1
|
Jia XX, Chen C, Hu C, Chao ZY, Zhang WW, Wu YZ, Fan Q, A RH, Liu X, Xiao K, Shi Q, Dong XP. Abnormal Changes of IL3/IL3R and Its Downstream Signaling Pathways in the Prion-Infected Cell Line and in the Brains of Scrapie-Infected Rodents. Mol Neurobiol 2024; 61:9756-9775. [PMID: 37548852 DOI: 10.1007/s12035-023-03511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/13/2023] [Indexed: 08/08/2023]
Abstract
Interleukin 3 (IL-3) plays an important role in hematopoiesis and immune regulation, brain IL-3/IL-3R signaling has been shown to involve in the physiological and pathological processes of a variety of neurodegenerative diseases, but its role in prion diseases is rarely described. Here, the changes of IL-3/IL-3R and its downstream signaling pathways in a scrapie-infected cell line and in the brains of several scrapie-infected rodent models were evaluated by various methods. Markedly decreased IL-3Rα were observed in the brains of scrapie-infected rodents at terminal stage and in the prion-infected cell model, which showed increased in the brain samples collected at early and middle stage of infection. The IL-3 levels were almost unchanged in the brains of scrapie-infected mice and in the prion-infected cell line. Morphological assays identified close co-localization of the increased IL-3Rα signals with NeuN- and Iba1-positive cells, whereas co-localization of IL-3 signals with NeuN- and GFAP-positive cells in the scrapie-infected brain tissues. Some downstream components of IL-3/IL-3R pathways, including JAK2-STAT5 and PI3K/AKT/mTOR pathways, were downregulated in the brains of scrapie-infected rodents at terminal stage and in the prion-infected cells. Stimulation of recombinant IL-3 on the cultured cells showed prion that the prion-infected cells displayed markedly more reluctant responses of JAK2-STAT5 and PI3K/AKT/mTOR pathways than the normal partner cells. These data suggest that although prion infection or PrPSc accumulation in brain tissues does not affect IL-3 expression, it significantly downregulates IL-3R levels, thereby inhibiting the downstream pathways of IL-3/IL-3R and blocking the neuroregulatory and neuroprotective activities of IL-3.
Collapse
|
2
|
Jia C, Cao C, Chao H, Wei Y, Lin W, Dongdong C, Yuezhang W, Qi S, Xiaoping D. Activation of IP10/CXCR3 Signaling is Highly Coincidental with PrP Sc Deposition in the Brains of Scrapie-Infected Mice. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2024; 37:1235-1251. [PMID: 39667961 DOI: 10.3967/bes2024.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/03/2024] [Indexed: 12/14/2024]
Abstract
Objective To analyze the relationship between Chemokine IP10 and its receptor CXCR3 during prion infection. Methods We investigated the increases in IP10 signals, primarily localized in neurons within the brains of scrapie-infected mice, using western blotting, ELISA, co-immunoprecipitation, immunohistochemistry, immunofluorescence assays, and RT-PCR. Results Both CXCR3 levels and activation were significantly higher in the brains of scrapie-infected mice and prion-infected SMB-S15 cells. Enhanced CXCR3 expression was predominantly observed in neurons and activated microglia. Morphological colocalization of PrP C/PrP Sc with IP10/CXCR3 was observed in scrapie-infected mouse brains using immunohistochemistry and immunofluorescence. immunohistochemistry (IHC) analysis of whole brain sections further revealed increased accumulation of IP10/CXCR3 specifically in brain regions with higher levels of PrP Sc deposits. Co-immunoprecipitation and biomolecular interaction assays revealed the molecular interactions between PrP and IP10/CXCR3. Notably, a significantly larger amount of IP10 accumulated within prion-infected SMB-S15 cells than in the normal partner cell line, SMB-PS. Importantly, resveratrol treatment effectively suppressed prion replication in SMB-S15 cells, thereby restoring the accumulation and secretion pattern of cellular IP10 similar to that observed in SMB-PS cells. Conclusion Our data demonstrate that the activation of IP10/CXCR3 signaling in prion-infected brain tissues coincides with PrP Sc deposition. Modulation of IP10/CXCR3 signaling in the brain represents a potential therapeutic target for mitigating the progression of prion diseases.
Collapse
|
3
|
van Keulen LJM, Dolstra CH, Vries RBD, Bossers A, Jacobs JG, Baron T, Torres JM, Langeveld JPM. Change in the molecular properties of CH1641 prions after transmission to wild-type mice: Evidence for a single strain. Neuropathol Appl Neurobiol 2024; 50:e12963. [PMID: 38353056 DOI: 10.1111/nan.12963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/23/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
AIM CH1641 was discovered in 1970 as a scrapie isolate that was unlike all other classical strains of scrapie isolated so far. We performed bio-assays of CH1641 in mice in order to further characterise this specific isolate. METHODS We inoculated the original CH1641 isolate into ovine and bovine prion protein (PrP) transgenic mice as well as wild-type mice. In addition, we performed cross- and back passages between the various mouse lines to examine if one identical prion strain was isolated in all mouse lines or whether multiple prion strains exist in CH1641. RESULTS We report the first successful transmission of CH1641 to wild-type RIII mice and via RIII mice to wild-type VM mice. Unexpectedly, analysis of the protease-resistant prion protein (PrPres ) in wild-type mice showed a classical scrapie banding pattern differing from the banding pattern of the original CH1641 isolate. Cross- and back passages of CH1641 between the various mouse lines confirmed that the same prion strain had been isolated in all mouse lines. CONCLUSIONS The CH1641 isolate consists of a single prion strain but its molecular banding pattern of PrPres differs between wild-type mice and PrP transgenic mice. Consequently, molecular banding patterns of PrPres should be used with caution in strain typing since they do not solely depend on the properties of the prion strain but also on the host prion protein.
