251
|
Hsiang YH, Hertzberg R, Hecht S, Liu LF. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 1985; 260:14873-8. [PMID: 2997227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Camptothecin, a cytotoxic drug, is a strong inhibitor of nucleic acid synthesis in mammalian cells and a potent inducer of strand breaks in chromosomal DNA. Neither the equilibrium dialysis nor the unwinding measurement indicates any interaction between camptothecin and purified DNA. However, camptothecin induces extensive single strand DNA breaks in reactions containing purified mammalian DNA topoisomerase I. DNA breakage in vitro is immediate and reversible. Analyses of camptothecin-induced DNA breaks show that topoisomerase I is covalently linked to the 3' end of the broken DNA. In addition, camptothecin inhibits the catalytic activity of mammalian DNA topoisomerase I. We propose that camptothecin blocks the rejoining step of the breakage-reunion reaction of mammalian DNA topoisomerase I. This blockage results in the accumulation of a cleavable complex which resembles the transient intermediate proposed for eukaryotic DNA topoisomerase I. The inhibition of nucleic acid synthesis and the induction of DNA strand breaks observed in vivo may be related to the formation of this drug-induced cleavable complex.
Collapse
|
252
|
Yang L, Rowe TC, Liu LF. Identification of DNA topoisomerase II as an intracellular target of antitumor epipodophyllotoxins in simian virus 40-infected monkey cells. Cancer Res 1985; 45:5872-6. [PMID: 2996763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effect of antitumor epipodophyllotoxins, etoposide (VP-16) and teniposide (VM-26), on chromosomal DNA in mammalian cells was studied using SV40 virus-infected monkey cells as a model system. Treatment of SV40 virus-infected monkey cells with these drugs results in DNA breaks on intracellular SV40 DNA. The broken DNA strands are sensitive to phenol extraction, suggesting that they are associated with tightly linked protein(s). Several pieces of evidence suggest that DNA topoisomerase II is covalently linked to the broken SV40 DNA strands following drug treatment. ovobiocin, an inhibitor of topoisomerase II, blocks the epipodophyllotoxin-induced SV40 DNA breaks in vivo and in vitro. Epipodophyllotoxin-induced cleavage sites on intracellular SV40 DNA are strikingly similar to those produced on purified SV40 DNA by purified calf thymus DNA topoisomerase II. The protein-linked SV40 DNA is specifically immunoprecipitated by antisera against topoisomerase II. We thus conclude that epipodophyllotoxins induce chromosomal DNA breakage via DNA topoisomerase II. The physiological effects of epipodophyllotoxins on cell death, chromosomal DNA breakage, sister chromatid exchanges, and chromosomal aberrations may be the consequence of drug interaction with DNA topoisomerase II. Our present results are also consistent with the proposal that epipodophyllotoxins interfere with the breakage-reunion reaction of DNA topoisomerase II by stabilizing an enzyme-DNA complex in its putative cleavable state.
Collapse
|
253
|
Yang L, Rowe TC, Nelson EM, Liu LF. In vivo mapping of DNA topoisomerase II-specific cleavage sites on SV40 chromatin. Cell 1985; 41:127-32. [PMID: 2986841 DOI: 10.1016/0092-8674(85)90067-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The antitumor drug, m-AMSA (4'-(9-acridinylamino)-methanesulfon-m-anisidide), is known to interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II by blocking the enzyme-DNA complex in its putative cleavable state. Treatment of SV40 virus infected monkey cells with m-AMSA resulted in both single- and double-stranded breaks on SV40 viral chromatin. These strand breaks are unusual because they are covalently associated with protein. Immunoprecipitation results suggest that the covalently linked protein is DNA topoisomerase II. These results are consistent with the proposal that the drug action in vivo involves the stabilization of a cleavable complex between topoisomerase II and DNA in chromatin. Mapping of these double-stranded breaks on SV40 viral DNA revealed multiple topoisomerase II cleavage sites. A major topoisomerase II cleavage site was preferentially induced during late infection and was mapped in the DNAase I hypersensitive region of SV40 chromatin.
