1
|
Rahmat Ullah S, Jamal M, Rahman A, Andleeb S. Comprehensive insights into Klebsiella pneumoniae: unravelling clinical impact, epidemiological trends and antibiotic-resistance challenges. J Antimicrob Chemother 2024; 79:1484-1492. [PMID: 38832539 DOI: 10.1093/jac/dkae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Klebsiella pneumoniae, a challenging opportunistic bacterium, became a notable global health concern owing to its clinical impact, widespread epidemiology and escalating antibiotic resistance. This comprehensive review delves into the multifaceted dimensions of K. pneumoniae, with a focus on its clinical implications, epidemiological patterns and the critical issue of antibiotic resistance. The review also emphasizes the implications of K. pneumoniae in the context of antimicrobial stewardship and infection control. Epidemiological aspects are scrutinized, shedding light on the global distribution and prevalence of K. pneumoniae. Factors influencing its transmission and persistence in healthcare facilities and communities are examined, with patient demographics, healthcare practices and geographical variations. The review centres on antibiotic resistance, a critical issue in the era of bacteria displaying resistance to multiple drugs. The mechanisms of resistance used by K. pneumoniae against various classes of antibiotics are elucidated, along with the alarming rise of carbapenem-resistant strains. It also highlights ongoing research efforts and innovative strategies aimed at addressing this critical public health issue. This comprehensive review offers a holistic understanding of K. pneumoniae, emphasizing its clinical significance, global epidemiology and the immediate necessity for effective strategies to combat antibiotic resistance. It serves as a valuable resource for healthcare practitioners, researchers and policymakers seeking to manage better and mitigate the impact of this pathogen on public health.
Collapse
|
2
|
Rahmat Ullah S, Irum S, Mahnoor I, Ismatullah H, Mumtaz M, Andleeb S, Rahman A, Jamal M. Exploring the resistome, virulome, and mobilome of multidrug-resistant Klebsiella pneumoniae isolates: deciphering the molecular basis of carbapenem resistance. BMC Genomics 2024; 25:408. [PMID: 38664636 PMCID: PMC11044325 DOI: 10.1186/s12864-024-10139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 02/19/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae, a notorious pathogen for causing nosocomial infections has become a major cause of neonatal septicemia, leading to high morbidity and mortality worldwide. This opportunistic bacterium has become highly resistant to antibiotics due to the widespread acquisition of genes encoding a variety of enzymes such as extended-spectrum beta-lactamases (ESBLs) and carbapenemases. We collected Klebsiella pneumoniae isolates from a local tertiary care hospital from February 2019-February 2021. To gain molecular insight into the resistome, virulome, and genetic environment of significant genes of multidrug-resistant K. pneumoniae isolates, we performed the short-read whole-genome sequencing of 10 K. pneumoniae isolates recovered from adult patients, neonates, and hospital tap water samples. RESULTS The draft genomes of the isolates varied in size, ranging from 5.48 to 5.96 Mbp suggesting the genome plasticity of this pathogen. Various genes conferring resistance to different classes of antibiotics e.g., aminoglycosides, quinolones, sulfonamides, tetracycline, and trimethoprim were identified in all sequenced isolates. The highest resistance was observed towards carbapenems, which has been putatively linked to the presence of both class B and class D carbapenemases, blaNDM, and blaOXA, respectively. Moreover, the biocide resistance gene qacEdelta1 was found in 6/10 of the sequenced strains. The sequenced isolates exhibited a broad range of sequence types and capsular types. The significant antibiotic resistance genes (ARGs) were bracketed by a variety of mobile genetic elements (MGEs). Various spontaneous mutations in genes other than the acquired antibiotic-resistance genes were observed, which play an indirect role in making these bugs resistant to antibiotics. Loss or deficiency of outer membrane porins, combined with ESBL production, played a significant role in carbapenem resistance in our sequenced isolates. Phylogenetic analysis revealed that the study isolates exhibited evolutionary relationships with strains from China, India, and the USA suggesting a shared evolutionary history and potential dissemination of similar genes amongst the isolates of different origins. CONCLUSIONS This study provides valuable insight into the presence of multiple mechanisms of carbapenem resistance in K. pneumoniae strains including the acquisition of multiple antibiotic-resistance genes through mobile genetic elements. Identification of rich mobilome yielded insightful information regarding the crucial role of insertion sequences, transposons, and integrons in shaping the genome of bacteria for the transmission of various resistance-associated genes. Multi-drug resistant isolates that had the fewest resistance genes exhibited a significant number of mutations. K. pneumoniae isolate from water source displayed comparable antibiotic resistance determinants to clinical isolates and the highest number of virulence-associated genes suggesting the possible interplay of ARGs amongst bacteria from different sources.
Collapse
|
3
|
Amir F, Niazi MBK, Malik US, Jahan Z, Andleeb S, Ahmad T, Mustansar Z. A multifunctional vanillin-infused chitosan-PVA hydrogel reinforced by nanocellulose and CuO-Ag nanoparticles as antibacterial wound dressing. Int J Biol Macromol 2024; 258:128831. [PMID: 38123034 DOI: 10.1016/j.ijbiomac.2023.128831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Wound healing is an intricate and ever-evolving phenomenon that involves a series of biological processes and multiple stages. Despite the growing utilization of nanoparticles to enhance wound healing, these approaches often overlook properties like mechanical stability, toxicity, and efficacy. Hence, a multifunctional wound dressing is fabricated using Chitosan-PVA membrane crosslinked with vanillin and reinforced with nano-cellulose and CuO-Ag nanoparticles in this study. FTIR, SEM, and XRD were employed to study the morphology and structural properties of the membrane. Biomedical tests including biodegradability, antimicrobial study, cytotoxicity, and animal models were conducted to evaluate the membrane's performance as a wound healing material. The membrane displayed impressive mechanical strength, measuring as high as 49.985 ± 2.31 MPa, and had a hydrophilic nature, with moisture retention values up to 98.84 % and swelling percentages as high as 191.67 %. It also demonstrated biodegradable properties and high cell viability of up to 92.30 %. Additionally, the fabricated membranes exhibited excellent antimicrobial activity against both gram-positive and gram-negative bacteria, with maximum zone of inhibition measuring 16.8 ± 0.7 mm and 9.2 ± 0.1 mm, respectively. Moreover, the membranes also demonstrated superior wound healing properties. These results suggested great potential of fabricated membranes as an effective wound dressing material.
