1
|
An FP, Bai WD, Balantekin AB, Bishai M, Blyth S, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen HY, Chen SM, Chen Y, Chen YX, Chen ZY, Cheng J, Cheng J, Cheng YC, Cheng ZK, Cherwinka JJ, Chu MC, Cummings JP, Dalager O, Deng FS, Ding XY, Ding YY, Diwan MV, Dohnal T, Dolzhikov D, Dove J, Dugas KV, Duyang HY, Dwyer DA, Gallo JP, Gonchar M, Gong GH, Gong H, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Han Y, Hans S, He M, Heeger KM, Heng YK, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang JH, Huang XT, Huang YB, Huber P, Jaffe DE, Jen KL, Ji XL, Ji XP, Johnson RA, Jones D, Kang L, Kettell SH, Kohn S, Kramer M, Langford TJ, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li F, Li HL, Li JJ, Li QJ, Li RH, Li S, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu JX, Lu C, Lu HQ, Luk KB, Ma BZ, Ma XB, Ma XY, Ma YQ, Mandujano RC, Marshall C, McDonald KT, McKeown RD, Meng Y, Napolitano J, Naumov D, Naumova E, Nguyen TMT, Ochoa-Ricoux JP, Olshevskiy A, Park J, Patton S, Peng JC, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren J, Morales Reveco C, Rosero R, Roskovec B, Ruan XC, Russell B, Steiner H, Sun JL, Tmej T, Treskov K, Tse WH, Tull CE, Tung YC, Viren B, Vorobel V, Wang CH, Wang J, Wang M, Wang NY, Wang RG, Wang W, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wei LH, Wei W, Wen LJ, Whisnant K, White CG, Wong HLH, Worcester E, Wu DR, Wu Q, Wu WJ, Xia DM, Xie ZQ, Xing ZZ, Xu HK, Xu JL, Xu T, Xue T, Yang CG, Yang L, Yang YZ, Yao HF, Ye M, Yeh M, Young BL, Yu HZ, Yu ZY, Yue BB, Zavadskyi V, Zeng S, Zeng Y, Zhan L, Zhang C, Zhang FY, Zhang HH, Zhang JL, Zhang JW, Zhang QM, Zhang SQ, Zhang XT, Zhang YM, Zhang YX, Zhang YY, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhao RZ, Zhou L, Zhuang HL, Zou JH. Measurement of Electron Antineutrino Oscillation Amplitude and Frequency via Neutron Capture on Hydrogen at Daya Bay. PHYSICAL REVIEW LETTERS 2024; 133:151801. [PMID: 39454173 DOI: 10.1103/physrevlett.133.151801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/23/2024] [Indexed: 10/27/2024]
Abstract
This Letter reports the first measurement of the oscillation amplitude and frequency of reactor antineutrinos at Daya Bay via neutron capture on hydrogen using 1958 days of data. With over 3.6 million signal candidates, an optimized candidate selection, improved treatment of backgrounds and efficiencies, refined energy calibration, and an energy response model for the capture-on-hydrogen sensitive region, the relative ν[over ¯]_{e} rates and energy spectra variation among the near and far detectors gives sin^{2}2θ_{13}=0.0759_{-0.0049}^{+0.0050} and Δm_{32}^{2}=(2.72_{-0.15}^{+0.14})×10^{-3} eV^{2} assuming the normal neutrino mass ordering, and Δm_{32}^{2}=(-2.83_{-0.14}^{+0.15})×10^{-3} eV^{2} for the inverted neutrino mass ordering. This estimate of sin^{2}2θ_{13} is consistent with and essentially independent from the one obtained using the capture-on-gadolinium sample at Daya Bay. The combination of these two results yields sin^{2}2θ_{13}=0.0833±0.0022, which represents an 8% relative improvement in precision regarding the Daya Bay full 3158-day capture-on-gadolinium result.
Collapse
|
2
|
An FP, Bai WD, Balantekin AB, Bishai M, Blyth S, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen HY, Chen SM, Chen Y, Chen YX, Chen ZY, Cheng J, Cheng YC, Cheng ZK, Cherwinka JJ, Chu MC, Cummings JP, Dalager O, Deng FS, Ding XY, Ding YY, Diwan MV, Dohnal T, Dolzhikov D, Dove J, Dugas KV, Duyang HY, Dwyer DA, Gallo JP, Gonchar M, Gong GH, Gong H, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Han Y, Hans S, He M, Heeger KM, Heng YK, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang JH, Huang XT, Huang YB, Huber P, Jaffe DE, Jen KL, Ji XL, Ji XP, Johnson RA, Jones D, Kang L, Kettell SH, Kohn S, Kramer M, Langford TJ, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li F, Li HL, Li JJ, Li QJ, Li RH, Li S, Li S, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu JX, Lu C, Lu HQ, Luk KB, Ma BZ, Ma XB, Ma XY, Ma YQ, Mandujano RC, Marshall C, McDonald KT, McKeown RD, Meng Y, Napolitano J, Naumov D, Naumova E, Nguyen TMT, Ochoa-Ricoux JP, Olshevskiy A, Park J, Patton S, Peng JC, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren J, Morales Reveco C, Rosero R, Roskovec B, Ruan XC, Russell B, Steiner H, Sun JL, Tmej T, Tse WH, Tull CE, Tung YC, Viren B, Vorobel V, Wang CH, Wang J, Wang M, Wang NY, Wang RG, Wang W, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wei LH, Wei W, Wen LJ, Whisnant K, White CG, Wong HLH, Worcester E, Wu DR, Wu Q, Wu WJ, Xia DM, Xie ZQ, Xing ZZ, Xu HK, Xu JL, Xu T, Xue T, Yang CG, Yang L, Yang YZ, Yao HF, Ye M, Yeh M, Young BL, Yu HZ, Yu ZY, Yuan CZ, Yue BB, Zavadskyi V, Zeng S, Zeng Y, Zhan L, Zhang C, Zhang FY, Zhang HH, Zhang JL, Zhang JW, Zhang QM, Zhang SQ, Zhang XT, Zhang YM, Zhang YX, Zhang YY, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhao RZ, Zhou L, Zhuang HL, Zou JH. Search for a Sub-eV Sterile Neutrino Using Daya Bay's Full Dataset. PHYSICAL REVIEW LETTERS 2024; 133:051801. [PMID: 39159085 DOI: 10.1103/physrevlett.133.051801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/21/2024] [Indexed: 08/21/2024]
Abstract
This Letter presents results of a search for the mixing of a sub-eV sterile neutrino with three active neutrinos based on the full data sample of the Daya Bay Reactor Neutrino Experiment, collected during 3158 days of detector operation, which contains 5.55×10^{6} reactor ν[over ¯]_{e} candidates identified as inverse beta-decay interactions followed by neutron capture on gadolinium. The analysis benefits from a doubling of the statistics of our previous result and from improvements of several important systematic uncertainties. No significant oscillation due to mixing of a sub-eV sterile neutrino with active neutrinos was found. Exclusion limits are set by both Feldman-Cousins and CLs methods. Light sterile neutrino mixing with sin^{2}2θ_{14}≳0.01 can be excluded at 95% confidence level in the region of 0.01 eV^{2}≲|Δm_{41}^{2}|≲0.1 eV^{2}. This result represents the world-leading constraints in the region of 2×10^{-4} eV^{2}≲|Δm_{41}^{2}|≲0.2 eV^{2}.