Collapse
|
254
|
Earnshaw WC, Halligan B, Cooke CA, Heck MM, Liu LF. Topoisomerase II is a structural component of mitotic chromosome scaffolds. J Cell Biol 1985; 100:1706-15. [PMID: 2985625 PMCID: PMC2113886 DOI: 10.1083/jcb.100.5.1706] [Citation(s) in RCA: 550] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have obtained a polyclonal antibody that recognizes a major polypeptide component of chicken mitotic chromosome scaffolds. This polypeptide migrates in SDS PAGE with Mr 170,000. Indirect immunofluorescence and subcellular fractionation experiments confirm that it is present in both mitotic chromosomes and interphase nuclei. Two lines of evidence suggest that this protein is DNA topoisomerase II, an abundant nuclear enzyme that controls DNA topological states: anti-scaffold antibody inhibits the strand-passing activity of DNA topoisomerase II; and both anti-scaffold antibody and an independent antibody raised against purified bovine topoisomerase II recognize identical partial proteolysis fragments of the 170,000-mol-wt scaffold protein in immunoblots. Our results suggest that topoisomerase II may be an enzyme that is also a structural protein of interphase nuclei and mitotic chromosomes.
Collapse
|
255
|
Halligan BD, Edwards KA, Liu LF. Purification and characterization of a type II DNA topoisomerase from bovine calf thymus. J Biol Chem 1985; 260:2475-82. [PMID: 2982821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We report here the large scale purification of DNA topoisomerase II from calf thymus glands, using the unknotting of naturally knotted P4 phage DNA as an assay for enzymatic activity. Topoisomerase II was purified more than 1300-fold as compared to the whole cell homogenate, with 22% yield. Analysis of the purified enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed two bands of apparent molecular masses of 125 and 140 kDa. Tryptic maps of the two bands indicated that they derive from the same protein. Using these fragments, specific polyclonal antisera to topoisomerase II were raised in rabbits. Immunoblotting of whole cell lysates from various species indicated that topoisomerase II is well conserved among mammals and has a native subunit molecular mass of 180 kDa. Analytical sedimentation and gel filtration were used to determine a sedimentation coefficient of 9.8 S and a Stokes radius of 68 A. The calculated solution molecular mass of 277 kDa implies a dimer structure in solution. The purified topoisomerase II unknots P4 DNA in an ATP-dependent manner and is highly stimulated in its relaxation activity by ATP. A DNA-stimulated ATPase activity, as has been found with other type II topoisomerases, is associated with the purified enzyme. Approximate kinetic parameters for the ATPase reaction were determined to be: a Vmax of 0.06 nmol of ATP/(micrograms of protein) (min) and Km of 0.2 mM in the absence of DNA, and a Vmax of 0.2 nmol of ATP/(micrograms of protein) (min) and Km of 0.4 mM ATP in the presence of supercoiled plasmid DNA.
Collapse
|
256
|
Halligan BD, Edwards KA, Liu LF. Purification and characterization of a type II DNA topoisomerase from bovine calf thymus. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89578-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
257
|
Chen GL, Yang L, Rowe TC, Halligan BD, Tewey KM, Liu LF. Nonintercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J Biol Chem 1984; 259:13560-6. [PMID: 6092381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Many intercalative antitumor drugs have been shown to cleave DNA indirectly through their specific effect on the stabilization of a cleavable complex formed between mammalian DNA topoisomerase II and DNA (Nelson, E.M., Tewey, K.M., and Liu, L.F. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1361-1365). Antitumor epipodophyllotoxins (VP-16 and VM-26) which do not intercalate DNA can similarly induce protein-linked DNA breaks in cultured mammalian cells. In vitro studies using purified mammalian DNA topoisomerase II show that epipodophyllotoxins interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II by stabilizing a cleavable complex. Treatment of this stabilized cleavable complex with protein denaturants results in DNA strand breaks and the covalent linking of a topoisomerase subunit to the 5'-end of the broken DNA. Furthermore, epipodophyllotoxins also inhibit the strand-passing activity of mammalian DNA topoisomerase II, presumably as a result of drug-enzyme interaction. The agreement between the in vivo and in vitro studies suggests that mammalian DNA topoisomerase II is a drug target in vivo. The similarity between the effect of epipodophyllotoxins on mammalian DNA topoisomerase II and the effect of nalidixic acid on Escherichia coli DNA gyrase suggests that the cytotoxic action of epipodophyllotoxins may be analogous to the bactericidal action of nalidixic acid.
