1
|
Rimel JK, Taatjes DJ. The essential and multifunctional TFIIH complex. Protein Sci 2018; 27:1018-1037. [PMID: 29664212 PMCID: PMC5980561 DOI: 10.1002/pro.3424] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022]
Abstract
TFIIH is a 10‐subunit complex that regulates RNA polymerase II (pol II) transcription but also serves other important biological roles. Although much remains unknown about TFIIH function in eukaryotic cells, much progress has been made even in just the past few years, due in part to technological advances (e.g. cryoEM and single molecule methods) and the development of chemical inhibitors of TFIIH enzymes. This review focuses on the major cellular roles for TFIIH, with an emphasis on TFIIH function as a regulator of pol II transcription. We describe the structure of TFIIH and its roles in pol II initiation, promoter‐proximal pausing, elongation, and termination. We also discuss cellular roles for TFIIH beyond transcription (e.g. DNA repair, cell cycle regulation) and summarize small molecule inhibitors of TFIIH and diseases associated with defects in TFIIH structure and function.
Collapse
|
Review |
7 |
85 |
2
|
Urbanowicz RJ, Andrew AS, Karagas MR, Moore JH. Role of genetic heterogeneity and epistasis in bladder cancer susceptibility and outcome: a learning classifier system approach. J Am Med Inform Assoc 2013; 20:603-12. [PMID: 23444013 PMCID: PMC3721175 DOI: 10.1136/amiajnl-2012-001574] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Detecting complex patterns of association between genetic or environmental risk factors and disease risk has become an important target for epidemiological research. In particular, strategies that provide multifactor interactions or heterogeneous patterns of association can offer new insights into association studies for which traditional analytic tools have had limited success. MATERIALS AND METHODS To concurrently examine these phenomena, previous work has successfully considered the application of learning classifier systems (LCSs), a flexible class of evolutionary algorithms that distributes learned associations over a population of rules. Subsequent work dealt with the inherent problems of knowledge discovery and interpretation within these algorithms, allowing for the characterization of heterogeneous patterns of association. Whereas these previous advancements were evaluated using complex simulation studies, this study applied these collective works to a 'real-world' genetic epidemiology study of bladder cancer susceptibility. RESULTS AND DISCUSSION We replicated the identification of previously characterized factors that modify bladder cancer risk--namely, single nucleotide polymorphisms from a DNA repair gene, and smoking. Furthermore, we identified potentially heterogeneous groups of subjects characterized by distinct patterns of association. Cox proportional hazard models comparing clinical outcome variables between the cases of the two largest groups yielded a significant, meaningful difference in survival time in years (survivorship). A marginally significant difference in recurrence time was also noted. These results support the hypothesis that an LCS approach can offer greater insight into complex patterns of association. CONCLUSIONS This methodology appears to be well suited to the dissection of disease heterogeneity, a key component in the advancement of personalized medicine.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
49 |
3
|
Cheng K, Wigley DB. DNA translocation mechanism of an XPD family helicase. eLife 2018; 7:42400. [PMID: 30520735 PMCID: PMC6300356 DOI: 10.7554/elife.42400] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022] Open
Abstract
The XPD family of helicases, that includes human disease-related FANCJ, DDX11 and RTEL1, are Superfamily two helicases that contain an iron-sulphur cluster domain, translocate on ssDNA in a 5’−3’ direction and play important roles in genome stability. Consequently, mutations in several of these family members in eukaryotes cause human diseases. Family members in bacteria, such as the DinG helicase from Escherichia coli, are also involved in DNA repair. Here we present crystal structures of complexes of DinG bound to single-stranded DNA (ssDNA) in the presence and absence of an ATP analogue (ADP•BeF3), that suggest a mechanism for 5’−3’ translocation along the ssDNA substrate. This proposed mechanism has implications for how those enzymes of the XPD family that recognise bulky DNA lesions might stall at these as the first step in initiating DNA repair. Biochemical data reveal roles for conserved residues that are mutated in human diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
44 |
4
|
Envisioning how the prototypic molecular machine TFIIH functions in transcription initiation and DNA repair. DNA Repair (Amst) 2020; 96:102972. [PMID: 33007515 DOI: 10.1016/j.dnarep.2020.102972] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
Critical for transcription initiation and bulky lesion DNA repair, TFIIH provides an exemplary system to connect molecular mechanisms to biological outcomes due to its strong genetic links to different specific human diseases. Recent advances in structural and computational biology provide a unique opportunity to re-examine biologically relevant molecular structures and develop possible mechanistic insights for the large dynamic TFIIH complex. TFIIH presents many puzzles involving how its two SF2 helicase family enzymes, XPB and XPD, function in transcription initiation and repair: how do they initiate transcription, detect and verify DNA damage, select the damaged strand for incision, coordinate repair with transcription and cell cycle through Cdk-activating-kinase (CAK) signaling, and result in very different specific human diseases associated with cancer, aging, and development from single missense mutations? By joining analyses of breakthrough cryo-electron microscopy (cryo-EM) structures and advanced computation with data from biochemistry and human genetics, we develop unified concepts and molecular level understanding for TFIIH functions with a focus on structural mechanisms. We provocatively consider that TFIIH may have first evolved from evolutionary pressure for TCR to resolve arrested transcription blocks to DNA replication and later added its key roles in transcription initiation and global DNA repair. We anticipate that this level of mechanistic information will have significant impact on thinking about TFIIH, laying a robust foundation suitable to develop new paradigms for DNA transcription initiation and repair along with insights into disease prevention, susceptibility, diagnosis and interventions.
