applied to wild species, but dedicated efforts will be necessary to meet specific needs in animal conservation; for example, they need to be cost-effective, applicable to multiple species, and field-friendly. Microfluidics represents only one powerful technology in a complex toolbox and must be integrated with other approaches to be impactful in managing wildlife reproduction.
Collapse
|
15
|
Rho HS, Veltkamp HW, Baptista D, Gardeniers H, Le Gac S, Habibović P. A 3D polydimethylsiloxane microhourglass-shaped channel array made by reflowing photoresist structures for engineering a blood capillary network. Methods 2020; 190:63-71. [PMID: 32247048 DOI: 10.1016/j.ymeth.2020.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 11/16/2022] Open
Abstract
This paper describes an innovative yet straightforward fabrication technique to create three-dimensional microstructures with controllable tapered geometries by combining conventional photolithography and thermal reflow of photoresist. Positive photoresist-based microchannel structures with varying width-to-length ratios were reflowed after their fabrication to generate three-dimensional funnel structures with varying curvatures. A polydimethylsiloxane hourglass-shaped microchannel array was next cast on these photoresist structures, and primary human lung microvascular endothelial cells were cultured in the device to engineer an artificial capillary network. Our work demonstrates that this cost-effective and straightforward fabrication technique has great potential in engineering three-dimensional microstructures for biomedical and biotechnological applications such as blood vessel regeneration strategies, drug screening for vascular diseases, microcolumns for bioseparation, and other fluid dynamic studies at microscale.
Collapse
|
16
|
Mathew DG, Beekman P, Lemay SG, Zuilhof H, Le Gac S, van der Wiel WG. Electrochemical Detection of Tumor-Derived Extracellular Vesicles on Nanointerdigitated Electrodes. NANO LETTERS 2020; 20:820-828. [PMID: 31536360 PMCID: PMC7020140 DOI: 10.1021/acs.nanolett.9b02741] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/04/2019] [Indexed: 05/15/2023]
Abstract
Tumor-derived extracellular vesicles (tdEVs) are attracting much attention due to their essential function in intercellular communication and their potential as cancer biomarkers. Although tdEVs are significantly more abundant in blood than other cancer biomarkers, their concentration compared to other blood components remains relatively low. Moreover, the presence of particles in blood with a similar size as that of tdEVs makes their selective and sensitive detection further challenging. Therefore, highly sensitive and specific biosensors are required for unambiguous tdEV detection in complex biological environments, especially for decentralized point-of-care analysis. Here, we report an electrochemical sensing scheme for tdEV detection, with two-level selectivity provided by a sandwich immunoassay and two-level amplification through the combination of an enzymatic assay and redox cycling on nanointerdigitated electrodes to respectively enhance the specificity and sensitivity of the assay. Analysis of prostate cancer cell line tdEV samples at various concentrations revealed an estimated limit of detection for our assay as low as 5 tdEVs/μL, as well as an excellent linear sensor response spreading over 6 orders of magnitude (10-106 tdEVs/μL), which importantly covers the clinically relevant range for tdEV detection in blood. This novel nanosensor and associated sensing scheme opens new opportunities to detect tdEVs at clinically relevant concentrations from a single blood finger prick.
Collapse
|
17
|
de Almeida Monteiro Melo Ferraz M, Nagashima JB, Venzac B, Le Gac S, Songsasen N. A dog oviduct-on-a-chip model of serous tubal intraepithelial carcinoma. Sci Rep 2020; 10:1575. [PMID: 32005926 PMCID: PMC6994655 DOI: 10.1038/s41598-020-58507-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/16/2020] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer is the fifth cause of cancer-related mortality in women, with an expected 5-year survival rate of only 47%. High-grade serous carcinoma (HGSC), an epithelial cancer phenotype, is the most common malignant ovarian cancer. It is known that the precursors of HGSC originate from secretory epithelial cells within the Fallopian tube, which first develops as serous tubal intraepithelial carcinoma (STIC). Here, we used gene editing by CRISPR-Cas9 to knock out the oncogene p53 in dog oviductal epithelia cultured in a dynamic microfluidic chip to create an in vitro model that recapitulated human STIC. Similar to human STIC, the gene-edited oviduct-on-a-chip, exhibited loss of cell polarization and had reduced ciliation, increased cell atypia and proliferation, with multilayered epithelium, increased Ki67, PAX8 and Myc and decreased PTEN and RB1 mRNA expression. This study provides a biomimetic in vitro model to study STIC progression and to identify potential biomarkers for early detection of HGSC.