Collapse
|
258
|
Chen GL, Yang L, Rowe TC, Halligan BD, Tewey KM, Liu LF. Nonintercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90729-5] [Citation(s) in RCA: 261] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
259
|
Tewey KM, Rowe TC, Yang L, Halligan BD, Liu LF. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science 1984; 226:466-8. [PMID: 6093249 DOI: 10.1126/science.6093249] [Citation(s) in RCA: 1071] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Adriamycin (doxorubicin), a potent antitumor drug in clinical use, interacts with nucleic acids and cell membranes, but the molecular basis for its antitumor activity is unknown. Similar to a number of intercalative antitumor drugs and nonintercalative epipodophyllotoxins (VP-16 and VM-26), adriamycin has been shown to induce single- and double-strand breaks in DNA. These strand breaks are unusual because a covalently bound protein appears to be associated with each broken phosphodiester bond. In studies in vitro, mammalian DNA topoisomerase II mediates DNA damage by adriamycin and other related antitumor drugs.
Collapse
|
260
|
Rowe TC, Tewey KM, Liu LF. Identification of the breakage-reunion subunit of T4 DNA topoisomerase. J Biol Chem 1984; 259:9177-81. [PMID: 6086624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The antitumor drug 4'-(9-acridinylamino)methanesulfon-m-anisidide which stimulates the cleavable complex formation between mammalian DNA topoisomerase II and DNA also stimulates the cleavable complex formation between bacteriophage T4-induced DNA topoisomerase and DNA. In the presence of 4'-(9-acridinylamino)methanesulfon-m-anisidide, T4 DNA topoisomerase and DNA form a "cleavable complex" which is characterized by its sensitivity to protein-denaturant treatment. Upon protein-denaturant treatment, the phosphodiester bond of DNA is cleaved, and the gene 52 protein subunit of the topoisomerase becomes covalently linked to the 5'-end of the broken DNA. The covalent protein-DNA linkage has been determined by both paper electrophoresis and thin layer chromatography to be tyrosyl phosphate.
Collapse
|
261
|
Tewey KM, Chen GL, Nelson EM, Liu LF. Intercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J Biol Chem 1984; 259:9182-7. [PMID: 6086625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Many intercalative antitumor drugs have been shown to induce reversible protein-linked DNA breaks in cultured mammalian cells. Using purified mammalian DNA topoisomerase II, we have demonstrated that the antitumor drugs ellipticine and 2-methyl-9-hydroxyellipticine (2-Me-9-OH-E+) can produce reversible protein-linked DNA breaks in vitro. 2-Me-9-OH-E+ which is more cytotoxic toward L1210 cells and more active against experimental tumors than ellipticine is also more effective in stimulating DNA cleavage in vitro. Similar to the effect of 4'-(9-acridinylamino)-methanesulfon-m-anisidide (m-AMSA) on topoisomerase II in vitro, the mechanism of DNA breakage induced by ellipticines is most likely due to the drug stabilization of a cleavable complex formed between topoisomerase II and DNA. Protein denaturant treatment of the cleavable complex results in DNA breakage and covalent linking of one topoisomerase II subunit to each 5'-end of the cleaved DNA. Cleavage sites on pBR322 DNA produced by ellipticine or 2-Me-9-OH-E+ treatment mapped at the same positions. However, many of these cleavage sites are distinctly different from those produced by the antitumor drug m-AMSA which also targets at topoisomerase II. Our results thus suggest that although mammalian DNA topoisomerase II may be a common target of these antitumor drugs, drug-DNA-topoisomerase interactions for different antitumor drugs may be different.