Collapse
|
4
|
Fatima S, Qaiser A, Andleeb S, Hashmi AH, Manzoor S. Navigating the brain: the role of exosomal shuttles in precision therapeutics. Front Neurol 2024; 14:1324216. [PMID: 38304326 PMCID: PMC10831691 DOI: 10.3389/fneur.2023.1324216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/28/2023] [Indexed: 02/03/2024] Open
Abstract
Brain diseases have become one of the leading roots of mortality and disability worldwide, contributing a significant part of the disease burden on healthcare systems. The blood-brain barrier (BBB) is a primary physical and biological obstacle that allows only small molecules to pass through it. Its selective permeability is a significant challenge in delivering therapeutics into the brain for treating brain dysfunction. It is estimated that only 2% of the new central nervous system (CNS) therapeutic compounds can cross the BBB and achieve their therapeutic targets. Scientists are exploring various approaches to develop effective cargo delivery vehicles to promote better therapeutics targeting the brain with minimal off-target side effects. Despite different synthetic carriers, one of the natural brain cargo delivery systems, "exosomes," are now employed to transport drugs through the BBB. Exosomes are naturally occurring small extracellular vesicles (EVs) with unique advantages as a therapeutic delivery system for treating brain disorders. They have beneficial innate aspects of biocompatibility, higher stability, ability to cross BBB, low cytotoxicity, low immunogenicity, homing potential, targeted delivery, and reducing off-site target effects. In this review, we will discuss the limitations of synthetic carriers and the utilization of naturally occurring exosomes as brain-targeted cargo delivery vehicles and highlight the methods for modifying exosome surfaces and drug loading into exosomes. We will also enlist neurodegenerative disorders targeted with genetically modified exosomes for their treatment.
Collapse
|
5
|
Mughal TA, Ali S, Hassan A, Kazmi SAR, Saleem MZ, Shakir HA, Nazer S, Farooq MA, Awan MZ, Khan MA, Andleeb S, Mumtaz S, Mumtaz S, Tahir HM, Gulzar N. Phytochemical screening, antimicrobial activity, in vitro and in vivo antioxidant activity of Berberis lycium Royle root bark extract. BRAZ J BIOL 2024; 84:e249742. [DOI: 10.1590/1519-6984.249742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022] Open
Abstract
Abstract Antioxidants are materials that scavenge or remove free radicals from living systems. The oxidation process ends in the production of free radicals. These free radicals are the chief birthplace of cancerous cells. Antioxidizing agents remove free radical intermediates by terminating oxidation processes by being oxidized themselves. On the other hand, infectious diseases affect the world on a large scale. To fight these diseases several synthetic compounds have been used. Plant based medications play important role in this regard. So, the current research aimed to investigate the antibacterial and antioxidant effect of Berberis lycium Royle root bark (BLR) extract. Berberis lycium Royle was used for phytochemical analysis and also as antimicrobial and antioxidant agents. The antimicrobial activity was evaluated by the agar well diffusion method. Current study revealed that BLR was rich in phytochemicals and toxic against tested pathogenic bacteria. BLR showed the highest activity against S. pyogenes (13.3±0.8 mm). The lowest antibacterial activity was reported against E. coli (0±0 mm). In case of minimum inhibitory concentration, it was observed that BLR with 10 μg/mL concentration showed the highest activity while 2.5 μg/mL of BLR showed the least inhibitory activity. The highest In vitro antioxidant activity was recorded as 65% at 100 µg/mL. In case of in vivo antioxidant activity level of CAT, GSH and SOD were decreased while that of MDA was enhanced in groups treated with CCl4 as compared to the control group. BLR extract treatment reversed all these changes significantly. Current results indicate that BLR is effective against bacterial pathogens and also has antioxidant potential.
Collapse
|
6
|
Mahnoor I, Shabbir H, Nawaz S, Aziz K, Aziz U, Khalid K, Irum S, Andleeb S. Characterization of exclusively non-commensal Neisseria gonorrhoeae pangenome to prioritize globally conserved and thermodynamically stable vaccine candidates using immune-molecular dynamic simulations. Microb Pathog 2023; 185:106439. [PMID: 37944674 DOI: 10.1016/j.micpath.2023.106439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Neisseria gonorrhoeae (Ngo) has emerged as a global threat leading to one of the most common sexually transmitted diseases in the world. It has also become one of the leading antimicrobial resistant organisms, resulting in fewer treatment options and an increased morbidity. Therefore, in recent years, there has been an increased focus on the development of new treatments and preventive strategies to combat its infection. In this study, we have combined the most conserved epitopes from the completely assembled strains of Ngo to develop a universal and a thermodynamically stable vaccine candidate. For our vaccine design, the epitopes were selected for their high immunogenicity, non-allergenicity and non-cytotoxicity, making them the ideal candidates for vaccine development. For the screening process, several reverse vaccinology tools were employed to rigorously extract non-homologous and immunogenic epitopes from the selected proteins. Consequently, a total number of 3 B-cell epitopes and 6 T-cell epitopes were selected and joined by multiple immune-modulating adjuvants and linkers to generate a promiscuous immune response. Additionally, the stability and flexible nature of the vaccine construct was confirmed using various molecular dynamic simulation tools. Overall, the vaccine candidate showed promising binding affinity to various HLA alleles and TLR receptors; however, further studies are needed to assess its efficacy in-vivo. In this way, we have designed a multi-subunit vaccine candidate to potentially combat and control the spread of N. gonorrhoeae.
Collapse
|
7
|
Mumtaz L, Farid A, Yousef Alomar S, Ahmad N, Nawaz A, Andleeb S, Amin A. Assesment of polyphenolic compounds against biofilms produced by clinical Acinetobacter baumannii strains using in silico and in vitro models. Saudi J Biol Sci 2023; 30:103743. [PMID: 37564783 PMCID: PMC10410175 DOI: 10.1016/j.sjbs.2023.103743] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023] Open
Abstract
Several types of microbial infections are caused by Acinetobacter baumanii that has developed resistance to antimicrobial agents. We therefore investigated the role of plant polyphenols against A. baumannii using in silico and in vitro models. The clinical strains of A. baumannii were investigated for determination of resistance pattern and resistance mechanisms including efflux pump, extended spectrum beta lactamase, phenotype detection of AmpC production, and Metallo-β-lactamase. The polyphenolic compounds were docked against transcription regulator BfmR (PDB ID 6BR7) and antimicrobial, antibiofilm, and anti-quorum sensing activities were performed. The antibiogram studies showed that all isolated strains were resistant. Strain A77 was positive in Metallo-β-lactamase production. Similarly, none of strains were producers of AmpC, however, A77, A76, A75 had active efflux pumps. Molecular docking studies confirmed a strong binding affinity of Rutin and Catechin towards transcription regulator 6BR7. A significant antimicrobial activity was recorded in case of quercetin and syringic acid (MIC 3.1 µg/mL) followed by vanillic acid and caffeic acid (MIC 12.5 µg/mL). All tested compounds presented a strong antibiofilm activity against A. baumanii strain A77 (65 to 90%). It was concluded that all tested polyphenols samples posess antimicrobial and antibiofilm activities, and hence they may be utilized to treat multidrug resistance A. baumannii infections.