Collapse
|
3
|
Abratenko P, Alterkait O, Andrade Aldana D, Arellano L, Asaadi J, Ashkenazi A, Balasubramanian S, Baller B, Barr G, Barrow D, Barrow J, Basque V, Benevides Rodrigues O, Berkman S, Bhanderi A, Bhat A, Bhattacharya M, Bishai M, Blake A, Bogart B, Bolton T, Book JY, Brunetti MB, Camilleri L, Cao Y, Caratelli D, Cavanna F, Cerati G, Chappell A, Chen Y, Conrad JM, Convery M, Cooper-Troendle L, Crespo-Anadón JI, Cross R, Del Tutto M, Dennis SR, Detje P, Devitt A, Diurba R, Djurcic Z, Dorrill R, Duffy K, Dytman S, Eberly B, Englezos P, Ereditato A, Evans JJ, Fine R, Finnerud OG, Foreman W, Fleming BT, Franco D, Furmanski AP, Gao F, Garcia-Gamez D, Gardiner S, Ge G, Gollapinni S, Gramellini E, Green P, Greenlee H, Gu L, Gu W, Guenette R, Guzowski P, Hagaman L, Hen O, Hilgenberg C, Horton-Smith GA, Imani Z, Irwin B, Ismail MS, James C, Ji X, Jo JH, Johnson RA, Jwa YJ, Kalra D, Kamp N, Karagiorgi G, Ketchum W, Kirby M, Kobilarcik T, Kreslo I, Leibovitch MB, Lepetic I, Li JY, Li K, Li Y, Lin K, Littlejohn BR, Liu H, Louis WC, Luo X, Mariani C, Marsden D, Marshall J, Martinez N, Martinez Caicedo DA, Martynenko S, Mastbaum A, Mawby I, McConkey N, Meddage V, Micallef J, Miller K, Mogan A, Mohayai T, Mooney M, Moor AF, Moore CD, Mora Lepin L, Moudgalya MM, Mulleriababu S, Naples D, Navrer-Agasson A, Nayak N, Nebot-Guinot M, Nowak J, Oza N, Palamara O, Pallat N, Paolone V, Papadopoulou A, Papavassiliou V, Parkinson HB, Pate SF, Patel N, Pavlovic Z, Piasetzky E, Pophale I, Qian X, Raaf JL, Radeka V, Rafique A, Reggiani-Guzzo M, Ren L, Rochester L, Rodriguez Rondon J, Rosenberg M, Ross-Lonergan M, Rudolf von Rohr C, Safa I, Scanavini G, Schmitz DW, Schukraft A, Seligman W, Shaevitz MH, Sharankova R, Shi J, Snider EL, Soderberg M, Söldner-Rembold S, Spitz J, Stancari M, John JS, Strauss T, Szelc AM, Tang W, Taniuchi N, Terao K, Thorpe C, Torbunov D, Totani D, Toups M, Tsai YT, Tyler J, Uchida MA, Usher T, Viren B, Weber M, Wei H, White AJ, Wolbers S, Wongjirad T, Wospakrik M, Wresilo K, Wu W, Yandel E, Yang T, Yates LE, Yu HW, Zeller GP, Zennamo J, Zhang C. First Simultaneous Measurement of Differential Muon-Neutrino Charged-Current Cross Sections on Argon for Final States with and without Protons Using MicroBooNE Data. PHYSICAL REVIEW LETTERS 2024; 133:041801. [PMID: 39121397 DOI: 10.1103/physrevlett.133.041801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/09/2024] [Accepted: 06/17/2024] [Indexed: 08/11/2024]
Abstract
We report the first double-differential neutrino-argon cross section measurement made simultaneously for final states with and without protons for the inclusive muon neutrino charged-current interaction channel. The proton kinematics of this channel are further explored with a differential cross section measurement as a function of the leading proton's kinetic energy that extends across the detection threshold. These measurements use data collected with the MicroBooNE detector from 6.4×10^{20} protons on target from the Fermilab booster neutrino beam with a mean neutrino energy of ∼0.8 GeV. Extensive data-driven model validation utilizing the conditional constraint formalism is employed. This motivates enlarging the uncertainties with an empirical reweighting approach to minimize the possibility of extracting biased cross section results. The extracted nominal flux-averaged cross sections are compared to widely used event generator predictions revealing severe mismodeling of final states without protons for muon neutrino charged-current interactions, possibly from insufficient treatment of final state interactions. These measurements provide a wealth of new information useful for improving event generators which will enhance the sensitivity of precision measurements in neutrino experiments.
Collapse
|
4
|
Abratenko P, Alterkait O, Andrade Aldana D, Arellano L, Asaadi J, Ashkenazi A, Balasubramanian S, Baller B, Barr G, Barrow D, Barrow J, Basque V, Benevides Rodrigues O, Berkman S, Bhanderi A, Bhat A, Bhattacharya M, Bishai M, Blake A, Bogart B, Bolton T, Book JY, Brunetti MB, Camilleri L, Cao Y, Caratelli D, Cavanna F, Cerati G, Chappell A, Chen Y, Conrad JM, Convery M, Cooper-Troendle L, Crespo-Anadón JI, Cross R, Del Tutto M, Dennis SR, Detje P, Devitt A, Diurba R, Djurcic Z, Dorrill R, Duffy K, Dytman S, Eberly B, Englezos P, Ereditato A, Evans JJ, Fine R, Finnerud OG, Foreman W, Fleming BT, Franco D, Furmanski AP, Gao F, Garcia-Gamez D, Gardiner S, Ge G, Gollapinni S, Gramellini E, Green P, Greenlee H, Gu L, Gu W, Guenette R, Guzowski P, Hagaman L, Hen O, Hilgenberg C, Horton-Smith GA, Imani Z, Irwin B, Ismail MS, James C, Ji X, Jo JH, Johnson RA, Jwa YJ, Kalra D, Kamp N, Karagiorgi G, Ketchum W, Kirby M, Kobilarcik T, Kreslo I, Leibovitch MB, Lepetic I, Li JY, Li K, Li Y, Lin K, Littlejohn BR, Liu H, Louis WC, Luo X, Mariani C, Marsden D, Marshall J, Martinez N, Martinez Caicedo DA, Martynenko S, Mastbaum A, Mawby I, McConkey N, Meddage V, Micallef J, Miller K, Mogan A, Mohayai T, Mooney M, Moor AF, Moore CD, Mora Lepin L, Moudgalya MM, Mulleriababu S, Naples D, Navrer-Agasson A, Nayak N, Nebot-Guinot M, Nowak J, Oza N, Palamara O, Pallat N, Paolone V, Papadopoulou A, Papavassiliou V, Parkinson HB, Pate SF, Patel N, Pavlovic Z, Piasetzky E, Pophale I, Qian X, Raaf JL, Radeka V, Rafique A, Reggiani-Guzzo M, Ren L, Rochester L, Rodriguez Rondon J, Rosenberg M, Ross-Lonergan M, Rudolf von Rohr C, Safa I, Scanavini G, Schmitz DW, Schukraft A, Seligman W, Shaevitz MH, Sharankova R, Shi J, Snider EL, Soderberg M, Söldner-Rembold S, Spitz J, Stancari M, John JS, Strauss T, Szelc AM, Tang W, Taniuchi N, Terao K, Thorpe C, Torbunov D, Totani D, Toups M, Tsai YT, Tyler J, Uchida MA, Usher T, Viren B, Weber M, Wei H, White AJ, Wolbers S, Wongjirad T, Wospakrik M, Wresilo K, Wu W, Yandel E, Yang T, Yates LE, Yu HW, Zeller GP, Zennamo J, Zhang C. First Search for Dark-Trident Processes Using the MicroBooNE Detector. PHYSICAL REVIEW LETTERS 2024; 132:241801. [PMID: 38949335 DOI: 10.1103/physrevlett.132.241801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 07/02/2024]
Abstract
We present a first search for dark-trident scattering in a neutrino beam using a dataset corresponding to 7.2×10^{20} protons on target taken with the MicroBooNE detector at Fermilab. Proton interactions in the neutrino target at the main injector produce π^{0} and η mesons, which could decay into dark-matter (DM) particles mediated via a dark photon A^{'}. A convolutional neural network is trained to identify interactions of the DM particles in the liquid-argon time projection chamber (LArTPC) exploiting its imagelike reconstruction capability. In the absence of a DM signal, we provide limits at the 90% confidence level on the squared kinematic mixing parameter ϵ^{2} as a function of the dark-photon mass in the range 10≤M_{A^{'}}≤400 MeV. The limits cover previously unconstrained parameter space for the production of fermion or scalar DM particles χ for two benchmark models with mass ratios M_{χ}/M_{A^{'}}=0.6 and 2 and for dark fine-structure constants 0.1≤α_{D}≤1.