Collapse
|
4
|
Garza MC, Kang SG, Kim C, Monleón E, van der Merwe J, Kramer DA, Fahlman R, Sim VL, Aiken J, McKenzie D, Cortez LM, Wille H. In Vitro and In Vivo Evidence towards Fibronectin's Protective Effects against Prion Infection. Int J Mol Sci 2023; 24:17525. [PMID: 38139358 PMCID: PMC10743696 DOI: 10.3390/ijms242417525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
A distinctive signature of the prion diseases is the accumulation of the pathogenic isoform of the prion protein, PrPSc, in the central nervous system of prion-affected humans and animals. PrPSc is also found in peripheral tissues, raising concerns about the potential transmission of pathogenic prions through human food supplies and posing a significant risk to public health. Although muscle tissues are considered to contain levels of low prion infectivity, it has been shown that myotubes in culture efficiently propagate PrPSc. Given the high consumption of muscle tissue, it is important to understand what factors could influence the establishment of a prion infection in muscle tissue. Here we used in vitro myotube cultures, differentiated from the C2C12 myoblast cell line (dC2C12), to identify factors affecting prion replication. A range of experimental conditions revealed that PrPSc is tightly associated with proteins found in the systemic extracellular matrix, mostly fibronectin (FN). The interaction of PrPSc with FN decreased prion infectivity, as determined by standard scrapie cell assay. Interestingly, the prion-resistant reserve cells in dC2C12 cultures displayed a FN-rich extracellular matrix while the prion-susceptible myotubes expressed FN at a low level. In agreement with the in vitro results, immunohistopathological analyses of tissues from sheep infected with natural scrapie demonstrated a prion susceptibility phenotype linked to an extracellular matrix with undetectable levels of FN. Conversely, PrPSc deposits were not observed in tissues expressing FN. These data indicate that extracellular FN may act as a natural barrier against prion replication and that the extracellular matrix composition may be a crucial feature determining prion tropism in different tissues.
Collapse
|
5
|
Kokemuller RD, Moore SJ, Bian J, West Greenlee MH, Greenlee JJ. Disease phenotype of classical sheep scrapie is changed upon experimental passage through white-tailed deer. PLoS Pathog 2023; 19:e1011815. [PMID: 38048370 PMCID: PMC10721168 DOI: 10.1371/journal.ppat.1011815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/14/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
Prion agents occur in strains that are encoded by the structure of the misfolded prion protein (PrPSc). Prion strains can influence disease phenotype and the potential for interspecies transmission. Little is known about the potential transmission of prions between sheep and deer. Previously, the classical US scrapie isolate (No.13-7) had a 100% attack rate in white-tailed deer after oronasal challenge. The purpose of this study was to test the susceptibility of sheep to challenge with the scrapie agent after passage through white-tailed deer (WTD scrapie). Lambs of various prion protein genotypes were oronasally challenged with WTD scrapie. Sheep were euthanized and necropsied upon development of clinical signs or at the end of the experiment (72 months post-inoculation). Enzyme immunoassay, western blot, and immunohistochemistry demonstrated PrPSc in 4 of 10 sheep with the fastest incubation occurring in VRQ/VRQ sheep, which contrasts the original No.13-7 inoculum with a faster incubation in ARQ/ARQ sheep. Shorter incubation periods in VRQ/VRQ sheep than ARQ/ARQ sheep after passage through deer was suggestive of a phenotype change, so comparisons were made in ovinized mice and with sheep with known strains of classical sheep scrapie: No. 13-7 and x-124 (that has a more rapid incubation in VRQ/VRQ sheep). After mouse bioassay, the WTD scrapie and x-124 isolates have similar incubation periods and PrPSc conformational stability that are markedly different than the original No. 13-7 inoculum. Furthermore, brain tissues of sheep with WTD scrapie and x-124 scrapie have similar patterns of immunoreactivity that are distinct from sheep with No. 13-7 scrapie. Multiple lines of evidence suggest a phenotype switch when No. 13-7 scrapie prions are passaged through deer. This represents one example of interspecies transmission of prions resulting in the emergence or selection of new strain properties that could confound disease eradication and control efforts.
Collapse
|
6
|
Konold T, Spiropoulos J, Hills J, Abdul H, Cawthraw S, Phelan L, McKenna A, Read L, Canoyra S, Marín-Moreno A, Torres JM. Experimental transmission of ovine atypical scrapie to cattle. Vet Res 2023; 54:98. [PMID: 37864218 PMCID: PMC10589953 DOI: 10.1186/s13567-023-01224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/11/2023] [Indexed: 10/22/2023] Open
Abstract
Classical bovine spongiform encephalopathy (BSE) in cattle was caused by the recycling and feeding of meat and bone meal contaminated with a transmissible spongiform encephalopathy (TSE) agent but its origin remains unknown. This study aimed to determine whether atypical scrapie could cause disease in cattle and to compare it with other known TSEs in cattle. Two groups of calves (five and two) were intracerebrally inoculated with atypical scrapie brain homogenate from two sheep with atypical scrapie. Controls were five calves intracerebrally inoculated with saline solution and one non-inoculated animal. Cattle were clinically monitored until clinical end-stage or at least 96 months post-inoculation (mpi). After euthanasia, tissues were collected for TSE diagnosis and potential transgenic mouse bioassay. One animal was culled with BSE-like clinical signs at 48 mpi. The other cattle either developed intercurrent diseases leading to cull or remained clinical unremarkable at study endpoint, including control cattle. None of the animals tested positive for TSEs by Western immunoblot and immunohistochemistry. Bioassay of brain samples from the clinical suspect in Ov-Tg338 and Bov-Tg110 mice was also negative. By contrast, protein misfolding cyclic amplification detected prions in the examined brains from atypical scrapie-challenged cattle, which had a classical BSE-like phenotype. This study demonstrates for the first time that a TSE agent with BSE-like properties can be amplified in cattle inoculated with atypical scrapie brain homogenate.