Collapse
|
Review |
5 |
36 |
5
|
Odermatt DC, Gari K. The CIA Targeting Complex Is Highly Regulated and Provides Two Distinct Binding Sites for Client Iron-Sulfur Proteins. Cell Rep 2017; 18:1434-1443. [PMID: 28178521 PMCID: PMC5993189 DOI: 10.1016/j.celrep.2017.01.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/08/2016] [Accepted: 01/14/2017] [Indexed: 01/25/2023] Open
Abstract
The cytoplasmic iron-sulfur assembly (CIA) targeting complex is required for the transfer of an iron-sulfur (Fe-S) cluster to cytoplasmic and nuclear proteins, but how it engages with client proteins is unknown. Here, we show that the complex members MIP18 and CIAO1 associate with the C terminus of MMS19. By doing so, they form a docking site for Fe-S proteins that is disrupted in the absence of either MMS19 or MIP18. The Fe-S helicase XPD seems to be the only exception, since it can interact with MMS19 independently of MIP18 and CIAO1. We further show that the direct interaction between MMS19 and MIP18 is required to protect MIP18 from proteasomal degradation. Taken together, these data suggest a remarkably regulated interaction between the CIA targeting complex and client proteins and raise the possibility that Fe-S cluster transfer is controlled, at least in part, by the stability of the CIA targeting complex itself.
Collapse
|
Journal Article |
8 |
23 |
6
|
Ferlazzo M, Berthel E, Granzotto A, Devic C, Sonzogni L, Bachelet JT, Pereira S, Bourguignon M, Sarasin A, Mezzina M, Foray N. Some mutations in the xeroderma pigmentosum D gene may lead to moderate but significant radiosensitivity associated with a delayed radiation-induced ATM nuclear localization. Int J Radiat Biol 2019; 96:394-410. [PMID: 31738647 DOI: 10.1080/09553002.2020.1694189] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose: Xeroderma Pigmentosum (XP) is a rare, recessive genetic disease associated with photosensitivity, skin cancer proneness, neurological abnormalities and impaired nucleotide excision repair of the UV-induced DNA damage. Less frequently, XP can be associated with sensitivity to ionizing radiation (IR). Here, a complete radiobiological characterization was performed on a panel of fibroblasts derived from XP-group D patients (XPD).Materials and methods: Cellular radiosensitivity and the functionality of the recognition and repair of chromosome breaks and DNA double-strand breaks (DSB) was evaluated by different techniques including clonogenic cell survival, micronuclei, premature chromosome condensation, pulsed-field gel electrophoresis, chromatin decondensation and immunofluorescence assays. Quantitative correlations between each endpoint were analyzed systematically.Results: Among the seven fibroblast cell lines tested, those derived from three non-relative patients holding the p.[Arg683Trp];[Arg616Pro] XPD mutations showed significant cellular radiosensitivity, high yield of residual micronuclei, incomplete DSB recognition, DSB and chromosome repair defects, impaired ATM, MRE11 relocalization, significant chromatin decondensation. Interestingly, XPD transduction and treatment with statins and bisphosphonates known to accelerate the radiation-induced ATM nucleoshuttling led to significant complementation of these impairments.Conclusions: Our findings suggest that some subsets of XPD patients may be at risk of radiosensitivity reactions and treatment with statins and bisphosphonates may be an interesting approach of radioprotection countermeasure. Different mechanistic models were discussed to better understand the potential specificity of the p.[Arg683Trp];[Arg616Pro] XPD mutations.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
22 |
7
|
Wirth N, Gross J, Roth HM, Buechner CN, Kisker C, Tessmer I. Conservation and Divergence in Nucleotide Excision Repair Lesion Recognition. J Biol Chem 2016; 291:18932-46. [PMID: 27405761 DOI: 10.1074/jbc.m116.739425] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Indexed: 11/06/2022] Open
Abstract
Nucleotide excision repair is an important and highly conserved DNA repair mechanism with an exceptionally large range of chemically and structurally unrelated targets. Lesion verification is believed to be achieved by the helicases UvrB and XPD in the prokaryotic and eukaryotic processes, respectively. Using single molecule atomic force microscopy analyses, we demonstrate that UvrB and XPD are able to load onto DNA and pursue lesion verification in the absence of the initial lesion detection proteins. Interestingly, our studies show different lesion recognition strategies for the two functionally homologous helicases, as apparent from their distinct DNA strand preferences, which can be rationalized from the different structural features and interactions with other nucleotide excision repair protein factors of the two enzymes.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
21 |
8
|
Ramaniuk VP, Nikitchenko NV, Savina NV, Kuzhir TD, Rolevich AI, Krasny SA, Sushinsky VE, Goncharova RI. Polymorphism of DNA repair genes OGG1, XRCC1, XPD and ERCC6 in bladder cancer in Belarus. Biomarkers 2014; 19:509-16. [PMID: 25089939 DOI: 10.3109/1354750x.2014.943291] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT The study of DNA base and nucleotide excision repair gene polymorphisms in bladder cancer seems to have a predictive value because of the evident relationship between the DNA damage response induced by environmental mutagens and cancer predisposition. OBJECTIVE The objective was to determine OGG1 Ser326Cys, XRCC1 Arg399Gln, XPD Asp312Asn, and ERCC6 Met1097Val polymorphisms in bladder cancer patients as compared to controls. METHODS Both groups were predominantly represented by Belarusians and Eastern Slavs. DNA samples from 336 patients and 370 controls were genotyped using a PCR-RFLP method. RESULTS The genotype distributions were in agreement with the Hardy-Weinberg equilibrium. The minor allele frequencies in the control population were in the range of those in Caucasians in contrast to Asians. The OGG1 326 Ser/Cys and XPD 312 Asp/Asn heterozygous genotypes were inversely associated with cancer risk (OR [95% CI] = 0.69 [0.50-0.95] and 1.35 [1.0-1.82], respectively). The contrasting effects of these genotypes were potentiated due to their interactions with smoking habit or age. CONCLUSIONS Among four DNA repair gene polymorphisms, the OGG1 326 Ser/Cys and XPD 312 Asp/Asn heterozygous genotypes might be recognized as potential genetic markers modifying susceptibility to bladder cancer in Belarus.