Collapse
|
262
|
Rowe TC, Tewey KM, Liu LF. Identification of the breakage-reunion subunit of T4 DNA topoisomerase. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)47281-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
263
|
Nelson EM, Tewey KM, Liu LF. Mechanism of antitumor drug action: poisoning of mammalian DNA topoisomerase II on DNA by 4'-(9-acridinylamino)-methanesulfon-m-anisidide. Proc Natl Acad Sci U S A 1984; 81:1361-5. [PMID: 6324188 PMCID: PMC344833 DOI: 10.1073/pnas.81.5.1361] [Citation(s) in RCA: 373] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The intercalative acridine derivative 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA), but not its isomer o-AMSA, is a potent antitumor drug that in mammalian cells stimulates the formation of DNA strand breaks that are characterized by tightly bound proteins. Using purified mammalian DNA topoisomerases, we have analyzed the effects of these antitumor drugs on topoisomerase-DNA interactions. The antitumor drug m-AMSA dramatically stimulates the formation of a topoisomerase II-DNA complex that is detected on protein-denaturant treatment: both single- and double-stranded DNA breaks are produced and a topoisomerase II subunit is linked covalently to each 5' end of the broken DNA strands. The noncytotoxic isomer, o-AMSA, which does not induce significant amounts of DNA breaks in cultured cells, exhibits a correspondingly smaller effect in stimulating formation of the complex in vitro. The agreement between in vitro and in vivo studies suggests that mammalian DNA topoisomerase II may be the primary target of m-AMSA and that the drug-induced complex formation between topoisomerase II and DNA may be the cause of cytotoxicity and other effects such as DNA sequence rearrangements and sister-chromatid exchange.
Collapse
|
264
|
Liu LF, Rowe TC, Yang L, Tewey KM, Chen GL. Cleavage of DNA by mammalian DNA topoisomerase II. J Biol Chem 1983; 258:15365-70. [PMID: 6317692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Using the P4 unknotting assay, DNA topoisomerase II has been purified from several mammalian cells. Similar to prokaryotic DNA gyrase, mammalian DNA topoisomerase II can cleave double-stranded DNA and be trapped as a covalent protein-DNA complex. This cleavage reaction requires protein denaturant treatment of the topoisomerase II-DNA complex and is reversible with respect to salt and temperature. The product after reversal of the cleavage reaction remains supertwisted, suggesting that the two ends of the putatively broken DNA are held tightly by the topoisomerase. Alternatively, the enzyme-DNA interaction is noncovalent, and the covalent linking of topoisomerase to DNA is induced by the protein denaturant. Detailed characterization of the cleavage products has revealed that topoisomerase II cuts DNA with a four-base stagger and is covalently linked to the protruding 5'-phosphoryl ends of each broken DNA strand. Calf thymus DNA topoisomerase II cuts SV40 DNA at multiple and specific sites. However, no sequence homology has been found among the cleavage sites as determined by direct nucleotide-sequencing studies.
Collapse
|
265
|
Liu LF, Rowe TC, Yang L, Tewey KM, Chen GL. Cleavage of DNA by mammalian DNA topoisomerase II. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)43815-4] [Citation(s) in RCA: 348] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
266
|
Javaherian K, Liu LF. Association of eukaryotic DNA topoisomerase I with nucleosomes and chromosomal proteins. Nucleic Acids Res 1983; 11:461-72. [PMID: 6298726 PMCID: PMC325725 DOI: 10.1093/nar/11.2.461] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A DNA topoisomerase activity is found to be associated with the nucleosomes released by the Staphylococcal nuclease digestion of HeLa nuclei. Such an association is found to be salt dependent. A number of criteria have established that this DNA topoisomerase activity is due to HeLa topo I (Liu, L. F. and Miller, K. G. (1980) Proc. Natl. Acad. Sci. USA 78, 3489-3491). A similar association has been demonstrated from the in vitro studies using purified mononucleosomes and eukaryotic DNA topoisomerase I. Nonhistone HMG proteins and histone H1 are found to stimulate topoisomerase activity in vitro and form tight complexes with eukaryotic DNA topoisomerase I. The intimate interactions of topoisomerase I with chromosomal proteins and nucleosomes may be an essential feature of the topoisomerase function in vivo.