Collapse
|
7
|
Choi YG, Jang B, Park JH, Choi MW, Lee GY, Cho DJ, Kim HY, Lim HK, Lee WJ, Choi EK, Kim YS. Radotinib Decreases Prion Propagation and Prolongs Survival Times in Models of Prion Disease. Int J Mol Sci 2023; 24:12241. [PMID: 37569615 PMCID: PMC10419185 DOI: 10.3390/ijms241512241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The conversion of cellular prion protein (PrPC) into pathogenic prion isoforms (PrPSc) and the mutation of PRNP are definite causes of prion diseases. Unfortunately, without exception, prion diseases are untreatable and fatal neurodegenerative disorders; therefore, one area of research focuses on identifying medicines that can delay the progression of these diseases. According to the concept of drug repositioning, we investigated the efficacy of the c-Abl tyrosine kinase inhibitor radotinib, which is a drug that is approved for the treatment of chronic myeloid leukemia, in the treatment of disease progression in prion models, including prion-infected cell models, Tga20 and hamster cerebellar slice culture models, and 263K scrapie-infected hamster models. Radotinib inhibited PrPSc deposition in neuronal ZW13-2 cells that were infected with the 22L or 139A scrapie strains and in cerebellar slice cultures that were infected with the 22L or 263K scrapie strains. Interestingly, hamsters that were intraperitoneally injected with the 263K scrapie strain and intragastrically treated with radotinib (100 mg/kg) exhibited prolonged survival times (159 ± 28.6 days) compared to nontreated hamsters (135 ± 9.9 days) as well as reduced PrPSc deposition and ameliorated pathology. However, intraperitoneal injection of radotinib exerted a smaller effect on the survival rate of the hamsters. Additionally, we found that different concentrations of radotinib (60, 100, and 200 mg/kg) had similar effects on survival time, but this effect was not observed after treatment with a low dose (30 mg/kg) of radotinib. Interestingly, when radotinib was administered 4 or 8 weeks after prion inoculation, the treated hamsters survived longer than the vehicle-treated hamsters. Additionally, a pharmacokinetic assay revealed that radotinib effectively crossed the blood-brain barrier. Based on our findings, we suggest that radotinib is a new candidate anti-prion drug that could possibly be used to treat prion diseases and promote the remission of symptoms.
Collapse
|
8
|
Esmaili M, Eldeeb M. Cellular toxicity of scrapie prions in prion diseases; a biochemical and molecular overview. Mol Biol Rep 2023; 50:1743-1752. [PMID: 36446981 DOI: 10.1007/s11033-022-07806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases consist of a broad range of fatal neurological disorders affecting humans and animals. Contrary to Watson and Crick's 'central dogma', prion diseases are caused by a protein, devoid of DNA involvement. Herein, we briefly review various cellular and biological aspects of prions and prion pathogenesis focusing mainly on historical milestones, biosynthesis, degradation, structure-function of cellular and scrapie forms of prions .
Collapse
|
9
|
Silva CJ, Cassmann ED, Greenlee JJ, Erickson-Beltran ML, Requena JR. A Mass Spectrometry-Based Method of Quantifying the Contribution of the Lysine Polymorphism at Position 171 in Sheep PrP. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:245-254. [PMID: 36622794 PMCID: PMC9897214 DOI: 10.1021/jasms.2c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
In sheep, the transmissibility and progression of scrapie, a sheep prion (PrPSc) disease, is strongly dependent upon specific amino acid polymorphisms in the natively expressed prion protein (PrPC). Sheep expressing PrPC with lysine (K) polymorphism at position 171 (K171) are partially resistant to oronasal dosing of classical sheep scrapie. In addition, scrapie infected sheep expressing the K171 polymorphism show a longer incubation period compared to sheep homozygous (glutamine (Q)) at position 171. Quantitating the amount of the K171 polymorphism in a sheep scrapie sample can provide important information on the composition of PrPSc. A tryptic peptide, 159R.YPNQVYYRPVDK.Y172, derived from the digestion of 171K recombinant PrP, was identified as an analyte peptide suitable for a multiple reaction monitoring-based analysis. This method, using 15N-labeled analogs and another internal peptide from the proteinase K-resistant core, permits the simultaneous quantitation of the total amount of PrP and the proportion of K171 polymorphism in the sample. Background molecules with similar retention times and transitions were present in samples from scrapie-infected sheep. Proteinase K digestion followed by ultracentrifugation-based isolation or phosphotungstic acid-based isolation were employed to minimize the contribution of those background molecules, making this approach suitable for quantitating the amount of the K171 polymorphism in heterozygous scrapie infected sheep.