Collapse
|
Journal Article |
11 |
21 |
9
|
Cheng J, Zhuo Z, Xin Y, Zhao P, Yang W, Zhou H, Zhang J, Gao Y, He J, Li P. Relevance of XPD polymorphisms to neuroblastoma risk in Chinese children: a four-center case-control study. Aging (Albany NY) 2018; 10:1989-2000. [PMID: 30089098 PMCID: PMC6128416 DOI: 10.18632/aging.101522] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Neuroblastoma is a lethal tumor that commonly occurs in children. Polymorphisms in XPD reportedly influence risk for several types of cancer, though their roles in neuroblastoma remain unclear. Here we endeavored to determine the relevance of XPD gene polymorphisms and neuroblastoma susceptibility in Chinese children genotyping three XPD polymorphisms (rs3810366, rs13181 and rs238406) in 505 cases and 1070 controls and assessing their contributions to neuroblastoma risk. Overall, we detected no significant association between any single XPD genotype and neuroblastoma risk. When risk genotypes were combined, however, we found that patients with 2-3 risk genotypes were more likely to develop neuroblastoma (adjusted odds ratio =1.31; 95% confidence interval =1.06-1.62, P=0.013) than those with 0-1 risk genotypes. Stratification analysis of rs3810366 revealed significant relationships between the subgroups age ≤18 months and clinical stage I+II+4s and neuroblastoma risk. Moreover, the presence of 2-3 risk genotypes was significantly associated with increased neuroblastoma risk in the subgroups age ≤18 months, male, tumor originated from others, and clinical stage I+II+4s. Our findings provide novel insight into the genetic underpinnings of neuroblastoma and demonstrate that XPD polymorphisms may have a cumulative effect on neuroblastoma risk.
Collapse
|
research-article |
7 |
20 |
10
|
XPD suppresses cell proliferation and migration via miR-29a-3p-Mdm2/PDGF-B axis in HCC. Cell Biosci 2019; 9:6. [PMID: 30627419 PMCID: PMC6321695 DOI: 10.1186/s13578-018-0269-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/31/2018] [Indexed: 02/08/2023] Open
Abstract
Objective The aim of this study was to investigate the role of XPD in migration and invasion of hepatocellular carcinoma (HCC) cells. Methods The expression of XPD and miR-29a-3p was examined by western blot and qRT-PCR, cell proliferation was detected by MTT assay, cell migration was detected by transwell assay. TargetScan was used to predict potential targets of miR-29a-3p. Results In this study, we found that the expression of XPD and miR-29a-3p was downregulated in HCC samples and HCC cell lines. XPD suppressed proliferation and migration of HCC cell via regulating miR-29a-3p expression. Target prediction analysis and dual-luciferase reporter assay confirmed Mdm2 and PDGF-B were direct targets of miR-29a-3p, and miR-29a-3p suppressed proliferation and migration of HCC cells via regulating the expression of Mdm2 or PDGF-B. Conclusions Our data indicated that XPD suppressed cell proliferation and migration via miR-29a-3p-Mdm2/PDGF-B axis in HCC.
Collapse
|
Journal Article |
6 |
19 |
11
|
XPD, APE1, and MUTYH polymorphisms increase head and neck cancer risk: effect of gene-gene and gene-environment interactions. Tumour Biol 2015; 36:7569-79. [PMID: 25916209 DOI: 10.1007/s13277-015-3472-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/15/2015] [Indexed: 01/11/2023] Open
Abstract
In the present study, we investigated the effect of the DNA repair gene polymorphisms XPD Asp312Asn (G>A), APE1 Asp148Glu (T>G), and MUTYH Tyr165Cys (G>A) on the risk for head and neck cancer (HNC) in association with tobacco use in a population of Northeast India. The study subjects comprised of 80 HNC patients and 92 healthy controls. Genotyping was performed using amplification refractory mutation system-PCR (ARMS-PCR) for XPD Asp312Asn (G>A) and PCR using confronting two-pair primers (PCR-CTPP) for APE1 Asp148Glu (T>G) and MUTYH Tyr165Cys (G>A). The XPD Asp/Asn genotype increased the risk for HNC by 2-fold (odds ratio, OR = 2.072; 95 % CI, 1.025-4.190; p < 0.05). Interaction between APE1 Asp/Asp and XPD Asp/Asn as well as MUTYH Tyr/Tyr and XPD Asp/Asn genotypes further increased the risk by 2.9 (OR = 2.97; 95 % CI, 1.16-7.61; p < 0.05) and 2.3 (OR = 2.37; 95 % CI, 1.11-5.10; p < 0.05) folds, respectively. The risk was further increased in heavy smokers with the XPD Asp/Asn genotype and heavy tobacco chewers with XPD Asn/Asn genotype by 7.7-fold (OR = 7.749; 95 % CI, 2.53-23.70; p < 0.05) and 10-fold (OR = 10; 95 % CI, 1.26-79.13; p < 0.05), respectively. We thus conclude that the XPD Asp312Asn and APE1 Asp148Glu polymorphisms increase the risk for HNC in association with smoking and/or tobacco chewing in the population under study.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
14 |
12
|