Collapse
|
5
|
Abratenko P, Alterkait O, Andrade Aldana D, Anthony J, Arellano L, Asaadi J, Ashkenazi A, Balasubramanian S, Baller B, Barr G, Barrow J, Basque V, Benevides Rodrigues O, Berkman S, Bhanderi A, Bhat A, Bhattacharya M, Bishai M, Blake A, Bogart B, Bolton T, Book JY, Camilleri L, Cao Y, Caratelli D, Caro Terrazas I, Cavanna F, Cerati G, Chen Y, Conrad JM, Convery M, Cooper-Troendle L, Crespo-Anadón JI, Del Tutto M, Dennis SR, Detje P, Devitt A, Diurba R, Djurcic Z, Dorrill R, Duffy K, Dytman S, Eberly B, Englezos P, Ereditato A, Evans JJ, Fine R, Finnerud OG, Foreman W, Fleming BT, Foppiani N, Franco D, Furmanski AP, Garcia-Gamez D, Gardiner S, Ge G, Gollapinni S, Goodwin O, Gramellini E, Green P, Greenlee H, Gu W, Guenette R, Guzowski P, Hagaman L, Hen O, Hicks R, Hilgenberg C, Horton-Smith GA, Imani Z, Irwin B, Itay R, James C, Ji X, Jiang L, Jo JH, Johnson RA, Jwa YJ, Kalra D, Kamp N, Karagiorgi G, Ketchum W, Kirby M, Kobilarcik T, Kreslo I, Leibovitch MB, Lepetic I, Li JY, Li K, Li Y, Lin K, Littlejohn BR, Louis WC, Luo X, Mariani C, Marsden D, Marshall J, Martinez N, Martinez Caicedo DA, Mason K, Mastbaum A, McConkey N, Meddage V, Miller K, Mills J, Mogan A, Mohayai T, Mooney M, Moor AF, Moore CD, Mora Lepin L, Mulleriababu S, Naples D, Navrer-Agasson A, Nayak N, Nebot-Guinot M, Nowak J, Oza N, Palamara O, Pallat N, Paolone V, Papadopoulou A, Papavassiliou V, Parkinson HB, Pate SF, Patel N, Pavlovic Z, Piasetzky E, Ponce-Pinto ID, Pophale I, Prince S, Qian X, Raaf JL, Radeka V, Rafique A, Reggiani-Guzzo M, Ren L, Rochester L, Rodriguez Rondon J, Rosenberg M, Ross-Lonergan M, Rudolf von Rohr C, Scanavini G, Schmitz DW, Schukraft A, Seligman W, Shaevitz MH, Sharankova R, Shi J, Snider EL, Soderberg M, Söldner-Rembold S, Spitz J, Stancari M, John JS, Strauss T, Sword-Fehlberg S, Szelc AM, Tang W, Taniuchi N, Terao K, Thorpe C, Torbunov D, Totani D, Toups M, Tsai YT, Tyler J, Uchida MA, Usher T, Viren B, Weber M, Wei H, White AJ, Williams Z, Wolbers S, Wongjirad T, Wospakrik M, Wresilo K, Wright N, Wu W, Yandel E, Yang T, Yates LE, Yu HW, Zeller GP, Zennamo J, Zhang C. First Measurement of η Meson Production in Neutrino Interactions on Argon with MicroBooNE. PHYSICAL REVIEW LETTERS 2024; 132:151801. [PMID: 38683006 DOI: 10.1103/physrevlett.132.151801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/04/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024]
Abstract
We present a measurement of η production from neutrino interactions on argon with the MicroBooNE detector. The modeling of resonant neutrino interactions on argon is a critical aspect of the neutrino oscillation physics program being carried out by the DUNE and Short Baseline Neutrino programs. η production in neutrino interactions provides a powerful new probe of resonant interactions, complementary to pion channels, and is particularly suited to the study of higher-order resonances beyond the Δ(1232). We measure a flux-integrated cross section for neutrino-induced η production on argon of 3.22±0.84(stat)±0.86(syst) 10^{-41} cm^{2}/nucleon. By demonstrating the successful reconstruction of the two photons resulting from η production, this analysis enables a novel calibration technique for electromagnetic showers in GeV accelerator neutrino experiments.
Collapse
|
6
|
Caggiano C, Morselli M, Qian X, Celona B, Thompson M, Wani S, Tosevska A, Taraszka K, Heuer G, Ngo S, Steyn F, Nestor P, Wallace L, McCombe P, Heggie S, Thorpe K, McElligott C, English G, Henders A, Henderson R, Lomen-Hoerth C, Wray N, McRae A, Pellegrini M, Garton F, Zaitlen N. Tissue informative cell-free DNA methylation sites in amyotrophic lateral sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.08.24305503. [PMID: 38645132 PMCID: PMC11030489 DOI: 10.1101/2024.04.08.24305503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cell-free DNA (cfDNA) is increasingly recognized as a promising biomarker candidate for disease monitoring. However, its utility in neurodegenerative diseases, like amyotrophic lateral sclerosis (ALS), remains underexplored. Existing biomarker discovery approaches are tailored to a specific disease context or are too expensive to be clinically practical. Here, we address these challenges through a new approach combining advances in molecular and computational technologies. First, we develop statistical tools to select tissue-informative DNA methylation sites relevant to a disease process of interest. We then employ a capture protocol to select these sites and perform targeted methylation sequencing. Multi-modal information about the DNA methylation patterns are then utilized in machine learning algorithms trained to predict disease status and disease progression. We applied our method to two independent cohorts of ALS patients and controls (n=192). Overall, we found that the targeted sites accurately predicted ALS status and replicated between cohorts. Additionally, we identified epigenetic features associated with ALS phenotypes, including disease severity. These findings highlight the potential of cfDNA as a non-invasive biomarker for ALS.
Collapse
|
7
|
Xiong X, Wang J, Hao Z, Fan X, Jiang N, Qian X, Hong R, Dai Y, Hu C. MRI-based bone marrow radiomics for predicting cytogenetic abnormalities in multiple myeloma. Clin Radiol 2024; 79:e491-e499. [PMID: 38238146 DOI: 10.1016/j.crad.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 03/09/2024]
Abstract
AIM To develop a radiomics signature applied to magnetic resonance imaging (MRI)-images to predict cytogenetic abnormalities in multiple myeloma (MM). MATERIALS AND METHODS Patients with newly diagnosed MM were enrolled retrospectively from March 2019 to September 2022. They were categorised into the high-risk cytogenetics (HRC) group and standard-risk cytogenetics (SRC) group. The patients were allocated randomly at a ratio of 7:3 into training and validation cohorts. Volumes of interest (VOI) was drawn manually on fat suppression T2-weighted imaging (FS-T2WI) and copied to the same location of the T1-weighted imaging (T1WI) sequence. Radiomics features were extracted from two sequences and selected by reproducibility and redundant analysis. The least absolute shrinkage selection operation (LASSO) algorithm was applied to build the radiomics signatures. The performance of the radiomics signatures to distinguish HRC with SRC was evaluated by ROC curves. The area under the curve (AUC), specificity, and sensitivity were also calculated. RESULTS A total of 105 MM patients were enrolled in this study. The four and 11 most significant and relevant features were selected separately from T1WI and FS-T2WI sequences to build the radiomics signatures based on the training cohort. Compared to the T1WI sequence, the radiomics signature based on the FS-T2WI sequence achieved better performance with AUCs of 0.896 and 0.729 in the training and validation cohorts respectively. A sensitivity of 0.833, specificity of 0.667, and Youden index of 0.500 were achieved for the FS-T2WI radiomics signature in the validation cohort. CONCLUSIONS The radiomics signature based on MRI provides a non-invasive and convenient tool to predict cytogenetic abnormalities in MM patients.