Collapse
|
8
|
Diorio-Toth L, Wallace MA, Farnsworth CW, Wang B, Gul D, Kwon JH, Andleeb S, Burnham CAD, Dantas G. Intensive care unit sinks are persistently colonized with multidrug resistant bacteria and mobilizable, resistance-conferring plasmids. mSystems 2023; 8:e0020623. [PMID: 37439570 PMCID: PMC10469867 DOI: 10.1128/msystems.00206-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 07/14/2023] Open
Abstract
Contamination of hospital sinks with microbial pathogens presents a serious potential threat to patients, but our understanding of sink colonization dynamics is largely based on infection outbreaks. Here, we investigate the colonization patterns of multidrug-resistant organisms (MDROs) in intensive care unit sinks and water from two hospitals in the USA and Pakistan collected over 27 months of prospective sampling. Using culture-based methods, we recovered 822 bacterial isolates representing 104 unique species and genomospecies. Genomic analyses revealed long-term colonization by Pseudomonas spp. and Serratia marcescens strains across multiple rooms. Nanopore sequencing uncovered examples of long-term persistence of resistance-conferring plasmids in unrelated hosts. These data indicate that antibiotic resistance (AR) in Pseudomonas spp. is maintained both by strain colonization and horizontal gene transfer (HGT), while HGT maintains AR within Acinetobacter spp. and Enterobacterales, independent of colonization. These results emphasize the importance of proactive, genomic-focused surveillance of built environments to mitigate MDRO spread. IMPORTANCE Hospital sinks are frequently linked to outbreaks of antibiotic-resistant bacteria. Here, we used whole-genome sequencing to track the long-term colonization patterns in intensive care unit (ICU) sinks and water from two hospitals in the USA and Pakistan collected over 27 months of prospective sampling. We analyzed 822 bacterial genomes, representing over 100 different species. We identified long-term contamination by opportunistic pathogens, as well as transient appearance of other common pathogens. We found that bacteria recovered from the ICU had more antibiotic resistance genes (ARGs) in their genomes compared to matched community spaces. We also found that many of these ARGs are harbored on mobilizable plasmids, which were found shared in the genomes of unrelated bacteria. Overall, this study provides an in-depth view of contamination patterns for common nosocomial pathogens and identifies specific targets for surveillance.
Collapse
|
9
|
Jalil A, Masood S, Ain Q, Andleeb S, Dudley EG, Adnan F. High resistance of fluoroquinolone and macrolide reported in avian pathogenic Escherichia coli isolates from the humid subtropical regions of Pakistan. J Glob Antimicrob Resist 2023; 33:5-17. [PMID: 36764657 DOI: 10.1016/j.jgar.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVES This study aimed to assess the antimicrobial resistance profile, virulence potential, and genetic characterization of avian pathogenic Escherichia coli (APEC) that cause colibacillosis in poultry. METHODS Antibiotic susceptibility testing (AST) was measured via the Kirby-Bauer disc diffusion method against 27 commonly used antibiotics. Phylogrouping, virulence-associated gene detection, and hybrid strain detection via multiplex polymerase chain reaction (PCR) and genetic diversity were analysed via ERIC-PCR fingertyping method. RESULTS AST analysis showed 100% of isolates were multidrug-resistant (MDR) and highest resistance was against penicillin, tetracycline, and macrolide classes of antibiotics. The mcr-1 gene was present in 40% of the isolates, though only 4% of isolates were showing phenotypic resistance. Despite the scarce use of fluoroquinolone, carbapenem, and cephalosporin in the poultry sector, resistance was evident because of the high prevalence of extended-spectrum β-lactamase (ESBL) (53.7%) and other β-lactamases in APEC isolates. β-lactamase genotyping of APEC isolates revealed that 85.7% of isolates contained either blaCTX or blaTEM and around 38% of isolates were complement resistant. Growth in human urine was evident in 67.3% of isolates. Phylogroup B1 (51%) was the most prevalent group followed by phylogroups A (30.6%), D (13.61%), and B2 (4.76%). The most prevalent virulence-associated genes were fimH, iss, and tatT. Results showed that 26 isolates (17.69%) can be termed hybrid strains and APEC/EHEC (enterohemorrhagic E. coli) was the most prevalent hybrid E. coli pathotype. ERIC-PCR fingerprinting genotype analysis clustered APEC isolates in 40 groups (E1-E40). This study provides insights into the antibiotic resistance and virulence profiling of the APEC isolates in Pakistan. CONCLUSIONS The findings of this study provide insights into that the antibiotic resistance and virulence profiling of the APEC isolates in Pakistan. This data can inform future studies designed to better estimate the severity of the colibacillosis in poultry farms.
Collapse
|
10
|
Diorio-Toth L, Irum S, Potter RF, Wallace MA, Arslan M, Munir T, Andleeb S, Burnham CAD, Dantas G. Genomic Surveillance of Clinical Pseudomonas aeruginosa Isolates Reveals an Additive Effect of Carbapenemase Production on Carbapenem Resistance. Microbiol Spectr 2022; 10:e0076622. [PMID: 35638817 PMCID: PMC9241860 DOI: 10.1128/spectrum.00766-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/01/2022] [Indexed: 01/15/2023] Open
Abstract
Carbapenem resistance in Pseudomonas aeruginosa is increasing globally, and surveillance to define the mechanisms of such resistance in low- and middle-income countries is limited. This study establishes the genotypic mechanisms of β-lactam resistance by whole-genome sequencing (WGS) in 142 P. aeruginosa clinical isolates recovered from three hospitals in Islamabad and Rawalpindi, Pakistan between 2016 and 2017. Isolates were subjected to antimicrobial susceptibility testing (AST) by Kirby-Bauer disk diffusion, and their genomes were assembled from Illumina sequencing data. β-lactam resistance was high, with 46% of isolates resistant to piperacillin-tazobactam, 42% to cefepime, 48% to ceftolozane-tazobactam, and 65% to at least one carbapenem. Twenty-two percent of isolates were resistant to all β-lactams tested. WGS revealed that carbapenem resistance was associated with the acquisition of metallo-β-lactamases (MBLs) or extended-spectrum β-lactamases (ESBLs) in the blaGES, blaVIM, and blaNDM families, and mutations in the porin gene oprD. These resistance determinants were found in globally distributed lineages, including ST235 and ST664, as well as multiple novel STs which have been described in a separate investigation. Analysis of AST results revealed that acquisition of MBLs/ESBLs on top of porin mutations had an additive effect on imipenem resistance, suggesting that there is a selective benefit for clinical isolates to encode multiple resistance determinants to the same drugs. The strong association of these resistance determinants with phylogenetic background displays the utility of WGS for monitoring carbapenem resistance in P. aeruginosa, while the presence of these determinants throughout the phylogenetic tree shows that knowledge of the local epidemiology is crucial for guiding potential treatment of multidrug-resistant P. aeruginosa infections. IMPORTANCE Pseudomonas aeruginosa is associated with serious infections, and treatment can be challenging. Because of this, carbapenems and β-lactam/β-lactamase inhibitor combinations have become critical tools in treating multidrug-resistant (MDR) P. aeruginosa infections, but increasing resistance threatens their efficacy. Here, we used WGS to study the genotypic and phylogenomic patterns of 142 P. aeruginosa isolates from the Potohar region of Pakistan. We sequenced both MDR and antimicrobial susceptible isolates and found that while genotypic and phenotypic patterns of antibiotic resistance correlated with phylogenomic background, populations of MDR P. aeruginosa were found in all major phylogroups. We also found that isolates possessing multiple resistance mechanisms had significantly higher levels of imipenem resistance compared to the isolates with a single resistance mechanism. This study demonstrates the utility of WGS for monitoring patterns of antibiotic resistance in P. aeruginosa and potentially guiding treatment choices based on the local spread of β-lactamase genes.