XPD Polymorphisms and Risk of Squamous Cell Carcinoma of the Head and Neck in a Korean Sample. Clin Exp Otorhinolaryngol 2010; 3:42-7. [PMID: 20379402 PMCID: PMC2848318 DOI: 10.3342/ceo.2010.3.1.42] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 01/15/2010] [Indexed: 01/11/2023] Open
Abstract
Objectives XPD is a major player in nucleotide excision repair, which is one of the basic pathways of DNA repair. The objective of this study was to investigate the association of XPD single nucleotide polymorphisms (SNPs) and the risk of squamous cell carcinoma of the head and neck (SCCHN) in Koreans. Methods We performed XPD +23591G>A and +35931A>C genotyping in 290 SCCHN patients and 358 controls. Results The frequencies of the XPD +23591G>A (GG/GA/AA) genotypes were 89.0%/11.0%/0% in the patients and 90.3%/8.8%/0.9% in the controls, respectively. The odds ratio (OR) of the XPD +23591 GA genotype was 1.94 (0.92 to 4.08) in reference to the GG genotype. The frequencies of the XPD +35931A>C (AA/AC/CC) genotypes were 86.9%/12.0%/1.1% in the patients and 85.6%/13.8%/0.6% in the controls, respectively. The OR of the XPD +35931 AC and CC genotypes were 0.98 (0.51 to 1.88) and 2.68 (0.71 to 10.1), respectively, in reference to the AA genotype. On the subgroup analyses according to the smoking and drinking statuses, the SNPs and haplotypes of XPD showed no statistically significant association with the risk of SCCHN. Conclusion The results of this study suggest that the XPD +23591G>A and +35931A>C SNPs are not associated with the risk of SCCHN in Koreans; however, a further study with a larger number of subjects is necessary to verify this conclusion.
Collapse
|
Journal Article |
15 |
14 |
13
|
Liu D, Wu D, Li H, Dong M. The effect of XPD/ERCC2 Lys751Gln polymorphism on acute leukemia risk: a systematic review and meta-analysis. Gene 2014; 538:209-16. [PMID: 24486506 DOI: 10.1016/j.gene.2014.01.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 01/06/2014] [Accepted: 01/14/2014] [Indexed: 11/24/2022]
Abstract
AIMS Epidemiological studies have assessed the association between xeroderma pigmentosum group D (XPD) Lys751Gln and acute leukemia risk with conflicting results. We performed this meta-analysis to derive a more precise estimation of the relationship. Pooled odds ratio (OR) with 95% confidence interval (95% CI) was used to assess the strength of the association. RESULTS Ten published case-control studies including a total of 1494 cases and 2259 controls were identified. Overall, significant risk effects of Lys751Gln genotype was found under the dominant model (OR=1.16; 95% CI=1.01-1.34; P=0.032). When stratified by clinical types, the variant genotype was associated with the acute myeloid leukemia (AML) risk under the heterozygote comparison (OR=1.20; 95% CI=1.00-1.43; P=0.048), the homozygote comparison (OR=1.35; 95% CI=1.05-1.74; P=0.019) and the dominant model (OR=1.23; 95% CI=1.04-1.45; P=0.015), respectively. Furthermore, significantly increased risks were also pronounced in Caucasian AML patients (the homozygote comparison: OR=1.38; 95% CI=1.07-1.78; P=0.013; the dominant model: OR=1.23; 95% CI=1.03-1.46; P=0.020; and the recessive model: OR=1.26; 95% CI=1.00-1.60; P=0.050). No evident heterogeneities were observed for the overall data under all genetic models. In addition, no statistical evidence for publication bias was found using the method of Begg's and Egger's tests. CONCLUSION This meta-analysis suggested that XPD Lys751Gln polymorphism might be a risk factor for AML and Caucasian acute leukemia patients.
Collapse
|
Systematic Review |
11 |
13 |
14
|
Sameer AS, Nissar S. XPD-The Lynchpin of NER: Molecule, Gene, Polymorphisms, and Role in Colorectal Carcinogenesis. Front Mol Biosci 2018; 5:23. [PMID: 29616226 PMCID: PMC5869190 DOI: 10.3389/fmolb.2018.00023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/27/2018] [Indexed: 01/17/2023] Open
Abstract
In mammals the bulky DNA adduct lesions known to result in deleterious phenotypes are acted upon and removed from the genomic DNA by nucleotide excision repair (NER) pathway. TFIIH multi-protein complex with its important helicase–Xeroderma Pigmentosum Protein (XPD) serves as the pivotal factor for opening up of the damaged lesion DNA site and carry out the repair process. The initial damage verification step of the TFIIH is in part dependent upon the helicase activity of XPD. Besides, XPD is also actively involved in the initiation steps of transcription and in the regulation of the cell cycle and apoptosis. In this review, we will be exploring the new insights in scientific research on the functioning of the NER pathway, the role of TFIIH as the central complex of NER, the pivotal helicase XPD as the lynchpin of NER and the effects of various single nucleotide polymorphisms (SNPs) of XPD on its functioning and their consequent role in colorectal carcinogenesis.