Collapse
|
8
|
Abratenko P, Alterkait O, Andrade Aldana D, Arellano L, Asaadi J, Ashkenazi A, Balasubramanian S, Baller B, Barr G, Barrow D, Barrow J, Basque V, Benevides Rodrigues O, Berkman S, Bhanderi A, Bhat A, Bhattacharya M, Bishai M, Blake A, Bogart B, Bolton T, Book JY, Brunetti MB, Camilleri L, Cao Y, Caratelli D, Cavanna F, Cerati G, Chappell A, Chen Y, Conrad JM, Convery M, Cooper-Troendle L, Crespo-Anadón JI, Cross R, Del Tutto M, Dennis SR, Detje P, Devitt A, Diurba R, Djurcic Z, Dorrill R, Duffy K, Dytman S, Eberly B, Englezos P, Ereditato A, Evans JJ, Fine R, Finnerud OG, Foreman W, Fleming BT, Franco D, Furmanski AP, Gao F, Garcia-Gamez D, Gardiner S, Ge G, Gollapinni S, Gramellini E, Green P, Greenlee H, Gu L, Gu W, Guenette R, Guzowski P, Hagaman L, Hen O, Hilgenberg C, Horton-Smith GA, Imani Z, Irwin B, Ismail M, James C, Ji X, Jo JH, Johnson RA, Jwa YJ, Kalra D, Kamp N, Karagiorgi G, Ketchum W, Kirby M, Kobilarcik T, Kreslo I, Leibovitch MB, Lepetic I, Li JY, Li K, Li Y, Lin K, Littlejohn BR, Liu H, Louis WC, Luo X, Mariani C, Marsden D, Marshall J, Martinez N, Martinez Caicedo DA, Martynenko S, Mastbaum A, Mawby I, McConkey N, Meddage V, Micallef J, Miller K, Mogan A, Mohayai T, Mooney M, Moor AF, Moore CD, Mora Lepin L, Moudgalya MM, Mulleriababu S, Naples D, Navrer-Agasson A, Nayak N, Nebot-Guinot M, Nowak J, Oza N, Palamara O, Pallat N, Paolone V, Papadopoulou A, Papavassiliou V, Parkinson HB, Pate SF, Patel N, Pavlovic Z, Piasetzky E, Pophale I, Qian X, Raaf JL, Radeka V, Rafique A, Reggiani-Guzzo M, Ren L, Rochester L, Rodriguez Rondon J, Rosenberg M, Ross-Lonergan M, Rudolf von Rohr C, Safa I, Scanavini G, Schmitz DW, Schukraft A, Seligman W, Shaevitz MH, Sharankova R, Shi J, Snider EL, Soderberg M, Söldner-Rembold S, Spitz J, Stancari M, St John J, Strauss T, Szelc AM, Tang W, Taniuchi N, Terao K, Thorpe C, Torbunov D, Totani D, Toups M, Tsai YT, Tyler J, Uchida MA, Usher T, Viren B, Weber M, Wei H, White AJ, Wolbers S, Wongjirad T, Wospakrik M, Wresilo K, Wu W, Yandel E, Yang T, Yates LE, Yu HW, Zeller GP, Zennamo J, Zhang C. Search for Heavy Neutral Leptons in Electron-Positron and Neutral-Pion Final States with the MicroBooNE Detector. PHYSICAL REVIEW LETTERS 2024; 132:041801. [PMID: 38335355 DOI: 10.1103/physrevlett.132.041801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/30/2023] [Indexed: 02/12/2024]
Abstract
We present the first search for heavy neutral leptons (HNLs) decaying into νe^{+}e^{-} or νπ^{0} final states in a liquid-argon time projection chamber using data collected with the MicroBooNE detector. The data were recorded synchronously with the NuMI neutrino beam from Fermilab's main injector corresponding to a total exposure of 7.01×10^{20} protons on target. We set upper limits at the 90% confidence level on the mixing parameter |U_{μ4}|^{2} in the mass ranges 10≤m_{HNL}≤150 MeV for the νe^{+}e^{-} channel and 150≤m_{HNL}≤245 MeV for the νπ^{0} channel, assuming |U_{e4}|^{2}=|U_{τ4}|^{2}=0. These limits represent the most stringent constraints in the mass range 35
Collapse
|
9
|
Xiong X, Zhu Q, Zhou Z, Qian X, Hong R, Dai Y, Hu C. Discriminating minimal residual disease status in multiple myeloma based on MRI: utility of radiomics and comparison of machine-learning methods. Clin Radiol 2023; 78:e839-e846. [PMID: 37586967 DOI: 10.1016/j.crad.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
AIM To explore the possibility of discriminating minimal residual disease (MRD) status in multiple myeloma (MM) based on magnetic resonance imaging (MRI) and identify optimal machine-learning methods to optimise the clinical treatment regimen. MATERIALS AND METHODS A total of 83 patients were analysed retrospectively. They were divided randomly into training and validation cohorts. The regions of interest were segmented and radiomics features were extracted and analysed on two sequences, including T1-weighted imaging (WI) and fat saturated (FS)-T2WI, and then radiomics models were built in the training cohort and evaluated in the validation cohort. Clinical characteristics were calculated to build a traditional model. A combined model was also built using the clinical characteristics and radiomics features. Classification accuracy was assessed using area under the curve (AUC) and F1 score. RESULTS In the training cohort, only the bone marrow (BM) infiltrate ratio (p=0.005) was retained after univariate and multivariable logistic regression analysis. In T1WI, the linear support vector machine (SVM) achieved the best performance compared to other classifiers, with AUCs of 0.811 and 0.708 and F1 scores of 0.792 and 0.696 in the training and validation cohorts, respectively. Similarly, in FS-T2WI sequence, linear SVM achieved the best performance with AUCs of 0.833 and 0.800 and F1 score of 0.833 and 0.800. The combined model constructed by the FS-T2WI-linear SVM and BM infiltrate ratio outperformed the traditional model (p=0.050 and 0.012, Delong test), but showed no significant difference compared with the radiomics model (p=0.798 and 0.855). CONCLUSION The linear SVM-based machine-learning method can offer a non-invasive tool for discriminating MRD status in MM.
Collapse
|
10
|
Abratenko P, Alterkait O, Andrade Aldana D, Anthony J, Arellano L, Asaadi J, Ashkenazi A, Balasubramanian S, Baller B, Barr G, Barrow J, Basque V, Benevides Rodrigues O, Berkman S, Bhanderi A, Bhattacharya M, Bishai M, Blake A, Bogart B, Bolton T, Book JY, Camilleri L, Caratelli D, Caro Terrazas I, Cavanna F, Cerati G, Chen Y, Cohen EO, Conrad JM, Convery M, Cooper-Troendle L, Crespo-Anadón JI, Del Tutto M, Dennis SR, Detje P, Devitt A, Diurba R, Djurcic Z, Dorrill R, Duffy K, Dytman S, Eberly B, Ereditato A, Evans JJ, Fine R, Finnerud OG, Foreman W, Fleming BT, Foppiani N, Franco D, Furmanski AP, Garcia-Gamez D, Gardiner S, Ge G, Gollapinni S, Goodwin O, Gramellini E, Green P, Greenlee H, Gu W, Guenette R, Guzowski P, Hagaman L, Hen O, Hicks R, Hilgenberg C, Horton-Smith GA, Irwin B, Itay R, James C, Ji X, Jiang L, Jo JH, Johnson RA, Jwa YJ, Kalra D, Kamp N, Karagiorgi G, Ketchum W, Kirby M, Kobilarcik T, Kreslo I, Leibovitch MB, Lepetic I, Li JY, Li K, Li Y, Lin K, Littlejohn BR, Louis WC, Luo X, Mariani C, Marsden D, Marshall J, Martinez N, Martinez Caicedo DA, Mason K, Mastbaum A, McConkey N, Meddage V, Miller K, Mills J, Mogan A, Mohayai T, Mooney M, Moor AF, Moore CD, Mora Lepin L, Mousseau J, Mulleriababu S, Naples D, Navrer-Agasson A, Nayak N, Nebot-Guinot M, Nowak J, Oza N, Palamara O, Pallat N, Paolone V, Papadopoulou A, Papavassiliou V, Parkinson HB, Pate SF, Patel N, Pavlovic Z, Piasetzky E, Ponce-Pinto ID, Pophale I, Prince S, Qian X, Raaf JL, Radeka V, Rafique A, Reggiani-Guzzo M, Ren L, Rochester L, Rodriguez Rondon J, Rosenberg M, Ross-Lonergan M, Rudolf von Rohr C, Scanavini G, Schmitz DW, Schukraft A, Seligman W, Shaevitz MH, Sharankova R, Shi J, Snider EL, Soderberg M, Söldner-Rembold S, Spitz J, Stancari M, John JS, Strauss T, Sword-Fehlberg S, Szelc AM, Tang W, Taniuchi N, Terao K, Thorpe C, Torbunov D, Totani D, Toups M, Tsai YT, Tyler J, Uchida MA, Usher T, Viren B, Weber M, Wei H, White AJ, Williams Z, Wolbers S, Wongjirad T, Wospakrik M, Wresilo K, Wright N, Wu W, Yandel E, Yang T, Yates LE, Yu HW, Zeller GP, Zennamo J, Zhang C. First Double-Differential Measurement of Kinematic Imbalance in Neutrino Interactions with the MicroBooNE Detector. PHYSICAL REVIEW LETTERS 2023; 131:101802. [PMID: 37739352 DOI: 10.1103/physrevlett.131.101802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/09/2023] [Accepted: 07/14/2023] [Indexed: 09/24/2023]
Abstract
We report the first measurement of flux-integrated double-differential quasielasticlike neutrino-argon cross sections, which have been made using the Booster Neutrino Beam and the MicroBooNE detector at Fermi National Accelerator Laboratory. The data are presented as a function of kinematic imbalance variables which are sensitive to nuclear ground-state distributions and hadronic reinteraction processes. We find that the measured cross sections in different phase-space regions are sensitive to different nuclear effects. Therefore, they enable the impact of specific nuclear effects on the neutrino-nucleus interaction to be isolated more completely than was possible using previous single-differential cross section measurements. Our results provide precision data to help test and improve neutrino-nucleus interaction models. They further support ongoing neutrino-oscillation studies by establishing phase-space regions where precise reaction modeling has already been achieved.