Collapse
|
11
|
Tasneem U, Majid M, Mehmood K, Redaina, Ur Rehman F, Andleeb S, Jamal M. Co-occurrence of antibiotic resistance and virulence Genes in Methicillin Resistant Staphylococcus aureus (MRSA) Isolates from Pakistan. Afr Health Sci 2022; 22:486-495. [PMID: 36032437 PMCID: PMC9382537 DOI: 10.4314/ahs.v22i1.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Methicillin resistant Staphylococcus aureus (MRSA) is one of the major human pathogen that is associated with hospital as well as community acquired infections and is responsible for huge amount of life-threatening diseases. Objective Objective of the study was to determine MRSA prevalence, their antibiotic sensitivity patterns, frequency of virulence genes (sea, seb, sed, tst, hla, hld) and their co-occurrence with resistance marker mecA among Rawalpindi and its nearby regions of Pakistani clinical isolates. Methodology The present study was carried out to identify the virulence and antibiotic resistance genes that co-occur in MRSA through polymerase chain reaction. Antibiotic sensitivity, presence of virulence genes and their co-occurrence with resistance marker mecA were analyzed. Results These isolates were found resistant to number of antibiotics i.e. Amoxicillin (16.1%), Cefixime (48.38%), Doxycycline (27.415), Trimethoprim/sulfamethoxazole (37.09%), Clindamycin (30.64%), Erythromycin (83.87%), Penicillin (100%), Vancomycin (4.83%), Ciprofloxacin (70.96%), Tetracycline (20%), Linezolid (3.22%) and Fusidic acid (11.295). The frequency of antibiotic resistant gene (mecA) was 69.35% and that of virulence genes hla, hld, sea, seb, sed and tst was 100, 100, 53.2, 30.6, 3.2 and 24.2% respectively. Amongst all examined genes, hla and hld genes had the highest and sed gene had the lowest frequency. The maximum coexistence of genes was observed for hla+hld+mecA gene combination (42 out of 62 isolates). Conclusion This study reports the presence of multidrug resistant, vancomycin-resistant and mecA negative MRSA isolates in infected patients of Rawalpindi and nearby regions of Pakistan that may have attributed to treatment failures, adaptability of new virulence characteristics and spread of antibiotic resistance.
Collapse
|
12
|
Khalid K, Irum S, Ullah SR, Andleeb S. In-Silico Vaccine Design Based on a Novel Vaccine Candidate Against Infections Caused by Acinetobacter baumannii. Int J Pept Res Ther 2021; 28:16. [PMID: 34873398 PMCID: PMC8636788 DOI: 10.1007/s10989-021-10316-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/24/2022]
Abstract
Acinetobacter baumannii is notorious for causing serious infections of the skin, lungs, soft tissues, bloodstream, and urinary tract. Despite the overwhelming information available so far, there has still been no approved vaccine in the market to prevent these infections. Therefore, this study focuses on developing a rational vaccine design using the technique of epitope mapping to curb the infections caused by A. baumannii. An outer membrane protein with immunogenic potential as well as all the properties of a good vaccine candidate was selected and used to calculate epitopes for selection on the basis of a low percentile rank, high binding scores, good immunological properties, and non-allergenicity. Thus, a 240 amino-acid vaccine sequence was obtained by manually joining all the epitopes in sequence-wise manner with the appropriate linkers, namely AAY, GPGPG, and EAAAK. Additionally, a 50S ribosomal protein L7/L12, agonist to the human innate immune receptors was attached to the N-terminus to increase the overall immune response towards the vaccine. As a result, enhanced overall protein stability, expression, immunostimulatory capabilities, and solubility of the designed construct were observed. Molecular dynamic simulations revealed the compactness and stability of the polypeptide construct. Moreover, molecular docking exhibited strong binding of the designed vaccine with TLR-4 and TLR-9. In-silico immune simulations indicated an immense increment in T-cell and B-cell populations. Bioinformatic tools also significantly assisted with optimizing codons which allowed for successful cloning of constructs into desired host vectors. Using in-silico tools to design a vaccine against A. baumannii demonstrated that this construct could pave the way for successfully combating infections caused by multidrug-resistant bacteria.