Collapse
|
Review |
7 |
12 |
15
|
Li P, Wang YD, Cheng J, Chen JC, Ha MW. Association between polymorphisms of BAG-1 and XPD and chemotherapy sensitivity in advanced non-small-cell lung cancer patients treated with vinorelbine combined cisplatin regimen. Tumour Biol 2015; 36:9465-73. [PMID: 26124006 DOI: 10.1007/s13277-015-3672-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/15/2015] [Indexed: 12/18/2022] Open
Abstract
BCL-2 Associated athanogene 1 (BAG-1) and Xeroderma pigmentosum group D (XPD) are involved in the nucleotide excision repair pathway and DNA repair. We aimed to investigate whether polymorphisms in BAG-1 and XPD have effects on chemotherapy sensitivity and survival in patients with advanced non-small-cell lung cancer (NSCLC) treated with vinorelbine combined cisplatin (NP) regimen. A total of 142 patients with diagnosed advanced NSCLC were recruited in the current study. NP regimen was applied for all eligible patients. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used for BAG-1 (codon 324) and XPD (codons 312 and 751) genotyping. The treatment response was evaluated according to the RECIST guidelines. Progression-free survival (PFS) and overall survival (OS) were record as median and end point, respectively. As for BAG-1 codon 324, the chemotherapy sensitivity in NSCLC patients with CT genotype was 0.383 times of those with CC genotype (P < 0.05). With respect to XPD codon 751, the chemotherapy sensitivity in NSCLC patients with Lys/Gln genotype was 0.400 times of those with Lys/Lys genotype (P < 0.05). In addition, NSCLC patients carrying combined C/C genotype at codon 324 in BAG-1, Asp/Asp of XPD codon 312, and Lys/Lys of XPD codon 751 produced a higher efficacy of NP chemotherapy compared to those carrying mutation genotypes (all P < 0.05). Further, there were significant differences in PFS between patients with combined C/C genotype of BAG-1 codon 324, Lys/Lys genotype of XPD codon 751, and Asp/Asp genotype of XPD codon 312 and patients carrying BAG-1 codon 324 C/T genotype, XPD codon751 Lys/Gln genotype, and XPD codon312 Asp/Asn genotype (P < 0.05). Multivariate Cox regression analysis indicated that the combined wild-type of codon 324 XPD, codon 751 XPD, and codon 312 BAG-1 is the protective factor for OS and PFS, and clinical stages is the risk factor for OS and PFS. In conclusion, our research demonstrated the combined effects of BAG-1 and XPD polymorphisms on chemotherapy sensitivity and survival in patients with advanced NSCLC, which might be the important predictive markers for platinum-based chemotherapy efficacy.
Collapse
|
Journal Article |
10 |
11 |
16
|
Jullien L, Kannengiesser C, Kermasson L, Cormier-Daire V, Leblanc T, Soulier J, Londono-Vallejo A, de Villartay JP, Callebaut I, Revy P. Mutations of the RTEL1 Helicase in a Hoyeraal-Hreidarsson Syndrome Patient Highlight the Importance of the ARCH Domain. Hum Mutat 2016; 37:469-72. [PMID: 26847928 DOI: 10.1002/humu.22966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/22/2016] [Indexed: 01/29/2023]
Abstract
The DNA helicase RTEL1 participates in telomere maintenance and genome stability. Biallelic mutations in the RTEL1 gene account for the severe telomere biology disorder characteristic of the Hoyeraal-Hreidarsson syndrome (HH). Here, we report a HH patient (P4) carrying two novel compound heterozygous mutations in RTEL1: a premature stop codon (c.949A>T, p.Lys317*) and an intronic deletion leading to an exon skipping and an in-frame deletion of 25 amino-acids (p.Ile398_Lys422). P4's cells exhibit short and dysfunctional telomeres similarly to other RTEL1-deficient patients. 3D structure predictions indicated that the p.Ile398_Lys422 deletion affects a part of the helicase ARCH domain, which lines the pore formed with the core HD and the iron-sulfur cluster domains and is highly specific of sequences from the eukaryotic XPD family members.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
11 |
17
|
Loghin A, Bănescu C, Nechifor-Boila A, Chibelean C, Orsolya M, Nechifor-Boila A, Tripon F, Voidazan S, Borda A. XRCC3 Thr241Met and XPD Lys751Gln gene polymorphisms and risk of clear cell renal cell carcinoma. Cancer Biomark 2016; 16:211-7. [PMID: 26682510 DOI: 10.3233/cbm-150558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION In the last decade, an increasing number of polymorphisms in DNA repair genes have been identified and their involvement in carcinogenesis was studied. Despite the fact that XRCC3 and XPD DNA repair genes association with several types of cancer was widely studied, their role in the development of clear cell renal cell carcinoma (CCRCC) has not been established in the European population. OBJECTIVE The objective of this study was to investigate the association of XRCC3 Thr241Met and XPD Lys751Gln gene polymorphisms with the risk of CCRCC and the association between these genotypes and CCRCC histopathological prognostic factors (pathologic stage, Fuhrman grade, tumor diameter). METHODS This study included 73 patients with CCRCC and 100 healthy individuals without cancer. We used the PCR-RFLP method to determine XRCC3 and XPD genotypes. RESULTS The XPD 751 variant genotype (Lys/Gln) was more frequent in CCRCC patients than in healthy individuals (OR = 2.92, 95%CI: 1.47-5.79, p= 0.001). Regarding the XRCC3 Thr241Met/XPD Lys751Gln combined genotypes a significant difference was found between patients and controls for Thr/Thr+Lys/Gln (OR = 5.44, 95%CI: 2.09-14.15, p= 0.0003) and for Thr/Met+Gln/Gln (OR = 11.2, 95%CI: 1.95-100.4, p= 0.01).No association was found between any of the studied genotypes and histopathological prognostic factors of CCRCC. CONCLUSIONS Our findings indicate that XPD Lys751Gln polymorphism may be a risk factor for CCRCC. Regarding the XRCC3 Thr241Met polymorphism, an association with CCRCC was found only in XRCC3 Thr241Met/XPD Lys751Gln combined genotypes.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