Collapse
|
10
|
Hernaiz A, Sentre S, Betancor M, López-Pérez Ó, Salinas-Pena M, Zaragoza P, Badiola JJ, Toivonen JM, Bolea R, Martín-Burriel I. 5-Methylcytosine and 5-Hydroxymethylcytosine in Scrapie-Infected Sheep and Mouse Brain Tissues. Int J Mol Sci 2023; 24:ijms24021621. [PMID: 36675131 PMCID: PMC9864596 DOI: 10.3390/ijms24021621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Scrapie is a neurodegenerative disorder belonging to the group of transmissible spongiform encephalopathies or prion diseases, which are caused by an infectious isoform of the innocuous cellular prion protein (PrPC) known as PrPSc. DNA methylation, one of the most studied epigenetic mechanisms, is essential for the proper functioning of the central nervous system. Recent findings point to possible involvement of DNA methylation in the pathogenesis of prion diseases, but there is still a lack of knowledge about the behavior of this epigenetic mechanism in such neurodegenerative disorders. Here, we evaluated by immunohistochemistry the 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) levels in sheep and mouse brain tissues infected with scrapie. Expression analysis of different gene coding for epigenetic regulatory enzymes (DNMT1, DNMT3A, DNMT3B, HDAC1, HDAC2, TET1, and TET2) was also carried out. A decrease in 5mC levels was observed in scrapie-affected sheep and mice compared to healthy animals, whereas 5hmC displayed opposite patterns between the two models, demonstrating a decrease in 5hmC in scrapie-infected sheep and an increase in preclinical mice. 5mC correlated with prion-related lesions in mice and sheep, but 5hmC was associated with prion lesions only in sheep. Differences in the expression changes of epigenetic regulatory genes were found between both disease models, being differentially expressed Dnmt3b, Hdac1, and Tet1 in mice and HDAC2 in sheep. Our results support the evidence that DNA methylation in both forms, 5mC and 5hmC, and its associated epigenetic enzymes, take part in the neurodegenerative course of prion diseases.
Collapse
|
11
|
Xia Y, Chen C, Chen J, Hu C, Yang W, Wang L, Liu L, Gao LP, Wu YZ, Chen DD, Shi Q, Chen ZB, Dong XP. Enhanced M-CSF/CSF1R Signaling Closely Associates with PrP Sc Accumulation in the Scrapie-Infected Cell Line and the Brains of Scrapie-Infected Experimental Rodents. Mol Neurobiol 2022; 59:6534-6551. [PMID: 35970974 DOI: 10.1007/s12035-022-02989-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/06/2022] [Indexed: 12/17/2022]
Abstract
Activation and proliferation of microglia are one of the hallmarks of prion disease and is usually accompanied by increased levels of various cytokines and chemokines. Our previous study demonstrated that the level of brain macrophage colony-stimulating factor (M-CSF) was abnormally elevated during prion infection, but its association with PrPSc is not completely clear. In this study, colocalization of the increased M-CSF with accumulated PrPSc was observed by IHC with serial brain sections. Reliable molecular interaction between total PrP and M-CSF was observed in the brain of 263 K-infected hamsters and in cultured prion-infected cell line. Immunofluorescent assays showed that morphological colocalization of M-CSF with neurons and microglia, but not with astrocytes in brains of scrapie-infected animals. The transcriptional and expressing levels of CSF1R were also significantly increased in prion-infected cell line and mice, and colocalization of CSF1R with neurons and microglia was observed in the brains of prion-infected mouse models. Removal of PrPSc replication by resveratrol in SMB-S15 cells induced limited reductions of cellular levels of M-CSF and CSF1R. In addition, we found that the level of IL-34, another ligand of CSF1R, did not change significantly after prion infection, but its distribution on the cell types in the brains shifted from neurons in healthy mice to the proliferated astrocytes and microglia in scrapie-infected mice. Our data demonstrate activation of M-CSF/IL-34/CSF1R signaling in the microenvironment of prion infection, strongly indicating its vital role in the pathophysiology of prions. It provides solid scientific evidence for the therapeutic potential of inhibiting M-CSF/CSF1R signaling in prion diseases.
Collapse
|
12
|
Kim MJ, Kim HJ, Jang B, Kim HJ, Mostafa MN, Park SJ, Kim YS, Choi EK. Impairment of Neuronal Mitochondrial Quality Control in Prion-Induced Neurodegeneration. Cells 2022; 11:cells11172744. [PMID: 36078152 PMCID: PMC9454542 DOI: 10.3390/cells11172744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 12/06/2022] Open
Abstract
Mitochondrial dynamics continually maintain cell survival and bioenergetics through mitochondrial quality control processes (fission, fusion, and mitophagy). Aberrant mitochondrial quality control has been implicated in the pathogenic mechanism of various human diseases, including cancer, cardiac dysfunction, and neurological disorders, such as Alzheimer’s disease, Parkinson’s disease, and prion disease. However, the mitochondrial dysfunction-mediated neuropathological mechanisms in prion disease are still uncertain. Here, we used both in vitro and in vivo scrapie-infected models to investigate the involvement of mitochondrial quality control in prion pathogenesis. We found that scrapie infection led to the induction of mitochondrial reactive oxygen species (mtROS) and the loss of mitochondrial membrane potential (ΔΨm), resulting in enhanced phosphorylation of dynamin-related protein 1 (Drp1) at Ser616 and its subsequent translocation to the mitochondria, which was followed by excessive mitophagy. We also confirmed decreased expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes and reduced ATP production by scrapie infection. In addition, scrapie-infection-induced aberrant mitochondrial fission and mitophagy led to increased apoptotic signaling, as evidenced by caspase 3 activation and poly (ADP-ribose) polymerase cleavage. These results suggest that scrapie infection induced mitochondrial dysfunction via impaired mitochondrial quality control processes followed by neuronal cell death, which may have an important role in the neuropathogenesis of prion diseases.