Collapse
|
18
|
de Almeida Monteiro Melo Ferraz M, Nagashima JB, Venzac B, Le Gac S, Songsasen N. 3D printed mold leachates in PDMS microfluidic devices. Sci Rep 2020; 10:994. [PMID: 31969661 PMCID: PMC6976631 DOI: 10.1038/s41598-020-57816-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023] Open
Abstract
The introduction of poly(dimethylsiloxane) (PDMS) and soft lithography in the 90’s has revolutionized the field of microfluidics by almost eliminating the need for a clean-room environment for device fabrication. More recently, 3D printing has been introduced to fabricate molds for soft lithography, the only step for which a clean-room environment is still often necessary, to further support the rapid prototyping of PDMS microfluidic devices. However, toxicity of most of the commercial 3D printing resins has been established, and little is known regarding the potential for 3D printed molds to leak components into the PDMS that would, in turn, hamper cells and/or tissues cultured in the devices. In the present study, we investigated if 3D printed molds produced by stereolithography can leach components into PDMS, and compared 3D printed molds to their more conventional SU-8 counterparts. Different leachates were detected in aqueous solutions incubated in the resulting PDMS devices prepared from widely used PDMS pre-polymer:curing agent ratios (10:1, 15:1 and 20:1), and these leachates were identified as originating from resins and catalyst substances. Next, we explored the possibility to culture cells and tissues in these PDMS devices produced from 3D printed molds and after proper device washing and conditioning. Importantly, we demonstrated that the resulting PDMS devices supported physiological cultures of HeLa cells and ovarian tissues in vitro, with superior outcomes than static conventional cultures.
Collapse
|
19
|
Ripken RM, Wood JA, Gardeniers JGE, Le Gac S. Aqueous‐Phase Reforming in a Microreactor: The Role of Surface Bubbles. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Beekman P, Enciso-Martinez A, Rho HS, Pujari SP, Lenferink A, Zuilhof H, Terstappen LWMM, Otto C, Le Gac S. Immuno-capture of extracellular vesicles for individual multi-modal characterization using AFM, SEM and Raman spectroscopy. LAB ON A CHIP 2019; 19:2526-2536. [PMID: 31292600 DOI: 10.1039/c9lc00081j] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tumor-derived extracellular vesicles (tdEVs) are promising blood biomarkers for cancer disease management. However, blood is a highly complex fluid that contains multiple objects in the same size range as tdEVs (30 nm-1 μm), which obscures an unimpeded analysis of tdEVs. Here, we report a multi-modal analysis platform for the specific capture of tdEVs on antibody-functionalized stainless steel substrates, followed by their analysis using SEM, Raman spectroscopy and AFM, at the single EV level in terms of size and size distribution, and chemical fingerprint. After covalent attachment of anti-EpCAM (epithelial cell adhesion molecule) antibodies on stainless steel substrates, EV samples derived from a prostate cancer cell line (LnCAP) were flushed into a microfluidic device assembled with this stainless steel substrate for capture. To track the captured objects between the different analytical instruments and subsequent correlative analysis, navigation markers were fabricated onto the substrate from a cyanoacrylate glue. Specific capture of tdEVs on the antibody-functionalized surface was demonstrated using SEM, AFM and Raman imaging, with excellent correlation between the data acquired by the individual techniques. The particle distribution was visualized with SEM. Furthermore, a characteristic lipid-protein band at 2850-2950 cm-1 was observed with Raman spectroscopy, and with AFM the size distribution and surface density of the captured EVs was assessed. Finally, correlation of SEM and Raman images enabled discrimination of tdEVs from cyanoacrylate glue particles, highlighting the capability of this multi-modal analysis platform for distinguishing tdEVs from contamination. The trans-instrumental compatibility of the stainless steel substrate and the possibility to spatially correlate the images of the different modalities with the help of the navigation markers open new avenues to a wide spectrum of combinations of different analytical and imaging techniques for the study of more complex EV samples.
Collapse
|
21
|
Ripken RM, Schlautmann S, Sanders RGP, Gardeniers JGE, Le Gac S. Monitoring phase transition of aqueous biomass model substrates by high-pressure and high-temperature microfluidics. Electrophoresis 2018; 40:563-570. [PMID: 30580450 PMCID: PMC6590653 DOI: 10.1002/elps.201800431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 11/24/2022]
Abstract
Aqueous‐Phase Reforming (APR) is a promising hydrogen production method, where biomass is catalytically reformed under high pressure and high temperature reaction conditions. To eventually study APR, in this paper, we report a high‐pressure and high‐temperature microfluidic platform that can withstand temperatures up to 200°C and pressures up to 30 bar. As a first step, we studied the phase transition of four typical APR biomass model solutions, consisting of 10 wt% of ethylene glycol, glycerol, xylose or xylitol in MilliQ water. After calibration of the set‐up using pure MilliQ water, a small increase in boiling point was observed for the ethylene glycol, xylitol and xylose solutions compared to pure water. Phase transition occurred through either explosive or nucleate boiling mechanisms, which was monitored in real‐time in our microfluidic device. In case of nucleate boiling, the nucleation site could be controlled by exploiting the pressure drop along the microfluidic channel. Depending on the void fraction, various multiphase flow patterns were observed simultaneously. Altogether, this study will not only help to distinguish between bubbles resulting from a phase transition and/or APR product formation, but is also important from a heat and mass transport perspective.