9 |
18
|
Park YJ, Kim SH, Kim TS, Lee SM, Cho BS, Seo CI, Kim HD, Kim J. Ribosomal protein S3 associates with the TFIIH complex and positively regulates nucleotide excision repair. Cell Mol Life Sci 2021; 78:3591-3606. [PMID: 33464383 PMCID: PMC11072392 DOI: 10.1007/s00018-020-03754-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
In mammalian cells, the bulky DNA adducts caused by ultraviolet radiation are mainly repaired via the nucleotide excision repair (NER) pathway; some defects in this pathway lead to a genetic disorder known as xeroderma pigmentosum (XP). Ribosomal protein S3 (rpS3), a constituent of the 40S ribosomal subunit, is a multi-functional protein with various extra-ribosomal functions, including a role in the cellular stress response and DNA repair-related activities. We report that rpS3 associates with transcription factor IIH (TFIIH) via an interaction with the xeroderma pigmentosum complementation group D (XPD) protein and complements its function in the NER pathway. For optimal repair of UV-induced duplex DNA lesions, the strong helicase activity of the TFIIH complex is required for unwinding damaged DNA around the lesion. Here, we show that XP-D cells overexpressing rpS3 showed markedly increased resistance to UV radiation through XPD and rpS3 interaction. Additionally, the knockdown of rpS3 caused reduced NER efficiency in HeLa cells and the overexpression of rpS3 partially restored helicase activity of the TFIIH complex of XP-D cells in vitro. We also present data suggesting that rpS3 is involved in post-excision processing in NER, assisting TFIIH in expediting the repair process by increasing its turnover rate when DNA is damaged. We propose that rpS3 is an accessory protein of the NER pathway and its recruitment to the repair machinery augments repair efficiency upon UV damage by enhancing XPD helicase function and increasing its turnover rate.
Collapse
|
research-article |
4 |
9 |
19
|
Nigam K, Yadav SK, Samadi FM, Bhatt ML, Gupta S, Sanyal S. Risk Modulation of Oral Pre Cancer and Cancer with Polymorphisms in XPD and XPG Genes in North Indian Population. Asian Pac J Cancer Prev 2019; 20:2397-2403. [PMID: 31450912 PMCID: PMC6852806 DOI: 10.31557/apjcp.2019.20.8.2397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Environmental carcinogens cause DNA damages which if not repaired properly, may increase the risk of cancer. The Xerodermapigmentosum group D (XPD) and group G (XPG) genes are essential genes for DNA repair and alteration in DNA repair causes cancer. The present study aimed to evaluate the relationship between XPD and XPG polymorphisms and risk of oral pre cancer and cancer. Methods: Present study genotyped 302 samples of oral diseases and 300 controls for XPD (A/C) and XPG (G/C) polymorphisms with PCR-RFLP method. Results: Our result showed that compared to AA genotype frequency of AC and CC genotype for XPD(A/C) polymorphism were significantly lower among cases than in control and are associated with decreased risk of oral diseases (OR= 0.621 and 0.603 respectively). In contrast with reference to GG genotype the frequency of CC genotype of XPG (G/C) was significantly higher in case than in control population (p value=0.004) and found to increase the risk of oral diseases (OR= 2.077). Particularly C allele for XPD A/C polymorphism was found to be associated with decreased risk of Lichen planus and increased risk of ( OR = 0.470 and 1.541 respectively) oral cancer. While C allele of XPG G/C polymorphism significantly increased the risk of Oral Submucous Fibrosis and Leukoplakia (OR= 1.879 and 1.837 respectively) but not of Lichen planus and oral cancer. In combined genotype analysis from the aforesaid polymorphisms presence of C allele for XPD (A/C) polymorphisms were found to decrease the risk of oral diseases. However, the same C allele was observed to increase the chance of having high stage disease (OR= 5.71) with nodal involvement (OR= 6.78) once the cancer been initiated. Conclusion: This work shows association of XPD (A/C), XPG (G/C) polymorphisms with the development of pre oral cancer as well as oral cancer and its clinical courses.
Collapse
|
Journal Article |
6 |
8 |
20
|
Ma Q, Qi C, Tie C, Guo Z. Genetic polymorphisms of xeroderma pigmentosum group D gene Asp312Asn and Lys751Gln and susceptibility to prostate cancer: a systematic review and meta-analysis. Gene 2013; 530:309-14. [PMID: 23973729 DOI: 10.1016/j.gene.2013.08.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/29/2013] [Accepted: 08/15/2013] [Indexed: 01/11/2023]
Abstract
Many studies have reported the role of xeroderma pigmentosum group D (XPD) with prostate cancer risk, but the results remained controversial. To derive a more precise estimation of the relationship, a meta-analysis was performed. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association between XPD Asp312Asn and Lys751Gln polymorphisms and prostate cancer risk. A total of 8 studies including 2620 cases and 3225 controls described Asp312Asn genotypes, among which 10 articles involving 3230 cases and 3582 controls described Lys751Gln genotypes and were also involved in this meta-analysis. When all the eligible studies were pooled into this meta-analysis, a significant association between prostate cancer risk and XPD Asp312Asn polymorphism was found. For Asp312Asn polymorphism, in the stratified analysis by ethnicity and source of controls, prostate cancer risk was observed in co-dominant, dominant and recessive models, while no evidence of any associations of XPD Lys751Gln polymorphism with prostate cancer was found in the overall or subgroup analyses. Our meta-analysis supports that the XPD Asp312Asn polymorphism contributed to the risk of prostate cancer from currently available evidence. However, a study with a larger sample size is needed to further evaluate gene-environment interaction on XPD Asp312Asn and Lys751Gln polymorphisms and prostate cancer risk.
