351
|
Tomasek PH, Karns JS. Cloning of a carbofuran hydrolase gene from Achromobacter sp. strain WM111 and its expression in gram-negative bacteria. J Bacteriol 1989; 171:4038-44. [PMID: 2661544 PMCID: PMC210159 DOI: 10.1128/jb.171.7.4038-4044.1989] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A 14-kilobase-pair (kbp) EcoRI DNA fragment that encodes an enzyme capable of rapid hydrolysis of N-methylcarbamate insecticides (carbofuran hydrolase) was cloned from carbofuran-degrading Achromobacter sp. strain WM111. When used to probe Southern blots containing plasmid and total DNAs from WM111, this 14-kbp fragment hybridized strongly to a 14-kbp EcoRI fragment from the greater than 100-kbp plasmid harbored by this strain but weakly to EcoRI-digested total DNA from Achromobacter sp. strain WM111, indicating that the gene for N-methylcarbamate degradation (mcd) is plasmid encoded. Further subcloning localized the mcd gene on a 3-kbp ScaI-ClaI fragment. There was little or no expression of this gene in the alternative gram-negative hosts Pseudomonas putida, Alcaligenes eutrophus, Acinetobacter calcoaceticus, and Achromobacter pestifer. Western blotting (immunoblotting) of the protein products produced by low-level expression in P. putida confirmed that this 3-kbp fragment encodes the two 70+-kilodalton protein products seen in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified carbofuran hydrolase.
Collapse
|
352
|
Boczar BA, Delaney TP, Cattolico RA. Gene for the ribulose-1,5-bisphosphate carboxylase small subunit protein of the marine chromophyte Olisthodiscus luteus is similar to that of a chemoautotrophic bacterium. Proc Natl Acad Sci U S A 1989; 86:4996-9. [PMID: 2740337 PMCID: PMC297543 DOI: 10.1073/pnas.86.13.4996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase [3-phospho-D-glycerate carboxylase (dimerizing), EC 4.1.1.39] small subunit protein is encoded by the gene rbcS in the chloroplast genome of the unicellular alga Olisthodiscus luteus. This observation contrasts sharply with that seen in terrestrial plants and green algae, where rbcS is nuclear-localized. In this study, the O. luteus rbcS gene has been sequenced. The predicted primary structure of the protein sequence is 139 amino acids in length and lacks an N-terminal signal sequence. Unexpectedly, the O. luteus rbcS amino acid sequence shows the greatest similarity (56% identity) to that of the chemolithotrophic bacterium Alcaligenes eutrophus. A comparison of the N-terminal amino acid rbcS sequence of A. eutrophus to those of O. luteus and brown alga Fucus species shows extensive sequence similarity (68.3% identity). This observation suggests that the rbcS genes of these organisms are evolutionary homologues and may provide useful information in the study of small-subunit function.
Collapse
|
353
|
Hooper SW, Dockendorff TC, Sayler GS. Characteristics and restriction analysis of the 4-chlorobiphenyl catabolic plasmid, pSS50. Appl Environ Microbiol 1989; 55:1286-8. [PMID: 2757383 PMCID: PMC184292 DOI: 10.1128/aem.55.5.1286-1288.1989] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The plasmid pSS50 is a 53-kilobase self-transmissible plasmid of broad host range that has been isolated from several Alcaligenes and Acinetobacter species. This plasmid has previously been shown to mediate the mineralization of 4-chlorobiphenyl to carbon dioxide and water. Physical characterization of this plasmid by restriction analysis indicates that most hexanucleotide cleavage sites are clustered in a 5-kilobase region, leaving large regions without restriction sites. The paucity of restriction sites is not due to DNA methylation.