Collapse
|
11
|
Andriamirado M, Balantekin AB, Bass CD, Bergeron DE, Bernard EP, Bowden NS, Bryan CD, Carr R, Classen T, Conant AJ, Deichert G, Delgado A, Diwan MV, Dolinski MJ, Erickson A, Foust BT, Gaison JK, Galindo-Uribari A, Gilbert CE, Gokhale S, Grant C, Hans S, Hansell AB, Heeger KM, Heffron B, Jaffe DE, Jayakumar S, Ji X, Jones DC, Koblanski J, Kunkle P, Kyzylova O, LaBelle D, Lane CE, Langford TJ, LaRosa J, Littlejohn BR, Lu X, Maricic J, Mendenhall MP, Meyer AM, Milincic R, Mueller PE, Mumm HP, Napolitano J, Neilson R, Nikkel JA, Nour S, Palomino Gallo JL, Pushin DA, Qian X, Roca C, Rosero R, Searles M, Surukuchi PT, Sutanto F, Tyra MA, Venegas-Vargas D, Weatherly PB, Wilhelmi J, Woolverton A, Yeh M, Zhang C, Zhang X. Final Measurement of the ^{235}U Antineutrino Energy Spectrum with the PROSPECT-I Detector at HFIR. PHYSICAL REVIEW LETTERS 2023; 131:021802. [PMID: 37505961 DOI: 10.1103/physrevlett.131.021802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 05/11/2023] [Indexed: 07/30/2023]
Abstract
This Letter reports one of the most precise measurements to date of the antineutrino spectrum from a purely ^{235}U-fueled reactor, made with the final dataset from the PROSPECT-I detector at the High Flux Isotope Reactor. By extracting information from previously unused detector segments, this analysis effectively doubles the statistics of the previous PROSPECT measurement. The reconstructed energy spectrum is unfolded into antineutrino energy and compared with both the Huber-Mueller model and a spectrum from a commercial reactor burning multiple fuel isotopes. A local excess over the model is observed in the 5-7 MeV energy region. Comparison of the PROSPECT results with those from commercial reactors provides new constraints on the origin of this excess, disfavoring at 2.0 and 3.7 standard deviations the hypotheses that antineutrinos from ^{235}U are solely responsible and noncontributors to the excess observed at commercial reactors, respectively.
Collapse
|
12
|
Abratenko P, Andrade Aldana D, Anthony J, Arellano L, Asaadi J, Ashkenazi A, Balasubramanian S, Baller B, Barr G, Barrow J, Basque V, Benevides Rodrigues O, Berkman S, Bhanderi A, Bhattacharya M, Bishai M, Blake A, Bogart B, Bolton T, Book JY, Camilleri L, Caratelli D, Caro Terrazas I, Cavanna F, Cerati G, Chen Y, Conrad JM, Convery M, Cooper-Troendle L, Crespo-Anadón JI, Del Tutto M, Dennis SR, Detje P, Devitt A, Diurba R, Djurcic Z, Dorrill R, Duffy K, Dytman S, Eberly B, Ereditato A, Evans JJ, Fine R, Finnerud OG, Foreman W, Fleming BT, Foppiani N, Franco D, Furmanski AP, Garcia-Gamez D, Gardiner S, Ge G, Gollapinni S, Goodwin O, Gramellini E, Green P, Greenlee H, Gu W, Guenette R, Guzowski P, Hagaman L, Hen O, Hicks R, Hilgenberg C, Horton-Smith GA, Irwin B, Itay R, James C, Ji X, Jiang L, Jo JH, Johnson RA, Jwa YJ, Kalra D, Kamp N, Karagiorgi G, Ketchum W, Kirby M, Kobilarcik T, Kreslo I, Leibovitch MB, Lepetic I, Li JY, Li K, Li Y, Lin K, Littlejohn BR, Louis WC, Luo X, Mariani C, Marsden D, Marshall J, Martinez N, Martinez Caicedo DA, Mason K, Mastbaum A, McConkey N, Meddage V, Miller K, Mills J, Mogan A, Mohayai T, Mooney M, Moor AF, Moore CD, Mora Lepin L, Mousseau J, Mulleriababu S, Naples D, Navrer-Agasson A, Nayak N, Nebot-Guinot M, Nowak J, Nunes M, Oza N, Palamara O, Pallat N, Paolone V, Papadopoulou A, Papavassiliou V, Parkinson HB, Pate SF, Patel N, Pavlovic Z, Piasetzky E, Ponce-Pinto ID, Pophale I, Prince S, Qian X, Raaf JL, Radeka V, Rafique A, Reggiani-Guzzo M, Ren L, Rochester L, Rodriguez Rondon J, Rosenberg M, Ross-Lonergan M, Rudolf von Rohr C, Scanavini G, Schmitz DW, Schukraft A, Seligman W, Shaevitz MH, Sharankova R, Shi J, Snider EL, Soderberg M, Söldner-Rembold S, Spitz J, Stancari M, John JS, Strauss T, Sword-Fehlberg S, Szelc AM, Tang W, Taniuchi N, Terao K, Thorpe C, Torbunov D, Totani D, Toups M, Tsai YT, Tyler J, Uchida MA, Usher T, Viren B, Weber M, Wei H, White AJ, Williams Z, Wolbers S, Wongjirad T, Wospakrik M, Wresilo K, Wright N, Wu W, Yandel E, Yang T, Yates LE, Yu HW, Zeller GP, Zennamo J, Zhang C. First Measurement of Quasielastic Λ Baryon Production in Muon Antineutrino Interactions in the MicroBooNE Detector. PHYSICAL REVIEW LETTERS 2023; 130:231802. [PMID: 37354393 DOI: 10.1103/physrevlett.130.231802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 06/26/2023]
Abstract
We present the first measurement of the cross section of Cabibbo-suppressed Λ baryon production, using data collected with the MicroBooNE detector when exposed to the neutrinos from the main injector beam at the Fermi National Accelerator Laboratory. The data analyzed correspond to 2.2×10^{20} protons on target running in neutrino mode, and 4.9×10^{20} protons on target running in anti-neutrino mode. An automated selection is combined with hand scanning, with the former identifying five candidate Λ production events when the signal was unblinded, consistent with the GENIE prediction of 5.3±1.1 events. Several scanners were employed, selecting between three and five events, compared with a prediction from a blinded Monte Carlo simulation study of 3.7±1.0 events. Restricting the phase space to only include Λ baryons that decay above MicroBooNE's detection thresholds, we obtain a flux averaged cross section of 2.0_{-1.7}^{+2.2}×10^{-40} cm^{2}/Ar, where statistical and systematic uncertainties are combined.