Collapse
|
13
|
Aleem M, Azeem AR, Rahmatullah S, Vohra S, Nasir S, Andleeb S. Prevalence of Bacteria and Antimicrobial Resistance Genes in Hospital Water and Surfaces. Cureus 2021; 13:e18738. [PMID: 34790487 PMCID: PMC8587521 DOI: 10.7759/cureus.18738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose Antimicrobial resistance (AMR) has become a worldwide environmental and public health problem, causing more than 250,000 deaths per year. Unregulated usage, unsafe hospital practices, and misuse in veterinary contribute to the development of multidrug resistance in various bacteria. Hospital water was hypothesized to be a hotspot for AMR transmission because of (1) increased exposure to antibiotic load, (2) poor drainage and sanitation system, (3) interaction between environmental and clinical microbes. The purpose of the research was to assess the biodiversity and AMR in hospital tap waters. Methodology In this study, the microflora of the hospital tap water and hospital surfaces was observed by obtaining water samples from the intensive care unit (ICU), surgical wards, and washrooms. These were processed through membrane filtration and spread on seven different media (Aeromonas Medium, Azide Dextrose Agar, MacConkey Agar, Mannitol Salt Agar, Pseudomonas Cetrimide Agar, Salmonella Shigella Agar, and Thiosulfate Citrate Bile Salts Sucrose Agar). Surface samples were collected from the faucet, basin, and drain and directly spread on the media plates. Isolates were identified using standard bacteriological and biochemical tests. Kirby-Bauer disk diffusion method was performed using 21 antibiotic disks from 10 different antibiotic classes. They included ampicillin (AMP), amoxicillin (AML), piperacillin-tazobactam (TZP), cefipime (FEP), cefoxitin (FOX), ceftazidime (CAZ), ceftriaxone (CRO), imipenem (IMP), meropenem (MEM), ciprofloxacin (CIP), moxifloxacin (MXF), levofloxacin (LEV), amikacin (AK), gentamicin (CN), tigecycline (TGC), aztreonam (ATM), erythromycin (E), clindamycin (DA), rifampicin (RD), colistin (CT), and chloramphenicol (C). The results were interpreted according to EUCAST guidelines for the antibiogram of the isolates; 38 isolates were selected out of 162 based on different parameters for genotyping and detection of six beta-lactamase genes (blaSHV, blaTEM, blaCTX-M, blaOXA, blaKPC, blaNDM). Results Among these 162 isolates, 82 were obtained from water sources and 80 were collected from surfaces (faucet, basin, drain). The isolates included a variety of bacteria including Aeromonas spp. (20%), Klebsiella spp. (13%), Staphylococcus aureus (13%), Pseudomonas spp.(10%), Escherichia coli (9%), Vibrio spp. (8%), Enterococcus spp. (6%), Shigella spp. (6%), Salmonella spp. (4%), Acinetobacter spp. (3%), Staphylococcus epidermitis (3%), Streptococci spp. (2%), Proteus spp. (1%), Citrobacter spp. (1%), and Serratia spp. (1%). A diverse range of microbes were identified including clinically relevant bacteria, which shows that the urban water cycle is already contaminated with multidrug-resistant microflora of the hospital settings. Macrolide and lincosamide showed the highest resistance followed by penicillin, monobactam, and cephalosporins. blaSHV and blaTEM were prevalent in samples. blaNDM was also found which manifests as a real threat since it causes resistance against carbapenems and colistin, antibiotics reserved as a last resort against infections. Conclusions This study presented the ground reality of antibiotic resistance in Pakistan and how its subsequent spread poses a great threat to the strides made in the field of medicine and public health. Strict regulations regarding antibiotic usage, hospital effluent, and urban water sanitation must be imposed to curb the devastating effects of this increasing phenomenon.
Collapse
|
14
|
Irum S, Naz K, Ullah N, Mustafa Z, Ali A, Arslan M, Khalid K, Andleeb S. Antimicrobial Resistance and Genomic Characterization of Six New Sequence Types in Multidrug-Resistant Pseudomonas aeruginosa Clinical Isolates from Pakistan. Antibiotics (Basel) 2021; 10:antibiotics10111386. [PMID: 34827324 PMCID: PMC8615273 DOI: 10.3390/antibiotics10111386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 01/13/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a major bacterial pathogen associated with a variety of infections with high mortality rates. Most of the clinical P. aeruginosa isolates belong to a limited number of genetic subgroups characterized by multiple housekeeping genes’ sequences (usually 5–7) through the Multi-Locus Sequence Typing (MLST) scheme. The emergence and dissemination of novel multidrug-resistant (MDR) sequence types (ST) in P. aeruginosa pose serious clinical concerns. We performed whole-genome sequencing on a cohort (n = 160) of MDR P. aeruginosa isolates collected from a tertiary care hospital lab in Pakistan and found six isolates belonging to six unique MLST allelic profiles. The genomes were submitted to the PubMLST database and new ST numbers (ST3493, ST3494, ST3472, ST3489, ST3491, and ST3492) were assigned to the respective allele combinations. MLST and core-genome-based phylogenetic analysis confirmed the divergence of these isolates and positioned them in separate branches. Analysis of the resistome of the new STs isolates revealed the presence of genes blaOXA-50, blaPAO, blaPDC, blaVIM-2, aph(3′)-IIb, aac(6′)-II, aac(3)-Id, fosA, catB7, dfrB2, crpP, merP and a number of missense and frame-shift mutations in chromosomal genes conferring resistance to various antipseudomonal antibiotics. The exoS, exoT, pvdE, rhlI, rhlR, lasA, lasB, lasI, and lasR genes were the most prevalent virulence-related genes among the new ST isolates. The different genotypic features revealed the adaptation of these new clones to a variety of infections by various mutations in genes affecting antimicrobial resistance, quorum sensing and biofilm formation. Close monitoring of these antibiotic-resistant pathogens and surveillance mechanisms needs to be adopted to reduce their spread to the healthcare facilities of Pakistan. We believe that these strains can be used as reference strains for future comparative analysis of isolates belonging to the same STs.
Collapse
|
15
|
Mazhar B, Jahan N, Chaudhry M, Liaqat I, Dar M, Rehman S, Andleeb S, Ali NM. Significant production of vanillin and in vitro amplification of ech gene in local bacterial isolates. BRAZ J BIOL 2021; 83:e250550. [PMID: 34730714 DOI: 10.1590/1519-6984.250550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022] Open
Abstract
Vanillin is the major component which is responsible for flavor and aroma of vanilla extract and is produced by 3 ways: natural extraction from vanilla plant, chemical synthesis and from microbial transformation. Current research was aimed to study bacterial production of vanillin from native natural sources including sewage and soil from industrial areas. The main objective was vanillin bio-production by isolating bacteria from these native sources. Also to adapt methodologies to improve vanillin production by optimized fermentation media and growth conditions. 47 soil and 13 sewage samples were collected from different industrial regions of Lahore, Gujranwala, Faisalabad and Kasur. 67.7% bacterial isolates produced vanillin and 32.3% were non-producers. From these 279 producers, 4 bacterial isolates selected as significant producers were; A3, A4, A7 and A10. These isolates were identified by ribotyping as A3 Pseudomonas fluorescence (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) and A10 Bacillus subtilis (KT962919). Vanillin producers were further tested for improved production of vanillin and were grown in different fermentation media under optimized growth conditions for enhanced production of vanillin. The fermentation media (FM) were; clove oil based, rice bran waste (residues oil) based, wheat bran based and modified isoeugenol based. In FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36, and FM37, the selected 4 bacterial strains produced significant amounts of vanillin. A10 B. subtilis produced maximum amount of vanillin. This strain produced 17.3 g/L vanillin in FM36. Cost of this fermentation medium 36 was 131.5 rupees/L. This fermentation medium was modified isoeugenol based medium with 1% of isoeugenol and 2.5 g/L soybean meal. ech gene was amplified in A3 P. fluorescence using ech specific primers. As vanillin use as flavor has increased tremendously, the bioproduction of vanillin must be focused.