Collapse
|
13
|
Shi Q, Chen DD, Adalati M, Xiao K, Gao LP, Yang XH, Wu YZ, Chen C, Dong XP. Global Profiles of Acetylated Proteins in Brains of Scrapie Agents 139A- and ME7-Infected Mice Collected at Mid-Early, Mid-Late, and Terminal Stages. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2022; 35:722-734. [PMID: 36127784 DOI: 10.3967/bes2022.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To describe the global profiles of acetylated proteins in the brains of scrapie agents 139A- and ME7-infected mice collected at mid-early, mid-late, and terminal stages. METHODS The acetylated proteins from the cortex regions of scrapie agent (139A- and ME7)-infected mice collected at mid-early (80 days postinfection, dpi), mid-late (120 dpi), and terminal (180 dpi) stages were extracted, and the global profiles of brain acetylated proteins were assayed with proteomic mass spectrometry. The proteins in the infected mice showing 1.5-fold higher or lower levels than that of age-matched normal controls were considered as differentially expressed acetylated peptides (DEAPs). RESULTS A total of 118, 42, and 51 DEAPs were found in the brains of 139A-80, 139A-120, and 139A-180 dpi mice, respectively. Meanwhile, 390, 227, and 75 DEAPs were detected in the brains of ME7-80, ME7-120, and ME7-180 dpi mice, respectively. The overwhelming majority of DEAPs in the mid-early stage were down-regulated, and more portions of DEAPs in the mid-late and late stages were up-regulated. Approximately 22.1% (328/1,485) of acetylated peptides mapped to 74 different proteins were mitochondrial associated. Kyoto Encyclopedia of Genes and Genomes pathway analysis identified 39 (80 dpi), 13 (120 dpi), and 10 (180 dpi) significantly changed pathways in 139A-infected mice. Meanwhile, 55, 25, and 18 significantly changed pathways were observed in the 80, 120, and 180 dpi samples of 139A- and ME7-infected mice ( P < 0.05), respectively. Six pathways were commonly involved in all tested samples. Moreover, many steps in the citrate cycle (tricarboxylic acid cycle) were affected, represented by down-regulated acetylation for relevant enzymes in the mid-early stage and up-regulated acetylation in the mid-late and late stages. CONCLUSION Our data here illustrated the changes in the global profiles for brain acetylated proteins during prion infection, showing remarkably inhibited acetylation in the early stage and relatively enhanced acetylation in the late stage.
Collapse
|
14
|
Artikis E, Kraus A, Caughey B. Structural biology of ex vivo mammalian prions. J Biol Chem 2022; 298:102181. [PMID: 35752366 PMCID: PMC9293645 DOI: 10.1016/j.jbc.2022.102181] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 01/13/2023] Open
Abstract
The structures of prion protein (PrP)-based mammalian prions have long been elusive. However, cryo-EM has begun to reveal the near-atomic resolution structures of fully infectious ex vivo mammalian prion fibrils as well as relatively innocuous synthetic PrP amyloids. Comparisons of these various types of PrP fibrils are now providing initial clues to structural features that correlate with pathogenicity. As first indicated by electron paramagnetic resonance and solid-state NMR studies of synthetic amyloids, all sufficiently resolved PrP fibrils of any sort (n > 10) have parallel in-register intermolecular β-stack architectures. Cryo-EM has shown that infectious brain-derived prion fibrils of the rodent-adapted 263K and RML scrapie strains have much larger ordered cores than the synthetic fibrils. These bona fide prion strains share major structural motifs, but the conformational details and the overall shape of the fibril cross sections differ markedly. Such motif variations, as well as differences in sequence within the ordered polypeptide cores, likely contribute to strain-dependent templating. When present, N-linked glycans and glycophosphatidylinositol (GPI) anchors project outward from the fibril surface. For the mouse RML strain, these posttranslational modifications have little effect on the core structure. In the GPI-anchored prion structures, a linear array of GPI anchors along the twisting fibril axis appears likely to bind membranes in vivo, and as such, may account for pathognomonic membrane distortions seen in prion diseases. In this review, we focus on these infectious prion structures and their implications regarding prion replication mechanisms, strains, transmission barriers, and molecular pathogenesis.
Collapse
|
15
|
Fatola OI, Keller M, Balkema-Buschmann A, Olopade J, Groschup MH, Fast C. Strain Typing of Classical Scrapie and Bovine Spongiform Encephalopathy (BSE) by Using Ovine PrP (ARQ/ARQ) Overexpressing Transgenic Mice. Int J Mol Sci 2022; 23:ijms23126744. [PMID: 35743187 PMCID: PMC9223460 DOI: 10.3390/ijms23126744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSE), caused by abnormal prion protein (PrPSc), affect many species. The most classical scrapie isolates harbor mixtures of strains in different proportions. While the characterization of isolates has evolved from using wild-type mice to transgenic mice, no standardization is established yet. Here, we investigated the incubation period, lesion profile and PrPSc profile induced by well-defined sheep scrapie isolates, bovine spongiform encephalopathy (BSE) and ovine BSE after intracerebral inoculation into two lines of ovine PrP (both ARQ/ARQ) overexpressing transgenic mice (Tgshp IX and Tgshp XI). All isolates were transmitted to both mouse models with an attack rate of almost 100%, but genotype-dependent differences became obvious between the ARQ and VRQ isolates. Surprisingly, BSE induced a much longer incubation period in Tgshp XI compared to Tgshp IX. In contrast to the histopathological lesion profiles, the immunohistochemical PrPSc profiles revealed discriminating patterns in certain brain regions in both models with clear differentiation of both BSE isolates from scrapie. These data provide the basis for the use of Tgshp IX and XI mice in the characterization of TSE isolates. Furthermore, the results enable a deeper appreciation of TSE strain diversity using ovine PrP overexpressing transgenic mice as a biological prion strain typing approach.