Collapse
|
13
|
Abratenko P, Aduszkiewicz A, Akbar F, Pons MA, Asaadi J, Aslin M, Babicz M, Badgett WF, Bagby LF, Baibussinov B, Behera B, Bellini V, Beltramello O, Benocci R, Berger J, Berkman S, Bertolucci S, Bertoni R, Betancourt M, Bettini M, Biagi S, Biery K, Bitter O, Bonesini M, Boone T, Bottino B, Braggiotti A, Brailsford D, Bremer J, Brice SJ, Brio V, Brizzolari C, Brown J, Budd HS, Calaon F, Campani A, Carber D, Carneiro M, Terrazas IC, Carranza H, Casazza D, Castellani L, Castro A, Centro S, Cerati G, Chalifour M, Chambouvet P, Chatterjee A, Cherdack D, Cherubini S, Chithirasreemadam N, Cicerchia M, Cicero V, Coan T, Cocco AG, Convery MR, Copello S, Cristaldo E, Dange AA, de Icaza Astiz I, De Roeck A, Di Domizio S, Di Noto L, Di Stefano C, Di Ferdinando D, Diwan M, Dolan S, Domine L, Donati S, Doubnik R, Drielsma F, Dyer J, Dytman S, Fabre C, Fabris F, Falcone A, Farnese C, Fava A, Ferguson H, Ferrari A, Ferraro F, Gallice N, Garcia FG, Geynisman M, Giarin M, Gibin D, Gigli SG, Gioiosa A, Gu W, Guerzoni M, Guglielmi A, Gurung G, Hahn S, Hardin K, Hausner H, Heggestuen A, Hilgenberg C, Hogan M, Howard B, Howell R, Hrivnak J, Iliescu M, Ingratta G, James C, Jang W, Jung M, Jwa YJ, Kashur L, Ketchum W, Kim JS, Koh DH, Kose U, Larkin J, Laurenti G, Lukhanin G, Marchini S, Marshall CM, Martynenko S, Mauri N, Mazzacane A, McFarland KS, Méndez DP, Menegolli A, Meng G, Miranda OG, Mladenov D, Mogan A, Moggi N, Montagna E, Montanari C, Montanari A, Mooney M, Moreno-Granados G, Mueller J, Naples D, Nebot-Guinot M, Nessi M, Nichols T, Nicoletto M, Norris B, Palestini S, Pallavicini M, Paolone V, Papaleo R, Pasqualini L, Patrizii L, Peghin R, Petrillo G, Petta C, Pia V, Pietropaolo F, Poirot J, Poppi F, Pozzato M, Prata MC, Prosser A, Putnam G, Qian X, Rampazzo G, Rappoldi A, Raselli GL, Rechenmacher R, Resnati F, Ricci AM, Riccobene G, Rice L, Richards E, Rigamonti A, Rosenberg M, Rossella M, Rubbia C, Sala P, Sapienza P, Savage G, Scaramelli A, Scarpelli A, Schmitz D, Schukraft A, Sergiampietri F, Sirri G, Smedley JS, Soha AK, Spanu M, Stanco L, Stewart J, Suarez NB, Sutera C, Tanaka HA, Tenti M, Terao K, Terranova F, Togo V, Torretta D, Torti M, Tortorici F, Tosi N, Tsai YT, Tufanli S, Turcato M, Usher T, Varanini F, Ventura S, Vercellati F, Vicenzi M, Vignoli C, Viren B, Warner D, Williams Z, Wilson RJ, Wilson P, Wolfs J, Wongjirad T, Wood A, Worcester E, Worcester M, Wospakrik M, Yu H, Yu J, Zani A, Zatti PG, Zennamo J, Zettlemoyer JC, Zhang C, Zucchelli S, Zuckerbrot M. ICARUS at the Fermilab Short-Baseline Neutrino program: initial operation. THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS 2023; 83:467. [PMID: 37303462 PMCID: PMC10239613 DOI: 10.1140/epjc/s10052-023-11610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023]
Abstract
The ICARUS collaboration employed the 760-ton T600 detector in a successful 3-year physics run at the underground LNGS laboratory, performing a sensitive search for LSND-like anomalous ν e appearance in the CERN Neutrino to Gran Sasso beam, which contributed to the constraints on the allowed neutrino oscillation parameters to a narrow region around 1 eV2 . After a significant overhaul at CERN, the T600 detector has been installed at Fermilab. In 2020 the cryogenic commissioning began with detector cool down, liquid argon filling and recirculation. ICARUS then started its operations collecting the first neutrino events from the booster neutrino beam (BNB) and the Neutrinos at the Main Injector (NuMI) beam off-axis, which were used to test the ICARUS event selection, reconstruction and analysis algorithms. ICARUS successfully completed its commissioning phase in June 2022. The first goal of the ICARUS data taking will be a study to either confirm or refute the claim by Neutrino-4 short-baseline reactor experiment. ICARUS will also perform measurement of neutrino cross sections with the NuMI beam and several Beyond Standard Model searches. After the first year of operations, ICARUS will search for evidence of sterile neutrinos jointly with the Short-Baseline Near Detector, within the Short-Baseline Neutrino program. In this paper, the main activities carried out during the overhauling and installation phases are highlighted. Preliminary technical results from the ICARUS commissioning data with the BNB and NuMI beams are presented both in terms of performance of all ICARUS subsystems and of capability to select and reconstruct neutrino events.
Collapse
|
14
|
An FP, Bai WD, Balantekin AB, Bishai M, Blyth S, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen HY, Chen SM, Chen Y, Chen YX, Cheng J, Cheng J, Cheng YC, Cheng ZK, Cherwinka JJ, Chu MC, Cummings JP, Dalager O, Deng FS, Ding YY, Diwan MV, Dohnal T, Dolzhikov D, Dove J, Dugas KV, Duyang HY, Dwyer DA, Gallo JP, Gonchar M, Gong GH, Gong H, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Han Y, Hans S, He M, Heeger KM, Heng YK, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang JH, Huang XT, Huang YB, Huber P, Jaffe DE, Jen KL, Ji XL, Ji XP, Johnson RA, Jones D, Kang L, Kettell SH, Kohn S, Kramer M, Langford TJ, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li F, Li HL, Li JJ, Li QJ, Li RH, Li S, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu JX, Lu C, Lu HQ, Luk KB, Ma BZ, Ma XB, Ma XY, Ma YQ, Mandujano RC, Marshall C, McDonald KT, McKeown RD, Meng Y, Napolitano J, Naumov D, Naumova E, Nguyen TMT, Ochoa-Ricoux JP, Olshevskiy A, Park J, Patton S, Peng JC, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren J, Morales Reveco C, Rosero R, Roskovec B, Ruan XC, Russell B, Steiner H, Sun JL, Tmej T, Treskov K, Tse WH, Tull CE, Tung YC, Viren B, Vorobel V, Wang CH, Wang J, Wang M, Wang NY, Wang RG, Wang W, Wang X, Wang Y, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wei LH, Wen LJ, Whisnant K, White CG, Wong HLH, Worcester E, Wu DR, Wu Q, Wu WJ, Xia DM, Xie ZQ, Xing ZZ, Xu HK, Xu JL, Xu T, Xue T, Yang CG, Yang L, Yang YZ, Yao HF, Ye M, Yeh M, Young BL, Yu HZ, Yu ZY, Yue BB, Zavadskyi V, Zeng S, Zeng Y, Zhan L, Zhang C, Zhang FY, Zhang HH, Zhang JL, Zhang JW, Zhang QM, Zhang SQ, Zhang XT, Zhang YM, Zhang YX, Zhang YY, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhao RZ, Zhou L, Zhuang HL, Zou JH. Improved Measurement of the Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay. PHYSICAL REVIEW LETTERS 2023; 130:211801. [PMID: 37295075 DOI: 10.1103/physrevlett.130.211801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/10/2023] [Accepted: 04/27/2023] [Indexed: 06/12/2023]
Abstract
Reactor neutrino experiments play a crucial role in advancing our knowledge of neutrinos. In this Letter, the evolution of the flux and spectrum as a function of the reactor isotopic content is reported in terms of the inverse-beta-decay yield at Daya Bay with 1958 days of data and improved systematic uncertainties. These measurements are compared with two signature model predictions: the Huber-Mueller model based on the conversion method and the SM2018 model based on the summation method. The measured average flux and spectrum, as well as the flux evolution with the ^{239}Pu isotopic fraction, are inconsistent with the predictions of the Huber-Mueller model. In contrast, the SM2018 model is shown to agree with the average flux and its evolution but fails to describe the energy spectrum. Altering the predicted inverse-beta-decay spectrum from ^{239}Pu fission does not improve the agreement with the measurement for either model. The models can be brought into better agreement with the measurements if either the predicted spectrum due to ^{235}U fission is changed or the predicted ^{235}U, ^{238}U, ^{239}Pu, and ^{241}Pu spectra are changed in equal measure.
Collapse
|
15
|
Shen X, He S, Wang J, Qian X, Wang H, Zhang B, Chen Y, Li H, An Y, Gong Q, Li G. Modifiable predictors of type 2 diabetes mellitus and roles of insulin resistance and β-cell function over a 6-year study and 30-year follow-up. J Endocrinol Invest 2023; 46:883-891. [PMID: 36219314 DOI: 10.1007/s40618-022-01932-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/29/2022] [Indexed: 04/17/2023]
Abstract
PURPOSE This study aimed to examine the modifiable predictors of T2DM and the roles of insulin resistance (IR) and β-cell function over a 6-year study and 30-year follow-up. METHODS A total of 462 non-diabetic participants, 282 with impaired glucose tolerance (IGT), and 180 with normal glucose tolerance (NGT) were enrolled in this analysis. The Matsuda IR index and area under the curve of insulin-to-glucose ratio (AUCI/G-R) were used as IR and β-cell function indices in the analysis. RESULTS In all participants, multivariable analysis showed that BMI, glucose status, Matsuda IR index and systolic blood pressure (SBP) at baseline were independently associated with an increased risk of T2DM over 30 years, whereas lifestyle intervention and AUCI/G-R were inversely associated with this risk. The predictive effect of the Matsuda IR index and AUCI/G-R in participants with IGT was consistent with the results of all participants, whereas in those with NGT, only the Matsuda IR index, not the AUCI/G-R, predicted the development of T2DM (HR = 1.42, 95% CI 1.07-1.89 vs HR = 1.09, 95% CI 0.76-1.56). The predictive effect of the Matsuda IR index on T2DM existed even in participants with BMI < 25 (p = 0.049). CONCLUSION The modifiable predictors of T2DM in Chinese adults were high BMI, hypertension, mild hyperglycaemia, IR, and β-cell dysfunction. Both IR and β-cell function contributed to the development of T2DM in the long term; however, IR remains the initial and long-standing key risk factor for T2DM.