Collapse
|
267
|
Liu LF. DNA topoisomerases--enzymes that catalyse the breaking and rejoining of DNA. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1983; 15:1-24. [PMID: 6319080 DOI: 10.3109/10409238309102799] [Citation(s) in RCA: 175] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
268
|
Edwards KA, Halligan BD, Davis JL, Nivera NL, Liu LF. Recognition sites of eukaryotic DNA topoisomerase I: DNA nucleotide sequencing analysis of topo I cleavage sites on SV40 DNA. Nucleic Acids Res 1982; 10:2565-76. [PMID: 6281736 PMCID: PMC320634 DOI: 10.1093/nar/10.8.2565] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Eukaryotic DNA topoisomerase I introduces transient single-stranded breaks on double-stranded DNA and spontaneously breaks down single-stranded DNA. The cleavage sites on both single and double-stranded SV40 DNA have been determined by DNA sequencing. Consistent with other reports, the eukaryotic enzymes, in contrast to prokaryotic type I topoisomerases, links to the 3'-end of the cleaved DNA and generates a free 5'-hydroxyl end on the other half of the broken DNA strand. Both human and calf enzymes cleave SV40 DNA at the identical and specific sites. From 827 nucleotides sequenced, 68 cleavage sites were mapped. The majority of the cleavage sites were present on both double and single-stranded DNA at exactly the same nucleotide positions, suggesting that the DNA sequence is essential for enzyme recognition. By analyzing all the cleavage sequences, certain nucleotides are found to be less favored at the cleavage sites. There is a high probability to exclude G from positions -4, -2, -1 and +1, T from position -3, and A from position -1. These five positions (-4 to +1 oriented in the 5' to 3' direction) around the cleavage sites must interact intimately with topo I and thus are essential for enzyme recognition. One topo I cleavage site which shows atypical cleavage sequence maps in the middle of a palindromic sequence near the origin of SV40 DNA replication. It occurs only on single-stranded SV40 DNA, suggesting that the DNA hairpin can alter the cleavage specificity. The strongest cleavage site maps near the origin of SV40 DNA replication at nucleotide 31-32 and has a pentanucleotide sequence of 5'-TGACT-3'.
Collapse
|
269
|
Halligan BD, Davis JL, Edwards KA, Liu LF. Intra- and intermolecular strand transfer by HeLa DNA topoisomerase I. J Biol Chem 1982; 257:3995-4000. [PMID: 6277956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The major type I DNA topoisomerase (topo I) has been purified from HeLa cell nuclei to a homogeneous, monomeric protein (Mr = 100,000). Similar to the nicking-closing enzyme (Mr = 67,000) from rat liver (Been, M. D., and Champoux, J. J. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 2883-2887), HeLa topo I has the following properties: (a) HeLa topo I breaks down single-stranded DNA to smaller fragments, each with an enzyme-linked 3'-phosphoryl end and a free 5'-OH end. This cleavage is not dependent upon protein denaturant or protease treatment. (b) HeLa topo I produces single-stranded DNA circles from linear single-stranded DNA. Such DNA circles are believed to be produced by the intramolecular cyclization of topo I-linked, single-stranded DNA fragments. (c) HeLa topo I-linked, single-stranded fragments (donors) can join covalently to double-stranded DNA possessing a 5'-OH group (acceptors). The donor is transferred to the 5'-OH end of the acceptor, independent of the position of the end (internal nick or end of linear DNA) or the configuration of the end (flush, 5'-protruding, or 5'-recessed end) of the acceptor. (d) HeLa topo I cleavage of single-stranded DNA is site-specific, but no special sequence at the ends of the acceptor molecule is apparently required for a successful heterologous strand transfer. These results suggest that HeLa topo I may be involved in DNA sequence rearrangements in addition to its possible role as a swivelase for transcription and replication.