Collapse
|
22
|
Kamperman T, Karperien M, Le Gac S, Leijten J. Single-Cell Microgels: Technology, Challenges, and Applications. Trends Biotechnol 2018; 36:850-865. [PMID: 29656795 DOI: 10.1016/j.tibtech.2018.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Single-cell-laden microgels effectively act as the engineered counterpart of the smallest living building block of life: a cell within its pericellular matrix. Recent breakthroughs have enabled the encapsulation of single cells in sub-100-μm microgels to provide physiologically relevant microniches with minimal mass transport limitations and favorable pharmacokinetic properties. Single-cell-laden microgels offer additional unprecedented advantages, including facile manipulation, culture, and analysis of individual cell within 3D microenvironments. Therefore, single-cell microgel technology is expected to be instrumental in many life science applications, including pharmacological screenings, regenerative medicine, and fundamental biological research. In this review, we discuss the latest trends, technical challenges, and breakthroughs, and present our vision of the future of single-cell microgel technology and its applications.
Collapse
|
23
|
de Almeida Monteiro Melo Ferraz M, Henning HHW, Ferreira da Costa P, Malda J, Le Gac S, Bray F, van Duursen MBM, Brouwers JF, van de Lest CHA, Bertijn I, Kraneburg L, Vos PLAM, Stout TAE, Gadella BM. Potential Health and Environmental Risks of Three-Dimensional Engineered Polymers. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2018; 5:80-85. [PMID: 29911125 PMCID: PMC5997463 DOI: 10.1021/acs.estlett.7b00495] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/30/2017] [Accepted: 01/05/2018] [Indexed: 05/21/2023]
Abstract
Polymer engineering, such as in three-dimensional (3D) printing, is rapidly gaining popularity, not only in the scientific and medical fields but also in the community in general. However, little is known about the toxicity of engineered materials. Therefore, we assessed the toxicity of 3D-printed and molded parts from five different polymers commonly used for prototyping, fabrication of organ-on-a-chip platforms, and medical devices. Toxic effects of PIC100, E-Shell200, E-Shell300, polydimethylsiloxane, and polystyrene (PS) on early bovine embryo development, on the transactivation of estrogen receptors were assessed, and possible polymer-leached components were identified by mass spectrometry. Embryo development beyond the two-cell stage was inhibited by PIC100, E-Shell200, and E-Shell300 and correlated to the released amount of diethyl phthalate and polyethylene glycol. Furthermore, all polymers (except PS) induced estrogen receptor transactivation. The released materials from PIC100 inhibited embryo cleavage across a confluent monolayer culture of oviduct epithelial cells and also inhibited oocyte maturation. These findings highlight the need for cautious use of engineered polymers for household 3D printing and bioengineering of culture and medical devices and the need for the safe disposal of used devices and associated waste.
Collapse
|
24
|
Ripken RM, Meuldijk J, Gardeniers JGE, Le Gac S. Influence of the Water Phase State on the Thermodynamics of Aqueous-Phase Reforming for Hydrogen Production. CHEMSUSCHEM 2017; 10:4909-4913. [PMID: 28691770 DOI: 10.1002/cssc.201700189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Hydrogen is a promising renewable energy source that can be produced from biomass using aqueous-phase reforming (APR). Here, using data obtained from AspenPlus and the literature, we evaluated the phase state, temperature-dependent enthalpy, and Gibbs free energy for the APR of small biomass model substrates. Phase equilibrium studies reveal that, under typical APR reaction conditions, the reaction mixture is in the liquid phase. Therefore, we show for the first time that the water-gas shift reaction (WGSR), which is the second main reaction of APR, must be modeled in the liquid phase, resulting in an endothermic instead of an exothermic enthalpy of reaction. A significant implication of this finding is that, although APR has been introduced as more energy saving than conventional reforming methods, the WGSR in APR has a comparable energy demand to the WGSR in steam reforming (SR).
Collapse
|
25
|
Yang Y, Le Gac S, Terstappen LWMM, Rho HS. Parallel probing of drug uptake of single cancer cells on a microfluidic device. Electrophoresis 2017; 39:548-556. [DOI: 10.1002/elps.201700351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 12/31/2022]
|