Collapse
|
16
|
An FP, Bai WD, Balantekin AB, Bishai M, Blyth S, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen HY, Chen SM, Chen Y, Chen YX, Chen ZY, Cheng J, Cheng ZK, Cherwinka JJ, Chu MC, Cummings JP, Dalager O, Deng FS, Ding YY, Ding XY, Diwan MV, Dohnal T, Dolzhikov D, Dove J, Duyang HY, Dwyer DA, Gallo JP, Gonchar M, Gong GH, Gong H, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Han Y, Hans S, He M, Heeger KM, Heng YK, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang JH, Huang XT, Huang YB, Huber P, Jaffe DE, Jen KL, Ji XL, Ji XP, Johnson RA, Jones D, Kang L, Kettell SH, Kohn S, Kramer M, Langford TJ, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li F, Li HL, Li JJ, Li QJ, Li RH, Li S, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu JX, Lu C, Lu HQ, Luk KB, Ma BZ, Ma XB, Ma XY, Ma YQ, Mandujano RC, Marshall C, McDonald KT, McKeown RD, Meng Y, Napolitano J, Naumov D, Naumova E, Nguyen TMT, Ochoa-Ricoux JP, Olshevskiy A, Pan HR, Park J, Patton S, Peng JC, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren J, Morales Reveco C, Rosero R, Roskovec B, Ruan XC, Russell B, Steiner H, Sun JL, Tmej T, Treskov K, Tse WH, Tull CE, Viren B, Vorobel V, Wang CH, Wang J, Wang M, Wang NY, Wang RG, Wang W, Wang X, Wang Y, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wei LH, Wei W, Wen LJ, Whisnant K, White CG, Wong HLH, Worcester E, Wu DR, Wu Q, Wu WJ, Xia DM, Xie ZQ, Xing ZZ, Xu HK, Xu JL, Xu T, Xue T, Yang CG, Yang L, Yang YZ, Yao HF, Ye M, Yeh M, Young BL, Yu HZ, Yu ZY, Yue BB, Zavadskyi V, Zeng S, Zeng Y, Zhan L, Zhang C, Zhang FY, Zhang HH, Zhang JL, Zhang JW, Zhang QM, Zhang SQ, Zhang XT, Zhang YM, Zhang YX, Zhang YY, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhao RZ, Zhou L, Zhuang HL, Zou JH. Precision Measurement of Reactor Antineutrino Oscillation at Kilometer-Scale Baselines by Daya Bay. PHYSICAL REVIEW LETTERS 2023; 130:161802. [PMID: 37154643 DOI: 10.1103/physrevlett.130.161802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/24/2023] [Indexed: 05/10/2023]
Abstract
We present a new determination of the smallest neutrino mixing angle θ_{13} and the mass-squared difference Δm_{32}^{2} using a final sample of 5.55×10^{6} inverse beta-decay (IBD) candidates with the final-state neutron captured on gadolinium. This sample is selected from the complete dataset obtained by the Daya Bay reactor neutrino experiment in 3158 days of operation. Compared to the previous Daya Bay results, selection of IBD candidates has been optimized, energy calibration refined, and treatment of backgrounds further improved. The resulting oscillation parameters are sin^{2}2θ_{13}=0.0851±0.0024, Δm_{32}^{2}=(2.466±0.060)×10^{-3} eV^{2} for the normal mass ordering or Δm_{32}^{2}=-(2.571±0.060)×10^{-3} eV^{2} for the inverted mass ordering.
Collapse
|
17
|
Zhu H, Li Y, Guo J, Feng S, Ge H, Gu C, Wang M, Nie R, Li N, Wang Y, Wang H, Zhong J, Qian X, He G. Integrated proteomic and phosphoproteomic analysis for characterization of colorectal cancer. J Proteomics 2023; 274:104808. [PMID: 36596410 DOI: 10.1016/j.jprot.2022.104808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/02/2023]
Abstract
Proteins and translationally modified proteins like phosphoproteins have essential regulatory roles in tumorigenesis. This study attempts to elucidate the dysregulated proteins driving colorectal cancer (CRC). To explore the differential proteins, we performed iTRAQ labeling proteomics and TMT labeling phosphoproteomics analysis of CRC tissues and adjacent non-cancerous tissues. The functions of quantified proteins were analyzed using Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Subcellular localization analysis. Depending on the results, we identified 330 differential proteins and 82 phosphoproteins in CRC. GO and KEGG analyses demonstrated that protein changes were primarily associated with regulating biological and metabolic processes through binding to other molecules. Co-expression relationships between proteomic and phosphoproteomic analysis revealed that TMC5, SMC4, SLBP, VSIG2, and NDRG2 were significantly dysregulated differential proteins. Additionally, based on the predicted co-expression proteins, we identified that the stem-loop binding protein (SLBP) was up-regulated in CRC cells and promoted the proliferation and migration of CRC. This study reports an integrated proteomic and phosphoproteomic analysis of CRC to discern the functional impact of protein alterations and provides a candidate diagnostic biomarker or therapeutic target for CRC. SIGNIFICANCE: Combining one or more high-throughput omics technologies with bioinformatics to analyze biological samples and explore the links between biomolecules and their functions can provide more comprehensive and multi-level insights for disease mechanism research. Proteomics, phosphoproteomics, metabolomics and their combined analysis play an important role in the auxiliary diagnosis, the discovery of biomarkers and novel therapeutic targets for colorectal cancer. In this integrated proteomic and phosphoproteomic analysis, we identified proteins and phosphoproteins in colorectal cancer tissue and analyzed potential mechanisms contributing to progression in colorectal cancer. The results of this study provide a foundation to focus future experiments on the contribution of altered protein and phosphorylation patterns to prevention and treatment of colorectal cancer.
Collapse
|
18
|
Abstract
Liver diseases, including viral hepatitis, fatty liver, metabolic-associated fatty liver disease, liver cirrhosis, alcoholic liver disease, and liver neoplasms, are major global health challenges. Despite the continued development of new drugs and technologies, the prognosis of end-stage liver diseases, including advanced liver cirrhosis and liver neoplasms, remains poor. Follistatin-like protein 1 (FSTL1), an extracellular glycoprotein, is secreted by various cell types. It is a glycoprotein that belongs to the family of secreted proteins acidic and rich in cysteine (SPARC). It is also known as transforming growth factor-beta inducible TSC-36 and follistatin-related protein (FRP). FSTL1 plays a key role in cell survival, proliferation, differentiation, and migration, as well as the regulation of inflammation and immunity. Studies have demonstrated that FSTL1 significantly affects the occurrence and development of liver diseases. This article reviews the role and mechanism of FSLT1 in liver diseases.
Collapse
|
19
|
He G, Li W, Zhao W, Men H, Chen Q, Hu J, Zhang J, Zhu H, Wang W, Deng M, Xu Z, Wang G, Zhou L, Qian X, Liang L. Formin-like 2 promotes angiogenesis and metastasis of colorectal cancer by regulating the EGFL6/CKAP4/ERK axis. Cancer Sci 2023; 114:2014-2028. [PMID: 36715549 PMCID: PMC10154862 DOI: 10.1111/cas.15739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Increasing evidence indicates that angiogenesis plays a pivotal role in tumor progression. Formin-like 2 (FMNL2) is well-known for promoting metastasis; however, the molecular mechanisms by which FMNL2 promotes angiogenesis in colorectal cancer (CRC) remain unclear. Here, we found that FMNL2 promotes angiogenesis and metastasis of CRC in vitro and in vivo. The GDB/FH3 domain of FMNL2 directly interacts with epidermal growth factor-like protein 6 (EGFL6). Formin-like 2 promotes EGFL6 paracrine signaling by exosomes to regulate angiogenesis in CRC. Cytoskeleton associated protein 4 (CKAP4) is a downstream target of EGFL6 and is involved in CRC angiogenesis. Epidermal growth factor-like protein 6 binds to the N-terminus of CKAP4 to promote the migration of HUVECs by activating the ERK/MMP pathway. These findings suggest that FMNL2 promotes the migration of HUVECs and enhances angiogenesis and tumorigenesis in CRC by regulating the EGFL6/CKAP4/ERK axis. Therefore, the EGFL6/CKAP4/ERK axis could be a candidate therapeutic target for CRC treatment.