Collapse
|
270
|
Miller KG, Liu LF, Englund PT. A homogeneous type II DNA topoisomerase from HeLa cell nuclei. J Biol Chem 1981; 256:9334-9. [PMID: 6267071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Using kinetoplast DNA networks as a substrate in a decatenation assay, we have purified to apparent homogeneity a type II DNA topoisomerase from HeLa cell nuclei. The most pure preparations contain a single polypeptide of 172,000 daltons as determined by sodium dodecyl sulfate-gel electrophoresis. The molecular weight of the native protein, based on sedimentation and gel filtration analyses, is estimated to be 309,000. These results suggest that the enzyme is a dimer of 172,0090-dalton subunits. The enzyme is a type II topoisomerase as demonstrated by its ability to change the linking number of DNA circles in steps of two and to decatenate or unknot covalently closed DNA circles. No gyrase activity is detectable. ATP is required for the relaxation, decatenation, and unknotting of DNA, and a DNA-dependent ATPase activity is present in the most pure fractions. ATP is hydrolyzed to ADP in this properties to T4 DNA topoisomerase (Liu, L. F., Liu, C. C., and Alberts, B. M. (1979) Nature 281, 456-461).
Collapse
|
271
|
Liu LF, Perkocha L, Calendar R, Wang JC. Knotted DNA from bacteriophage capsids. Proc Natl Acad Sci U S A 1981; 78:5498-502. [PMID: 6272306 PMCID: PMC348773 DOI: 10.1073/pnas.78.9.5498] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The majority of the DNA prepared from tailless capsids of bacteriophage P2 by the phenol extraction procedure consists of monomeric rings that have their cohesive ends joined. Electron microscopic and ultracentrifugal studies indicate that these molecules have a complex structure that is topologically knotted; they have a more compact appearance and a higher sedimentation coefficient when compared with regular nicked P2 DNA rings. Linearization of these rings by thermal dissociation or repair of the cohesive ends by DNA polymerase I in the presence of all four deoxynucleoside triphosphates gives molecules that are indistinguishable from normal P2 DNA that has been similarly treated. The knotted nature of the majority of P2 head DNA is further supported by analyzing the products when these molecules are treated with ligase and the ligase-treated molecules are subsequently nicked randomly with DNase I. The data are consistent with the notion that, if such a molecule is first converted to a form that contains only one single-chain scission per molecule, strand separation gives a linear strand and a highly knotted single-stranded ring. The results suggest that the DNA packaged in tailless P2 capsids is arranged in a way that leads to the formation of a complex knot when the ends join. In an intact phage particle, the anchoring of one terminus of the DNA to the head-proximal end of the tail [Chattoraj, D. K. & Inman, R. B. (1974) J. Mol. Biol. 87, 11-22] presumably diminishes or prevents this kind of joining. The novel knotted DNA can be used to assay type II DNA topoisomerases that break and rejoin DNA in a double-stranded fashion.
Collapse
|
272
|
Liu LF, Davis JL, Calendar R. Novel topologically knotted DNA from bacteriophage P4 capsids: studies with DNA topoisomerases. Nucleic Acids Res 1981; 9:3979-89. [PMID: 6272191 PMCID: PMC327409 DOI: 10.1093/nar/9.16.3979] [Citation(s) in RCA: 178] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
DNA molecules isolated from bacteriophage P4 are mostly linear with cohesive ends capable of forming circular and concatemeric structures. In contrast, almost all DNA molecules isolated form P4 tailless capsids (heads) are monomeric DNA circles with their cohesive ends hydrogen-bonded. Different form simple DNA circles, such P4 head DNA circles contain topological knots. Gel electrophoretic and electronmicroscopic analyses of P4 head DNA indicate that the topological knots are highly complex and heterogeneous. Resolution of such complex knots has been studied with various DNA topoisomerases. The conversion of highly knotted P4 DNA to its simple circular form is demonstrated by type II DNA topoisomerases which catalyze the topological passing of two crossing double-stranded DNA segments [Liu, L. F., Liu, C. C. & Alberts, B. M. (1980) Cell, 19, 697-707]. The knotted P4 head DNA can be used in a sensitive assay for the detection of a type II DNA topoisomerase even in the presence of excess type I DNA topoisomerases.