Collapse
|
16
|
Mushtaq M, Bukhari SM, Ahmad S, Khattak A, Chattha MB, Mubeen I, Rehman KU, Andleeb S, Hussain S, Javid A, Hussain A, Ali W, Khalid N, Mustafa G, Sughra F, Iqbal MJ, Khalid M, Naeem MM, Inayat M. Isolation and characterization of bacteria residing in the oral, gut, and fecal samples of different pheasant species. BRAZ J BIOL 2021; 83:e249159. [PMID: 34586192 DOI: 10.1590/1519-6984.249159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
There is a paucity of research conducted on microbial prevalence in pheasants. The microbiota of captive birds has zoonotic significance and must be characterize. Present study is therefore planned to assess the microbiota from oral, fecal and gut content of captive avian species. It will be helpful in characterization of harmful microbes. Different samples taken from oral, gut and feces of ring-necked pheasants (Phasianus colchicus), green pheasants (Phasianus versicolor), golden pheasant (Chrysolophus pictus) and silver pheasant (Lophura nycthemera). Samples were collected, diluted, and inoculated onto different agar plates (MacConkey, SS agar, MSA and nutrient agar) for cultivation of bacterial species. Colonies of E.coli, Staphylococcus spp. Brachyspira spp. and Campylobacter spp were observed based on colony morphology. Colony forming unit showed E. coli as frequently found bacteria in fecal, oral and gut contents of all the above pheasants. The overall significance difference was found among bacterial species of golden pheasants, green pheasant, ring-necked pheasant, and silver pheasants. It was concluded that E.coli is predominant isolated from heathy pheasants followed by Campylobacter, Staphylococcus and Brachyspira.
Collapse
|
17
|
Shafique F, Ali S, Almansouri T, Van Eeden F, Shafi N, Khalid M, Khawaja S, Andleeb S, Hassan MU. Thalassemia, a human blood disorder. BRAZ J BIOL 2021; 83:e246062. [PMID: 34495151 DOI: 10.1590/1519-6984.246062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/02/2021] [Indexed: 11/22/2022] Open
Abstract
A group of inherited blood defects is known as Thalassemia is among the world's most prevalent hemoglobinopathies. Thalassemias are of two types such as Alpha and Beta Thalassemia. The cause of these defects is gene mutations leading to low levels and/or malfunctioning α and β globin proteins, respectively. In some cases, one of these proteins may be completely absent. α and β globin chains form a globin fold or pocket for heme (Fe++) attachment to carry oxygen. Genes for alpha and beta-globin proteins are present in the form of a cluster on chromosome 16 and 11, respectively. Different globin genes are used at different stages in the life course. During embryonic and fetal developmental stages, γ globin proteins partner with α globin and are later replaced by β globin protein. Globin chain imbalances result in hemolysis and impede erythropoiesis. Individuals showing mild symptoms include carriers of alpha thalassemia or the people bearing alpha or beta-thalassemia trait. Alpha thalassemia causes conditions like hemolytic anemia or fatal hydrops fetalis depending upon the severity of the disease. Beta thalassemia major results in hemolytic anemia, growth retardation, and skeletal aberrations in early childhood. Children affected by this disorder need regular blood transfusions throughout their lives. Patients that depend on blood transfusion usually develop iron overload that causes other complications in the body systems like renal or hepatic impairment therefore, thalassemias are now categorized as a syndrome. The only cure for Thalassemias would be a bone marrow transplant, or gene therapy with currently no significant success rate. A thorough understanding of the molecular basis of this syndrome may provide novel insights and ideas for its treatment, as scientists have still been unable to find a permanent cure for this deadly disease after more than 87 years since it is first described in 1925.
Collapse
|
18
|
Idnan M, Javid A, Tayyab M, Hussain A, Mansoor S, Bukhari SM, Irfan, Shahbaz M, Rehman KU, Andleeb S, Azam SM, Ali W. Molecular identification of genus Pipistrellus (Mammalia: Chiroptera) from Fata region, Pakistan. BRAZ J BIOL 2021; 83:e246322. [PMID: 34431908 DOI: 10.1590/1519-6984.246322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/02/2021] [Indexed: 11/22/2022] Open
Abstract
A total of 10 specimens were captured from selected sites of Bajaur Agency FATA, Pakistan using mist nets. The captured specimens were morphologically identified and various morphometric measurements were taken. The head and Body length (HB) of Pipistrellus coromondra and Pipistrellus kuhlii lepidus (n=10) was 43±0.11 mm and 45±1.1 respectively. Morphologically identified Pipistrellus kuhlii confirmed as Pipistrellus kuhlii lepidus based on 16S rRNA sequences. The DNA sequences were submitted to GenBank and accession numbers were obtained (MN 719478 and MT430902). The available 16S rRNA gene sequences of Pipistrellus coromondra and Pipistrellus kuhlii lepidus were retrieved from NCBI and incorporated in N-J tree analysis. Overall, the interspecific genetic variations among Pipistrellus coromondra and Pipistrellus kuhlii lepidus were 8% and 1% respectively. In our recommendation, a comprehensive molecular identification of bats is need of hour to report more cryptic and new species from Pakistan.