Collapse
|
16
|
García-Martínez M, Cortez LM, Otero A, Betancor M, Serrano-Pérez B, Bolea R, Badiola JJ, Garza MC. Distinctive Toll-like Receptors Gene Expression and Glial Response in Different Brain Regions of Natural Scrapie. Int J Mol Sci 2022; 23:ijms23073579. [PMID: 35408945 PMCID: PMC8998348 DOI: 10.3390/ijms23073579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Prion diseases are chronic and fatal neurodegenerative diseases characterized by the accumulation of disease-specific prion protein (PrPSc), spongiform changes, neuronal loss, and gliosis. Growing evidence shows that the neuroinflammatory response is a key component of prion diseases and contributes to neurodegeneration. Toll-like receptors (TLRs) have been proposed as important mediators of innate immune responses triggered in the central nervous system in other human neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. However, little is known about the role of TLRs in prion diseases, and their involvement in the neuropathology of natural scrapie has not been studied. We assessed the gene expression of ovine TLRs in four anatomically distinct brain regions in natural scrapie-infected sheep and evaluated the possible correlations between gene expression and the pathological hallmarks of prion disease. We observed significant changes in TLR expression in scrapie-infected sheep that correlate with the degree of spongiosis, PrPSc deposition, and gliosis in each of the regions studied. Remarkably, TLR4 was the only gene upregulated in all regions, regardless of the severity of neuropathology. In the hippocampus, we observed milder neuropathology associated with a distinct TLR gene expression profile and the presence of a peculiar microglial morphology, called rod microglia, described here for the first time in the brain of scrapie-infected sheep. The concurrence of these features suggests partial neuroprotection of the hippocampus. Finally, a comparison of the findings in naturallyinfected sheep versus an ovinized mouse model (tg338 mice) revealed distinct patterns of TLRgene expression.
Collapse
|
17
|
Gallardo MJ, Delgado FO. Animal prion diseases: A review of intraspecies transmission. Open Vet J 2021; 11:707-723. [PMID: 35070868 PMCID: PMC8770171 DOI: 10.5455/ovj.2021.v11.i4.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Animal prion diseases are a group of neurodegenerative, transmissible, and fatal disorders that affect several animal species. The causative agent, prion, is a misfolded isoform of normal cellular prion protein, which is found in cells with higher concentration in the central nervous system. This review explored the sources of infection and different natural transmission routes of animal prion diseases in susceptible populations. Chronic wasting disease in cervids and scrapie in small ruminants are prion diseases capable of maintaining themselves in susceptible populations through horizontal and vertical transmission. The other prion animal diseases can only be transmitted through food contaminated with prions. Bovine spongiform encephalopathy (BSE) is the only animal prion disease considered zoonotic. However, due to its inability to transmit within a population, it could be controlled. The emergence of atypical cases of scrapie and BSE, even the recent report of prion disease in camels, demonstrates the importance of understanding the transmission routes of prion diseases to take measures to control them and to assess the risks to human and animal health.
Collapse
|
18
|
Casanova M, Machado C, Tavares P, Silva J, Fast C, Balkema-Buschmann A, Groschup MH, Orge L. Circulation of Nor98 Atypical Scrapie in Portuguese Sheep Confirmed by Transmission of Isolates into Transgenic Ovine ARQ-PrP Mice. Int J Mol Sci 2021; 22:ijms221910441. [PMID: 34638780 PMCID: PMC8508621 DOI: 10.3390/ijms221910441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Portugal was among the first European countries to report cases of Atypical Scrapie (ASc), the dominant form of Transmissible Spongiform Encephalopathy (TSE) in Portuguese small ruminants. Although the diagnostic phenotypes observed in Portuguese ASc cases seem identical to those described for Nor98, unequivocal identification requires TSE strain-typing using murine bioassays. In this regard, we initiated characterization of ASc isolates from sheep either homozygous for the ARQ genotype or the classical scrapie-resistant ARR genotype. Isolates from such genotypes were transmitted to TgshpXI mice expressing ovine PrPARQ. Mean incubation periods were 414 ± 58 and 483 ± 107 days in mice inoculated with AL141RQ/AF141RQ and AL141RR/AL141RR sheep isolates, respectively. Both isolates produced lesion profiles similar to French ASc Nor98 'discordant cases', where vacuolation was observed in the hippocampus (G6), cerebral cortex at the thalamus (G8) level, cerebellar white matter (W1) and cerebral peduncles (W3). Immunohistochemical PrPSc deposition was observed in the hippocampus, cerebellar cortex, cerebellar white matter and cerebral peduncles in the form of aggregates and fine granules. These findings were consistent with previously reported cases of ASc Nor98 transmitted to transgenic TgshpXI mice, confirming that the ASc strain present in Portuguese sheep corresponds to ASc Nor98.
Collapse
|
19
|
Marín B, Otero A, Lugan S, Espinosa JC, Marín-Moreno A, Vidal E, Hedman C, Romero A, Pumarola M, Badiola JJ, Torres JM, Andréoletti O, Bolea R. Classical BSE prions emerge from asymptomatic pigs challenged with atypical/Nor98 scrapie. Sci Rep 2021; 11:17428. [PMID: 34465826 PMCID: PMC8408226 DOI: 10.1038/s41598-021-96818-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/10/2021] [Indexed: 11/08/2022] Open
Abstract
Pigs are susceptible to infection with the classical bovine spongiform encephalopathy (C-BSE) agent following experimental inoculation, and PrPSc accumulation was detected in porcine tissues after the inoculation of certain scrapie and chronic wasting disease isolates. However, a robust transmission barrier has been described in this species and, although they were exposed to C-BSE agent in many European countries, no cases of natural transmissible spongiform encephalopathies (TSE) infections have been reported in pigs. Transmission of atypical scrapie to bovinized mice resulted in the emergence of C-BSE prions. Here, we conducted a study to determine if pigs are susceptible to atypical scrapie. To this end, 12, 8-9-month-old minipigs were intracerebrally inoculated with two atypical scrapie sources. Animals were euthanized between 22- and 72-months post inoculation without clinical signs of TSE. All pigs tested negative for PrPSc accumulation by enzyme immunoassay, immunohistochemistry, western blotting and bioassay in porcine PrP mice. Surprisingly, in vitro protein misfolding cyclic amplification demonstrated the presence of C-BSE prions in different brain areas from seven pigs inoculated with both atypical scrapie isolates. Our results suggest that pigs exposed to atypical scrapie prions could become a reservoir for C-BSE and corroborate that C-BSE prions emerge during interspecies passage of atypical scrapie.