Collapse
|
273
|
Liu LF, Miller KG. Eukaryotic DNA topoisomerases: two forms of type I DNA topoisomerases from HeLa cell nuclei. Proc Natl Acad Sci U S A 1981; 78:3487-91. [PMID: 6267594 PMCID: PMC319594 DOI: 10.1073/pnas.78.6.3487] [Citation(s) in RCA: 249] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Two type I DNA topoisomerases have been purified to homogeneity from the nuclei of HeLa cells. One topoisomerase has a peptide molecular weight of 100,000 and the other, a molecular weight of 67,000. Several lines of evidence indicate that these two topoisomerases are closely related, (a) Both exhibit similar enzymatic activities on DNA. (b) The chromatographic properties of the two topoisomerases during purification are similar. (c) Mild proteolysis of the purified molecular weight 100,000 topoisomerase in vitro generates a group of protein bands of molecular weight approximately 67,000, and these bands retain topoisomerase activity. (d) The peptides formed by partial proteolysis of the 67,000 topoisomerase in the presence of NaDodSO4 form a subset of those produced from the 100,000 enzyme. The 100,000 topoisomerase is the major type I enzyme in the cell. The 67,000 topoisomerase, which may be identical to the previously identified "nicking-closing" enzyme [Champoux, J. J. & Dulbecco, R. (1972) Proc. Natl. Acad. Sci. USA 69, 143-146], is probably formed by proteolysis of the 100,000 enzyme.
Collapse
|
274
|
Liu LF, Liu CC, Alberts BM. Type II DNA topoisomerases: enzymes that can unknot a topologically knotted DNA molecule via a reversible double-strand break. Cell 1980; 19:697-707. [PMID: 6244895 DOI: 10.1016/s0092-8674(80)80046-8] [Citation(s) in RCA: 392] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The T4 DNA topoisomerase is a recently discovered multisubunit protein that appears to have an essential role in the initiation of T4 bacteriophage DND replication. Treatment of double-stranded circular DNA with large amounts of this topoisomerase in the absence of ATP yields new DNA species which are knotted topological isomers of the double-stranded DNA circle. These knotted DNA circles, whether covalently closed or nicked, are converted to unknotted circles by treatment with trace amounts of the T4 topoisomerase in the presence of ATP. Very similar ATP-dependent enzyme activities capable of unknotting DNA are present in extracts of Drosophila eggs. Xenopus laevis eggs and mammalian tissue culture cells. The procaryotic enzyme, DNA gyrase, is also capable of unknotting DNA. We propose that these unknotting enzymes constitute a new general class of DNA topoisomerases (type II DNA topoisomerases). These enzymes must act via mechanisms that involve the concerted cleavage and rejoining of two opposite DNA strands, such that the DNA double helix is transiently broken. The passage of a second double-stranded DNA segment through this reversible double-strand break results in a variety of DNA topoisomerization reactions, including relaxation:super-coiling; knotting:unknotting and catenation:decatenation. In support of this type of mechanism, we demonstrate that the T4 DNA topoisomerase changes the linking number of a covalently closed double-stranded circular DNA molecule only by multiples of two. We discuss the possible roles of such enzymes in a variety of biological functions, along with their probable molecular mechanisms.
Collapse
|
275
|
Liu LF, Wang JC. Interaction between DNA and Escherichia coli DNA topoisomerase I. Formation of complexes between the protein and superhelical and nonsuperhelical duplex DNAs. J Biol Chem 1979; 254:11082-8. [PMID: 227859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|