Collapse
|
Systematic Review |
12 |
8 |
21
|
Ly V, Hatherell A, Kim E, Chan A, Belmonte MF, Schroeder DF. Interactions between Arabidopsis DNA repair genes UVH6, DDB1A, and DDB2 during abiotic stress tolerance and floral development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 213:88-97. [PMID: 24157211 DOI: 10.1016/j.plantsci.2013.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/28/2013] [Accepted: 09/02/2013] [Indexed: 05/29/2023]
Abstract
Plants must protect themselves from a spectrum of abiotic stresses. For example, the sun is a source of heat, intense light, and DNA-damaging ultraviolet (UV) rays. Damaged DNA binding protein 1A (DDB1A), DDB2, and UV hypersensitive 6 (UVH6)/XPD are all involved in the repair of UV-damaged DNA - DDB1A and DDB2 in the initial damage recognition stage, while the UVH6/XPD helicase unwinds the damaged strand. We find that, as predicted, Arabidopsis ddb1a and ddb2 mutants do not affect uvh6/xpd UV tolerance. In addition, uvh6 is heat sensitive, and ddb1a and ddb2 weakly enhance this trait. The uvh6 ddb1a and uvh6 ddb2 double mutants also exhibit sensitivity to oxidative stress, suggesting a role for DDB1 complexes in heat and oxidative stress tolerance. Finally, we describe a new uvh6 phenotype, the low penetrance production of flowers with five petals and five sepals. ddb1a and ddb2 suppress this phenotype in uvh6 mutants. Interestingly, heat treatment also induces five-petalled flowers in the ddb1a and ddb2 single mutants. Thus UVH6, DDB1A, and DDB2 all contribute to UV tolerance, heat tolerance and floral patterning.
Collapse
|
|
12 |
7 |
22
|
Fu W, Xiao F, Zhang R, Li J, Zhao D, Lin X, Xu Y, Song X, Xie Z, Wen Q, Yang X. Association Between the Asp312Asn, Lys751Gln, and Arg156Arg Polymorphisms in XPD and the Risk of Prostate Cancer. Technol Cancer Res Treat 2017; 16:692-704. [PMID: 28797198 PMCID: PMC5762072 DOI: 10.1177/1533034617724678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer is the most common solid cancer and genetic factors play important roles in its pathogenesis. XPD is one of the 8 core genes involved in the nucleotide excision repair pathway. The relationship between Asp312Asn, Lys751Gln, and Arg156Arg polymorphisms in XPD and prostate cancer risk is a controversial topic. Therefore, we conducted a meta-analysis to explore the relationship between these 3 polymorphisms and the risk of developing prostate cancer. We searched the electronic literature in PubMed and Google Scholar for all relevant studies (last updated January 1, 2017). The pooled odds ratios and 95% confidence intervals for the associations between the Asp312Asn, Lys751Gln, or Arg156Arg polymorphisms in XPD and prostate cancer risk were calculated. To evaluate the effects of specific study characteristics on the association of these 3 polymorphisms and prostate cancer risk, we performed subgroup analysis if 2 or more studies were available. After an extensive literature review, 7 publications regarding Asp312Asn genotype distribution with 8 case–controls, 9 publications regarding Lys751Gln genotype distribution with 10 case–controls, and 3 publications regarding Arg156Arg genotype distribution with 4 case–controls were selected. The results showed that Asp312Asn (odds ratio = 1.34, 95% confidence interval: 0.96-1.87, P = .000), Lys751Gln (odds ratio = 0.98, 95% confidence interval: 0.89-1.08, P = .986), and Arg156Arg (odds ratio = 1.05, 95% confidence interval: 0.91-1.22, P = .57) polymorphisms do not increase the risk of prostate cancer in the dominant model. Further, in the subgroup analysis by ethnicity, no relationships were observed between Lys751Gln and Arg156Arg polymorphisms and prostate cancer risk. However, stratified analysis by ethnicity revealed that Asp312Asn affects African (odds ratio = 1.57, 95% confidence interval: 1.06-2.33, P = .382) and Asian populations (odds ratio = 2.09, 95% confidence interval: 1.39-3.14, P = .396) in homozygote comparison. In conclusion, this meta-analysis suggests that there is no general association between the Asp312Asn, Lys751Gln, and Arg156Arg polymorphisms in XPD and prostate cancer susceptibility.