Collapse
|
19
|
Mustafa G, Iqbal A, Javid A, Hussain A, Bukhari SM, Ali W, Saleem M, Azam SM, Sughra F, Ali A, Rehman KU, Andleeb S, Sadiq N, Hussain SM, Ahmad A, Ahmad U. Variations in nutritional profile of honey produced by various species of genus Apis. BRAZ J BIOL 2021; 83:e246651. [PMID: 34378683 DOI: 10.1590/1519-6984.246651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/19/2021] [Indexed: 11/22/2022] Open
Abstract
The medicinal attributes of honey appears to overshadow its importance as a functional food. Consequently, several literatures are rife with ancient uses of honey as complementary and alternative medicine, with relevance to modern day health care, supported by evidence-based clinical data, with little attention given to honey's nutritional functions. The moisture contents of honey extracted from University of Veterinary and Animal Sciences, Lahore honey bee farm was 12.19% while that of natural source was 9.03 ± 1.63%. Similarly, ash and protein contents of farmed honey recorded were 0.37% and 5.22%, respectively. Whereas ash and protein contents of natural honey were 1.70 ± 1.98% and 6.10 ± 0.79%. Likewise fat, dietary fiber and carbohydrates contents of farmed source documented were 0.14%, 1.99% and 62.26% respectively. Although fat, dietary fiber and carbohydrates contents of honey taken from natural resource were 0.54 ± 0.28%, 2.76 ± 1.07% and 55.32 ± 2.91% respectively. Glucose and fructose contents of honey taken out from honeybee farm were 27% and 34% but natural source were 22.50 ± 2.12% and 28.50 ± 3.54%. Glucose and fructose contents of honey taken out from honeybee farm were 27% and 34% but natural source were 22.50 ± 2.12% and 28.50 ± 3.54%. Similarly, sucrose and maltose contents of farmed honey were 2.5% and 12% while in natural honey were 1.35 ± 0.49% and 8.00 ± 1.41% respectively. The present study indicates that such as moisture, carbohydrates, sucrose and maltose contents were higher farmed honey as compared to the natural honey. In our recommendation natural honey is better than farmed honey.
Collapse
|
20
|
Liaqat I, Ali NM, Arshad N, Sajjad S, Rashid F, Hanif U, Ara C, Ulfat M, Andleeb S, Awan UF, Bibi A, Mubin M, Ali S, Tahir HM, Ul-Haq I. Gut dysbiosis, inflammation and type 2 diabetes in mice using synthetic gut microbiota from diabetic humans. BRAZ J BIOL 2021; 83:e242818. [PMID: 34378656 DOI: 10.1590/1519-6984.242818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/11/2021] [Indexed: 01/13/2023] Open
Abstract
The study was aimed to assess impact of high fat diet (HFD) and synthetic human gut microbiota (GM) combined with HFD and chow diet (CD) in inducing type-2 diabetes (T2D) using mice model. To our knowledge, this is the first study using selected human GM transplantation via culture based method coupled dietary modulation in mice for in vivo establishment of inflammation leading to T2D and gut dysbiosis. Twenty bacteria (T2D1-T2D20) from stool samples of confirmed T2D subjects were found to be morphologically different and subjected to purification on different media both aerobically and anerobically, which revealed seven bacteria more common among 20 isolates on the basis of biochemical characterization. On the basis of 16S rRNA gene sequencing, these seven isolates were identified as Bacteroides stercoris (MT152636), Lactobacillus acidophilus (MT152637), Lactobacillus salivarius (MT152638), Ruminococcus bromii (MT152639), Klebsiella aerogenes (MT152640), Bacteroides fragilis (MT152909), Clostridium botulinum (MT152910). The seven isolates were subsequently used as synthetic gut microbiome (GM) for their role in inducing T2D in mice. Inbred strains of albino mice were divided into four groups and were fed with CD, HFD, GM+HFD and GM+CD. Mice receiving HFD and GM+modified diet (CD/HFD) showed highly significant (P<0.05) increase in weight and blood glucose concentration as well as elevated level of inflammatory cytokines (TNF-α, IL-6, and MCP-1) compared to mice receiving CD only. The 16S rRNA gene sequencing of 11 fecal bacteria obtained from three randomly selected animals from each group revealed gut dysbiosis in animals receiving GM. Bacterial strains including Bacteroides gallinarum (MT152630), Ruminococcus bromii (MT152631), Lactobacillus acidophilus (MT152632), Parabacteroides gordonii (MT152633), Prevotella copri (MT152634) and Lactobacillus gasseri (MT152635) were isolated from mice treated with GM+modified diet (HFD/CD) compared to strains Akkermansia muciniphila (MT152625), Bacteriodes sp. (MT152626), Bacteroides faecis (MT152627), Bacteroides vulgatus (MT152628), Lactobacillus plantarum (MT152629) which were isolated from mice receiving CD/HFD. In conclusion, these findings suggest that constitution of GM and diet plays significant role in inflammation leading to onset or/and possibly progression of T2D. .
Collapse
|
21
|
Siddique A, Azim S, Ali A, Andleeb S, Ahsan A, Imran M, Rahman A. Antimicrobial Resistance Profiling of Biofilm Forming Non Typhoidal Salmonella enterica Isolates from Poultry and Its Associated Food Products from Pakistan. Antibiotics (Basel) 2021; 10:785. [PMID: 34203245 PMCID: PMC8300803 DOI: 10.3390/antibiotics10070785] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Salmonellosis caused by non-typhoidal Salmonella enterica from poultry products is a major public health concern worldwide. This study aimed at estimating the pathogenicity and antimicrobial resistance in S. enterica isolates obtained from poultry birds and their food products from different areas of Pakistan. In total, 95/370 (25.67%) samples from poultry droppings, organs, eggs, and meat were positive for Salmonella. The isolates were further identified through multiplex PCR (mPCR) as Salmonella Typhimurium 14 (14.7%), Salmonella Enteritidis 12 (12.6%), and other Salmonella spp. 69 (72.6%). The phenotypic virulence properties of 95 Salmonella isolates exhibited swimming and/or swarming motility 95 (100%), DNA degrading activity 93 (97.8%), hemolytic activity 92 (96.8%), lipase activity 87 (91.6%), and protease activity 86 (90.5%). The sopE virulence gene known for conferring zoonotic potential was detected in S. Typhimurium (92.8%), S. Enteritidis (100%), and other Salmonella spp. (69.5%). The isolates were further tested against 23 antibiotics (from 10 different antimicrobial groups) and were found resistant against fifteen to twenty-one antibiotics. All isolates showed multiple drug resistance and were found to exhibit a high multiple antibiotic-resistant (MAR) index of 0.62 to 0.91. The strong biofilm formation at 37 °C reflected their potential adherence to intestinal surfaces. There was a significant correlation between antimicrobial resistance and the biofilm formation potential of isolates. The resistance determinant genes found among the isolated strains were blaTEM-1 (59.3%), blaOxA-1 (18%), blaPSE-1 (9.5%), blaCMY-2 (43%), and ampC (8.3%). The detection of zoonotic potential MDR Salmonella in poultry and its associated food products carrying cephalosporin and quinolone resistance genes presents a major threat to the poultry industry and public health.