Collapse
|
20
|
Carlson GA, Prusiner SB. How an Infection of Sheep Revealed Prion Mechanisms in Alzheimer's Disease and Other Neurodegenerative Disorders. Int J Mol Sci 2021; 22:4861. [PMID: 34064393 PMCID: PMC8125442 DOI: 10.3390/ijms22094861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Although it is not yet universally accepted that all neurodegenerative diseases (NDs) are prion disorders, there is little disagreement that Alzheimer's disease (AD), Parkinson's disease, frontotemporal dementia (FTD), and other NDs are a consequence of protein misfolding, aggregation, and spread. This widely accepted perspective arose from the prion hypothesis, which resulted from investigations on scrapie, a common transmissible disease of sheep and goats. The prion hypothesis argued that the causative infectious agent of scrapie was a novel proteinaceous pathogen devoid of functional nucleic acids and distinct from viruses, viroids, and bacteria. At the time, it seemed impossible that an infectious agent like the one causing scrapie could replicate and exist as diverse microbiological strains without nucleic acids. However, aggregates of a misfolded host-encoded protein, designated the prion protein (PrP), were shown to be the cause of scrapie as well as Creutzfeldt-Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker syndrome (GSS), which are similar NDs in humans. This review discusses historical research on diseases caused by PrP misfolding, emphasizing principles of pathogenesis that were later found to be core features of other NDs. For example, the discovery that familial prion diseases can be caused by mutations in PrP was important for understanding prion replication and disease susceptibility not only for rare PrP diseases but also for far more common NDs involving other proteins. We compare diseases caused by misfolding and aggregation of APP-derived Aβ peptides, tau, and α-synuclein with PrP prion disorders and argue for the classification of NDs caused by misfolding of these proteins as prion diseases. Deciphering the molecular pathogenesis of NDs as prion-mediated has provided new approaches for finding therapies for these intractable, invariably fatal disorders and has revolutionized the field.
Collapse
|
21
|
Hackl S, Ng XW, Lu D, Wohland T, Becker CFW. Cytoskeleton-dependent clustering of membrane-bound prion protein on the cell surface. J Biol Chem 2021; 296:100359. [PMID: 33539927 PMCID: PMC7988330 DOI: 10.1016/j.jbc.2021.100359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/23/2022] Open
Abstract
Prion diseases are a group of neurodegenerative disorders that infect animals and humans with proteinaceous particles called prions. Prions consist of scrapie prion protein (PrPSc), a misfolded version of the cellular prion protein (PrPC). During disease progression, PrPSc replicates by interacting with PrPC and inducing its conversion to PrPSc. Attachment of PrPC to cellular membranes via a glycosylphosphatidylinositol (GPI) anchor is critical for the conversion of PrPC into PrPSc. However, the mechanisms governing PrPC conversion and replication on the membrane remain largely unclear. Here, a site-selectively modified PrP variant equipped with a fluorescent GPI anchor mimic (PrP-GPI) was employed to directly observe PrP at the cellular membrane in neuronal SH-SY5Y cells. PrP-GPI exhibits a cholesterol-dependent membrane accumulation and a cytoskeleton-dependent mobility. More specifically, inhibition of actin polymerization reduced the diffusion of PrP-GPI indicating protein clustering, which resembles the initial step of PrP aggregation and conversion into its pathogenic isoform. An intact actin cytoskeleton might therefore prevent conversion of PrPC into PrPSc and offer new therapeutic angles.
Collapse
|
22
|
Uchiyama K, Miyata H, Yamaguchi Y, Imamura M, Okazaki M, Pasiana AD, Chida J, Hara H, Atarashi R, Watanabe H, Kondoh G, Sakaguchi S. Strain-Dependent Prion Infection in Mice Expressing Prion Protein with Deletion of Central Residues 91-106. Int J Mol Sci 2020; 21:ijms21197260. [PMID: 33019549 PMCID: PMC7582732 DOI: 10.3390/ijms21197260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
Conformational conversion of the cellular prion protein, PrPC, into the abnormally folded isoform, PrPSc, is a key pathogenic event in prion diseases. However, the exact conversion mechanism remains largely unknown. Transgenic mice expressing PrP with a deletion of the central residues 91–106 were generated in the absence of endogenous PrPC, designated Tg(PrP∆91–106)/Prnp0/0 mice and intracerebrally inoculated with various prions. Tg(PrP∆91–106)/Prnp0/0 mice were resistant to RML, 22L and FK-1 prions, neither producing PrPSc∆91–106 or prions in the brain nor developing disease after inoculation. However, they remained marginally susceptible to bovine spongiform encephalopathy (BSE) prions, developing disease after elongated incubation times and accumulating PrPSc∆91–106 and prions in the brain after inoculation with BSE prions. Recombinant PrP∆91-104 converted into PrPSc∆91–104 after incubation with BSE-PrPSc-prions but not with RML- and 22L–PrPSc-prions, in a protein misfolding cyclic amplification assay. However, digitonin and heparin stimulated the conversion of PrP∆91–104 into PrPSc∆91–104 even after incubation with RML- and 22L-PrPSc-prions. These results suggest that residues 91–106 or 91–104 of PrPC are crucially involved in prion pathogenesis in a strain-dependent manner and may play a similar role to digitonin and heparin in the conversion of PrPC into PrPSc.