Collapse
|
Journal Article |
8 |
7 |
23
|
Liu Z, Kong J, Kong Y, Cai F, Xu X, Liu J, Wang S. Association of XPD Asp312Asn polymorphism and response to oxaliplatin-based first-line chemotherapy and survival in patients with metastatic colorectal cancer. ADV CLIN EXP MED 2019; 28:1459-1468. [PMID: 31756062 DOI: 10.17219/acem/108552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Identification of biomarkers predicting a response to chemotherapeutic drugs would greatly ease the selection of personalized therapy. The protein xeroderma pigmentosum group D (XPD) functions in nucleotide excision repair (NER) to remove DNA cross-links and in the regulation of transcription. The potential role of the Asp312Asn polymorphism in predicting the response to chemotherapy has not been established. OBJECTIVES This prospective study was designed to determine the role of the XPD Asp312Asn polymorphism in predicting the response to oxaliplatin-based first-line chemotherapy and survival in patients with metastatic colorectal cancer. MATERIAL AND METHODS A total of 106 patients treated with 2 cycles of either FOLFOX4 (n = 72) or XELOX (n = 34) regimen as the chemotherapy were enrolled. The genotype of XPD Asp312Asn polymorphism was analyzed using TaqMan probe-based real-time polymerase chain reaction (PCR). Logistic regression was applied to predict the response to treatment protocols. Cox regression models were applied to predict overall survival. RESULTS The overall response to chemotherapy was 57.6% (61/106). FOLFOX4 and XELOX regimens demonstrated comparable efficacy. The XPD Asp312Asn polymorphism was not associated with the response to either FOLFOX4 or XELOX regimen in univariate and in multivariate logistic regression analyses. Levels of carcinoembryonic antigen (CEA) ≥5 ng/mL and female gender were associated with a lack of response to FOLFOX4, but not to XELOX regimen. In a multivariate survival analysis, XPD Asp312Asn AA genotype, lack of response to chemotherapy, CEA ≥ 5 ng/mL, and age ≥65 were significantly associated with worse overall survival. CONCLUSIONS The XPD Asp312Asn polymorphism is associated with overall survival, but it is not a biomarker in predicting the response to oxaliplatin-based first-line chemotherapy in patients with metastatic colorectal cancer.
Collapse
|
Journal Article |
6 |
6 |
24
|
Wen M, Zhou B, Lin X, Chen Y, Song J, Li Y, Zacksenhaus E, Ben-David Y, Hao X. Associations Between XPD Lys751Gln Polymorphism and Leukemia: A Meta-Analysis. Front Genet 2018; 9:218. [PMID: 30100919 PMCID: PMC6073102 DOI: 10.3389/fgene.2018.00218] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Objectives: The aim of the present study was to define the potential relationship between xeroderma pigmentosum group D (XPD) Lys751Gln polymorphisms and the risk of leukemia. Methods: A comprehensive search of Pubmed, Web of Science, EBSCO, the Cochrane Library and China National Knowledge Infrastructure was conducted to identify original articles published before March 2017 concerning the association between XPD Lys751Gln polymorphisms and leukemia risk. A literature quality assessment was performed using the Newcastle-Ottawa Scale. Heterogeneity across studies was assessed using I2 statistics. Random- or fixed-effects models were used to calculate pooled odds ratios (ORs) in the presence or absence of heterogeneity, respectively. Sensitivity analysis was used to assess the influence of individual studies on the pooled estimate. Publication bias was investigated using funnel plots and Egger’s regression test. All data analyses were performed using Stata 14.0 and Revman 5.3. Results: Fourteen studies with a total of 7525 participants (2,757 patients; 4,768 controls) were included in this meta-analysis. We found that XPD Lys751Gln polymorphisms significantly increased the risk of developing leukemia in both dominant OR = 1.21, 95%CI [1.10–1.35], P ≤ 0.001) and heterozygote (OR = 1.22, 95%CI [1.09–1.36], P ≤ 0.001) model. An allele model showed a borderline significant increase in leukemia risk (OR = 1.13, 95%CI [1.00–1.27], P = 0.05). A subgroup analysis revealed a consistent association between XPD Lys751Gln polymorphisms and leukemia risk for some genetic models in Caucasian populations, adult or chronic groups, and in almost all models of childhood or acute groups. Conclusion: Our results indicate that XPD Lys751Gln polymorphism increases the risk of leukemia, especially in childhood and acute cases.
Collapse
|
Journal Article |
7 |
6 |
25
|
Analysis of the conserved NER helicases (XPB and XPD) and UV-induced DNA damage in Hydra. Biochim Biophys Acta Gen Subj 2018; 1862:2031-2042. [PMID: 29959982 DOI: 10.1016/j.bbagen.2018.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/04/2018] [Accepted: 06/26/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nucleotide excision repair (NER) pathway is an evolutionarily conserved mechanism of genome maintenance. It detects and repairs distortions in DNA double helix. Xeroderma Pigmentosum group B (XPB) and group D (XPD) are important helicases in NER and are also critical subunits of TFIIH complex. We have studied XPB and XPD for the first time from the basal metazoan Hydra which exhibits lack of organismal senescence. METHODS In silico analysis of proteins was performed using MEGA 6.0, Clustal Omega, Swiss Model, etc. Gene expression was studied by in situ hybridization and qRT-PCR. Repair of CPDs was studied by DNA blot assay. Interactions between proteins were determined by co- immunoprecipitation. HyXPB and HyXPD were cloned in pET28b, overexpressed and helicase activity of purified proteins was checked. RESULTS In silico analysis revealed presence of seven classical helicase motifs in HyXPB and HyXPD. Both proteins revealed polarity-dependent helicase activity. Hydra repairs most of the thymine dimers induced by UVC (500 J/m2) by 72 h post-UV exposure. HyXPB and HyXPD transcripts, localized all over the body column, remained unaltered post-UV exposure indicating their constitutive expression. In spite of high levels of sequence conservation, XPB and XPD failed to rescue defects in human XPB- and XPD-deficient cell lines. This was due to their inability to get incorporated into the TFIIH multiprotein complex. CONCLUSIONS Present results along with our earlier work on DNA repair proteins in Hydra bring out the utility of Hydra as model system to study evolution of DNA repair mechanisms in metazoans.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
5 |