Collapse
|
22
|
Fatima NU, Anwar R, Baig TA, Mehmood K, Andleeb S. Association of hepatitis E seropositivity and altered progesterone levels in pregnant women of low socioeconomic status from capital region of Pakistan. J PAK MED ASSOC 2021; 70:2119-2123. [PMID: 33475582 DOI: 10.47391/jpma.03-335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objective To investigate the seroprevalence of hepatitis E virus infection, risk factors and its association with progesterone levels in pregnant women from low socioeconomic background. METHODS The cross-sectional study was conducted in Rawalpindi and Islamabad, Pakistan, from January to July 2012, and comprised pregnant asymptomatic healthy females from different clinics and hospitals of the twin cities. Data was collected using a predesigned demographic questionnaire to determine socioeconomic status. Prevalence of anti-hepatitis E virus antibodies and progesterone levels were determined using enzyme-linked immunosorbent assay kits. RESULTS Of the 90 women, 35(39%) were in the 21-25 year age group, and 55(61%) belonged to low socioeconomic background. The overall prevalence of seropositive hepatitis E virus immunoglobulin-G was 54(60%) and immunoglobulin-M was 12(13.3%). In the first trimester, the levels of progesterone were higher in patients positive for immunoglobulin-M compared to immunoglobulin-G (p<0.001). Conclusion Low socioeconomic status appeared to be a potential risk factor associated with high hepatitis E virus seroprevalence and alterations in the normal progesterone levels during pregnancy.
Collapse
|
23
|
Rahmat Ullah S, Majid M, Rashid MI, Mehmood K, Andleeb S. Immunoinformatics Driven Prediction of Multiepitopic Vaccine Against Klebsiella pneumoniae and Mycobacterium tuberculosis Coinfection and Its Validation via In Silico Expression. Int J Pept Res Ther 2020; 27:987-999. [PMID: 33281529 PMCID: PMC7703501 DOI: 10.1007/s10989-020-10144-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 01/20/2023]
Abstract
Klebsiella pneumoniae and Mycobacterium tuberculosis coinfection is one of the most lethal combinations that has been becoming frequent yet, not diagnosed and reported properly. Due to the simultaneous occurrence of both infections, diagnosis is delayed leading to inadequate treatments and mortality. With the rise of MDR Klebsiella and Mycobacterium, a prophylactic and an immunotherapeutic vaccine has to be entailed for preemptive and adroit therapeutic approach. In this study, we aim to implement reverse vaccinology approach that encompasses a comprehensive evaluation of vital aspects of the pathogens to explore immunogenic epitopes against Omp A of Klebsiella and Rv1698, Rv1973 of Mtb that may help in vaccine development. The designed multi-epitopic vaccine was assessed for antigenicity, allergenicity and various physiochemical parameters. Molecular docking and simulations were executed to assess the immunogenicity and complex stability of the vaccine. The final multi-epitopic vaccine is validated to be highly immunogenic and can serve as a valuable proactive remedy for subject pathogens.
Collapse
|
24
|
Ali S, Ejaz M, Dar KK, Nasreen S, Ashraf N, Gillani SF, Shafi N, Safeer S, Khan MA, Andleeb S, Akhtar N, Mughal TA. Evaluation of chemopreventive and chemotherapeutic effect of Artemisia vulgaris extract against diethylnitrosamine induced hepatocellular carcinogenesis in Balb C mice. BRAZ J BIOL 2020; 80:484-496. [DOI: 10.1590/1519-6984.185979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 02/26/2019] [Indexed: 11/22/2022] Open
Abstract
Abstract The main objective of current study was to investigate the chemopreventive and chemotherapeutic activity of Artemisia vulgaris extract on diethylnitrosoamine induced hepatocarcinogenesis in Balb C mice. Diethylnitrosoamine (DEN: 0.9%) was prepared to induce hepatocarcinoma in Balb C mice. The extract Artemisia vulgaris (AV) was prepared by maceration technique. Mice were classified into four groups as follows: Group 1 a control group (N=7) received saline solution (3.5 μl/mg), group 2 (N=14) received diethylnitrosoamine (3.5 μl/mg) intraperitoneally once in a week for eight consecutive weeks, group 3 (N=7) received only plant extract (AV: 150 mg/kg (Body weight) once in a week, while group 4 (N=7) was given in combination of diethylnitrosoamine (3.5 μl/mg) and plant extract (AV: 150 mg/kg (body weight). After eight weeks of DEN administration, mice of group 2 were divided into two subgroups containing seven mice each; subgroup 1 was sacrificed while subgroup 2 was treated with plant extract only (150 mg/kg (body weight)) once in a week for eight consecutive weeks. The DEN injected mice significant decline in levels of albumin with concomitant significant elevations such as aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, alpha feto protein, gamma glutamyl transferase, 5 nucleotidase, glucose-6-phosphate dehydrogenase and bilirubin. The administration of A. vulgaris significantly decreased the DEN induced hepatotoxicity. Present study revealed the potential anti-cancerous nature of Artemisia vulgaris, both in case of chemopreventive and post-treatment of A. vulgaris. Further studies are needed to explore the mechanism of prevention and therapy.
Collapse
|
25
|
Rahmat Ullah S, Majid M, Andleeb S. Draft genome sequence of an extensively drug-resistant neonatal Klebsiella pneumoniae isolate harbouring multiple plasmids contributing to antibiotic resistance. J Glob Antimicrob Resist 2020; 23:100-101. [PMID: 32866642 DOI: 10.1016/j.jgar.2020.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Klebsiella pneumoniae is a notorious nosocomial pathogen that has become a significant cause of neonatal infections causing morbidity and mortality. A multidrug-resistant K. pneumoniae isolate (K184) was isolated from a 5-day-old infant admitted to the neonatal intensive care unit of a local hospital in Rawalpindi, Pakistan. Whole-genome analysis of the isolated strain was performed to gain a better understanding of the genetic basis of antimicrobial resistance and virulence determinants. METHODS K. pneumoniae isolate K184 was sequenced on an Illumina HiSeq 2500 platform. The genome was assembled using SPAdes with 30× coverage and was annotated using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) v.4.3. Characterisation of the strain was performed using MLST 2.0 server. Plasmids, antimicrobial resistance determinants and virulence factors were identified using PlasmidFinder v.2.0, the Comprehensive Antibiotic Resistance Database (CARD) and Virulence Factors Database (VFDB), respectively. RESULTS Neonatal K. pneumoniae isolate K184 has a considerably large genome with a size of 6,686,067 bp and a GC content of 55.6%. The isolate possesses three plasmids actively contributing to antimicrobial resistance, which classifies it as heavily loaded genome, along with three prophage regions. With 15 antimicrobial resistance determinants and various virulence factors, the neonatal isolate belongs to ST2096. CONCLUSION The genome of neonatal isolate K184 studied here provides an insight into antibiotic resistance and virulence determinants. This draft genome can be used to compare antimicrobial-resistant K. pneumoniae strains isolated from the neonatal population.
Collapse
|