Collapse
|
23
|
Fu ZL, Mercier P, Eskandari-Sedighi G, Yang J, Westaway D, Sykes BD. Metabolomic study of disease progression in scrapie prion infected mice; validation of a novel method for brain metabolite extraction. Metabolomics 2020; 16:72. [PMID: 32533504 DOI: 10.1007/s11306-020-01690-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/28/2020] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Prion disease is a form of neurodegenerative disease caused by the misfolding and aggregation of cellular prion protein (PrPC). The neurotoxicity of the misfolded form of prion protein, PrPSc still remains understudied. Here we try to investigate this issue using a metabolomics approach. OBJECTIVES The intention was to identify and quantify the small-in-size and water-soluble metabolites extracted from mice brains infected with the Rocky Mountain Laboratory isolate of mouse-adapted scrapie prions (RML) and track changes in these metabolites during disease evolution. METHODS A total of 73 mice were inoculated with RML prions or normal brain homogenate control; brains were harvested at 30, 60, 90, 120 and 150 days post-inoculation (dpi). We devised a high-efficiency metabolite extraction method and used nuclear magnetic resonance spectroscopy to identify and quantify 50 metabolites in the brain extracts. Data were analyzed using multivariate approach. RESULTS Brain metabolome profiles of RML infected animals displayed continuous changes throughout the course of disease. Among the analyzed metabolites, the most noteworthy changes included increases in myo-inositol and glutamine as well as decreases in 4-aminobutyrate, acetate, aspartate and taurine. CONCLUSION We report a novel metabolite extraction method for lipid-rich tissue. As all the major metabolites are identifiable and quantifiable by magnetic resonance spectroscopy, this study suggests that tracking of neurochemical profiles could be effective in monitoring the progression of neurodegenerative diseases and useful for assessing the efficacy of candidate therapeutics.
Collapse
|
24
|
Burke CM, Mark KMK, Kun J, Beauchemin KS, Supattapone S. Emergence of prions selectively resistant to combination drug therapy. PLoS Pathog 2020; 16:e1008581. [PMID: 32421750 PMCID: PMC7259791 DOI: 10.1371/journal.ppat.1008581] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/29/2020] [Accepted: 04/27/2020] [Indexed: 11/28/2022] Open
Abstract
Prions are unorthodox infectious agents that replicate by templating misfolded conformations of a host-encoded glycoprotein, collectively termed PrPSc. Prion diseases are invariably fatal and currently incurable, but oral drugs that can prolong incubation times in prion-infected mice have been developed. Here, we tested the efficacy of combination therapy with two such drugs, IND24 and Anle138b, in scrapie-infected mice. The results indicate that combination therapy was no more effective than either IND24 or Anle138b monotherapy in prolonging scrapie incubation times. Moreover, combination therapy induced the formation of a new prion strain that is specifically resistant to the combination regimen but susceptible to Anle138b. To our knowledge, this is the first report of a pathogen with specific resistance to combination therapy despite being susceptible to monotherapy. Our findings also suggest that combination therapy may be a less effective strategy for treating prions than conventional pathogens.
Collapse
|
25
|
Kim HJ, Kim MJ, Mostafa MN, Park JH, Choi HS, Kim YS, Choi EK. RhoA/ROCK Regulates Prion Pathogenesis by Controlling Connexin 43 Activity. Int J Mol Sci 2020; 21:ijms21041255. [PMID: 32070020 PMCID: PMC7072953 DOI: 10.3390/ijms21041255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 11/16/2022] Open
Abstract
Scrapie infection, which converts cellular prion protein (PrPC) into the pathological and infectious isoform (PrPSc), leads to neuronal cell death, glial cell activation and PrPSc accumulation. Previous studies reported that PrPC regulates RhoA/Rho-associated kinase (ROCK) signaling and that connexin 43 (Cx43) expression is upregulated in in vitro and in vivo prion-infected models. However, whether there is a link between RhoA/ROCK and Cx43 in prion disease pathogenesis is uncertain. Here, we investigated the role of RhoA/ROCK signaling and Cx43 in prion diseases using in vitro and in vivo models. Scrapie infection induced RhoA activation, accompanied by increased phosphorylation of LIM kinase 1/2 (LIMK1/2) at Thr508/Thr505 and cofilin at Ser3 and reduced phosphorylation of RhoA at Ser188 in hippocampal neuronal cells and brains of mice. Scrapie infection-induced RhoA activation also resulted in PrPSc accumulation followed by a reduction in the interaction between RhoA and p190RhoGAP (a GTPase-activating protein). Interestingly, scrapie infection significantly enhanced the interaction between RhoA and Cx43. Moreover, RhoA and Cx43 colocalization was more visible in both the membrane and cytoplasm of scrapie-infected hippocampal neuronal cells than in controls. Finally, RhoA and ROCK inhibition reduced PrPSc accumulation and the RhoA/Cx43 interaction, leading to decreased Cx43 hemichannel activity in scrapie-infected hippocampal neuronal cells. These findings suggest that RhoA/ROCK regulates Cx43 activity, which may have an important role in the pathogenesis of prion disease.
Collapse
|