Collapse
|
20
|
Abratenko P, Andrade Aldana D, Anthony J, Arellano L, Asaadi J, Ashkenazi A, Balasubramanian S, Baller B, Barr G, Barrow J, Basque V, Bathe-Peters L, Benevides Rodrigues O, Berkman S, Bhanderi A, Bhattacharya M, Bishai M, Blake A, Bogart B, Bolton T, Book JY, Camilleri L, Caratelli D, Caro Terrazas I, Cavanna F, Cerati G, Chen Y, Conrad JM, Convery M, Cooper-Troendle L, Crespo-Anadón JI, Del Tutto M, Dennis SR, Detje P, Devitt A, Diurba R, Dorrill R, Duffy K, Dytman S, Eberly B, Ereditato A, Evans JJ, Fine R, Finnerud OG, Foreman W, Fleming BT, Foppiani N, Franco D, Furmanski AP, Garcia-Gamez D, Gardiner S, Ge G, Gollapinni S, Goodwin O, Gramellini E, Green P, Greenlee H, Gu W, Guenette R, Guzowski P, Hagaman L, Hen O, Hicks R, Hilgenberg C, Horton-Smith GA, Irwin B, Itay R, James C, Ji X, Jiang L, Jo JH, Johnson RA, Jwa YJ, Kalra D, Kamp N, Karagiorgi G, Ketchum W, Kirby M, Kobilarcik T, Kreslo I, Leibovitch MB, Lepetic I, Li JY, Li K, Li Y, Lin K, Littlejohn BR, Louis WC, Luo X, Manivannan K, Mariani C, Marsden D, Marshall J, Martinez N, Martinez Caicedo DA, Mason K, Mastbaum A, McConkey N, Meddage V, Miller K, Mills J, Mogan A, Mohayai T, Mooney M, Moor AF, Moore CD, Mora Lepin L, Mousseau J, Mulleriababu S, Naples D, Navrer-Agasson A, Nayak N, Nebot-Guinot M, Nowak J, Nunes M, Oza N, Palamara O, Pallat N, Paolone V, Papadopoulou A, Papavassiliou V, Parkinson HB, Pate SF, Patel N, Pavlovic Z, Piasetzky E, Ponce-Pinto ID, Pophale I, Prince S, Qian X, Raaf JL, Radeka V, Reggiani-Guzzo M, Ren L, Rochester L, Rodriguez Rondon J, Rosenberg M, Ross-Lonergan M, Rudolf von Rohr C, Scanavini G, Schmitz DW, Schukraft A, Seligman W, Shaevitz MH, Sharankova R, Shi J, Smith A, Snider EL, Soderberg M, Söldner-Rembold S, Spitz J, Stancari M, St John J, Strauss T, Sword-Fehlberg S, Szelc AM, Tang W, Taniuchi N, Terao K, Thorpe C, Torbunov D, Totani D, Toups M, Tsai YT, Tyler J, Uchida MA, Usher T, Viren B, Weber M, Wei H, White AJ, Williams Z, Wolbers S, Wongjirad T, Wospakrik M, Wresilo K, Wright N, Wu W, Yandel E, Yang T, Yates LE, Yu HW, Zeller GP, Zennamo J, Zhang C. First Constraints on Light Sterile Neutrino Oscillations from Combined Appearance and Disappearance Searches with the MicroBooNE Detector. PHYSICAL REVIEW LETTERS 2023; 130:011801. [PMID: 36669216 DOI: 10.1103/physrevlett.130.011801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
We present a search for eV-scale sterile neutrino oscillations in the MicroBooNE liquid argon detector, simultaneously considering all possible appearance and disappearance effects within the 3+1 active-to-sterile neutrino oscillation framework. We analyze the neutrino candidate events for the recent measurements of charged-current ν_{e} and ν_{μ} interactions in the MicroBooNE detector, using data corresponding to an exposure of 6.37×10^{20} protons on target from the Fermilab booster neutrino beam. We observe no evidence of light sterile neutrino oscillations and derive exclusion contours at the 95% confidence level in the plane of the mass-squared splitting Δm_{41}^{2} and the sterile neutrino mixing angles θ_{μe} and θ_{ee}, excluding part of the parameter space allowed by experimental anomalies. Cancellation of ν_{e} appearance and ν_{e} disappearance effects due to the full 3+1 treatment of the analysis leads to a degeneracy when determining the oscillation parameters, which is discussed in this Letter and will be addressed by future analyses.
Collapse
|
21
|
Gao Y, Zhao LB, Li K, Su X, Li X, Li J, Zhao Z, Wang H, He Z, Fang F, Xu W, Qian X, Fan L, Liu L. The J-shape Association between Total Bilirubin and Stroke in Older Patients with Obstructive Sleep Apnea Syndrome: A Multicenter Study. J Nutr Health Aging 2023; 27:692-700. [PMID: 37754208 DOI: 10.1007/s12603-023-1965-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/05/2023] [Indexed: 09/28/2023]
Abstract
OBJECTIVES To explore the relationship between total bilirubin (TBil) and stroke risk in older patients with obstructive sleep apnea syndrome (OSAS). METHODS A total of 1,007 patients with OSAS without stroke history aged ≥ 60 years and with complete serum TBil records were enrolled in this study. The median follow-up was 42 months. Participants were divided into four groups based on the quartile of the baseline serum TBil concentration. Multivariate Cox proportional hazards analysis and restricted cubic spline (RCS) were used to investigate the association of TBil with the incidence of new-onset stroke. RESULTS The PRIMARY part: the third quantile TBil level group had the lowest prevalence of stroke among the four groups. The RCS functions depicted a J-type curve relationship between TBil (3.3-33.3 µmol/L) and stroke (nonlinear P < 0.05). When the TBil level was in the range of 3.3 to 11.5 µmol/L, the possible protective influence of bilirubin against stroke in patients with OSAS enhanced with an increasing TBil level. However, when the TBil level exceeded 11.5 µmol/L and gradually increased, the effect of TBil on stroke risk became more and more pronounced. The SECONDARY part: for every 1 µmol/L increase in TBil levels in the range of 11.5 to 33.3 µmol/L, the risk of stroke in patients with OSAS increased by 16.2% (P < 0.001). In addition, there was a higher risk in women with OSAS (hazard ratio (HR)=1.292, 95% confidence interval (95%CI): 1.093-1.528; P = 0.003). Moreover, an increased TBil level alone was significantly associated with stroke in subjects aged < 75 years (HR: 1.190, 95%CI: 1.069-1.324), patients with mild-to-moderate OSAS (HR: 1.215, 95%CI: 1.083-1.364), and individuals without atrial fibrillation (AF) (HR: 1.179, 95%CI: 1.083-1.285) within a TBil level in the range of 11.5 to 33.3 µmol/L. CONCLUSIONS Both lower and higher bilirubin levels may increase the risk of stroke in older persons with OSAS, and there was a J-type dose-response relationship. The risk of stroke was lowest when the TBil level was approximately 11.5 µmol/L.
Collapse
|
22
|
Li H, Lin Y, Yu T, Xie Y, Jiang C, Feng J, Qian X, Yin Z. 346P The safety and efficacy of intrathecal chemotherapy with pemetrexed via the Ommaya reservoir for leptomeningeal metastases from lung adenocarcinoma: A prospective study. Ann Oncol 2022. [DOI: 10.1016/j.annonc.2022.10.384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
23
|
Cattell R, Ashamalla M, Kim J, Zabrocka E, Qian X, O'Grady B, Butler S, Yoder T, Mani K, Ryu S. Artificial Intelligence-Assisted Peer Review in Radiation Oncology. Int J Radiat Oncol Biol Phys 2022. [DOI: 10.1016/j.ijrobp.2022.07.1726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Yang K, Ci S, Zhang J, Lu C, Zhang Q, Wu Q, Hu L, Gao J, Li D, Shan D, Li Y, Li L, Zhao L, Agnihotri S, Qian X, Shi Y, Zhang N, You Y, Wang X, Rich J. Targeting Nuclear Pore Complex to Radiosensitize Glioblastoma Stem Cells. Int J Radiat Oncol Biol Phys 2022. [DOI: 10.1016/j.ijrobp.2022.07.2137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Man J, Cao P, Wang H, Qian X, Miao H, Zhu X, Jiang J, Jiang W, Qian M, Zhai X. REPORT OF SYSTEMIC EBV-POSITIVE T-CELL LYMPHOMA OF CHILDHOOD ASSOCIATED WITH XMEN DISEASE CAUSED BY A NOVEL MUTATION. Leuk Res 2022. [DOI: 10.1016/s0145-2126(22)00283-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|