Collapse
|
354
|
Peoples OP, Sinskey AJ. Fine structural analysis of the Zoogloea ramigera phbA-phbB locus encoding beta-ketothiolase and acetoacetyl-CoA reductase: nucleotide sequence of phbB. Mol Microbiol 1989; 3:349-57. [PMID: 2546004 DOI: 10.1111/j.1365-2958.1989.tb00180.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A series of expression plasmids containing either the complete insert from plasmid pUCDBK1 (Peoples et al., 1987) or sub-fragments thereof were constructed in a tac promoter vector. Analysis of protein lysates of induced cultures of these clones identified the gene encoding NADPH-specific acetoacetyl-CoA reductase in the 2.3kb of sequence located downstream from the beta-ketothiolase gene in plasmid pUCDBK1. The complete nucleotide sequence (2.1kb) of this region was determined. An open reading frame was located 88bp downstream from the stop codon of the thiolase gene encoding a potential polypeptide of Mr 25,000, which is in good agreement with that observed for the overexpressed protein on SDS-PAGE. N-terminal protein sequence data obtained by Edman degradation of the purified Mr = 25,000 polypeptide were used to identify the correct start of the NADPH-specific acetoacetyl-CoA reductase gene. Hence in Z. ramigera, the genes encoding beta-ketothiolase (phbA) and NADPH-specific acetoacetyl-CoA reductase (phbB) are organized as phbA-phbB. S1-nuclease analysis of Z. ramigera RNA identified a transcription start site 85 bp upstream from the phbA structural gene locating the promoter region.
Collapse
|
355
|
Eberz G, Eitinger T, Friedrich B. Genetic determinants of a nickel-specific transport system are part of the plasmid-encoded hydrogenase gene cluster in Alcaligenes eutrophus. J Bacteriol 1989; 171:1340-5. [PMID: 2646280 PMCID: PMC209751 DOI: 10.1128/jb.171.3.1340-1345.1989] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nickel-deficient (Nic-) mutants of Alcaligenes eutrophus requiring high levels of nickel ions for autotrophic growth with hydrogen were characterized. The Nic- mutants carried defined deletions in the hydrogenase gene cluster of the indigenous pHG megaplasmid. Nickel deficiency correlated with a low level of the nickel-containing hydrogenase activity, a slow rate of nickel transport, and reduced activity of urease. The Nic+ phenotype was restored by a cloned DNA sequence (hoxN) of a megaplasmid pHG1 DNA library of A. eutrophus H16. hoxN is part of the hydrogenase gene cluster. The nickel requirement of Nic- mutants was enhanced by increasing the concentration of magnesium. This suggests that the Nic- mutants are impaired in the nickel-specific transport system and thus depend on the second transport activity which normally mediates the uptake of magnesium.
Collapse
|
356
|
Nies DH, Silver S. Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus. J Bacteriol 1989; 171:896-900. [PMID: 2914875 PMCID: PMC209680 DOI: 10.1128/jb.171.2.896-900.1989] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In Alcaligenes eutrophus CH34, resistance to chromate is plasmid determined, inducible, and based on decreased net accumulation of the metal anion. Plasmid-encoded resistances to zinc, cadmium, cobalt, and nickel are resulting from inducible, energy-dependent cation efflux systems.
Collapse
|
357
|
Römermann D, Warrelmann J, Bender RA, Friedrich B. An rpoN-like gene of Alcaligenes eutrophus and Pseudomonas facilis controls expression of diverse metabolic pathways, including hydrogen oxidation. J Bacteriol 1989; 171:1093-9. [PMID: 2536672 PMCID: PMC209706 DOI: 10.1128/jb.171.2.1093-1099.1989] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pleiotropic mutants of Alcaligenes eutrophus with the phenotype Hno- have been characterized previously. They are deficient in several diverse metabolic activities, including hydrogen oxidation, nitrate and urea assimilation, denitrification, and various substrate transport systems. Phenotypically similar mutants were identified among hydrogenase-deficient strains of Pseudomonas facilis. The Tn5-labeled hno gene was cloned from a genomic DNA library of A. eutrophus and used to identify the corresponding unimpaired wild-type DNA sequence. The recombinant plasmid pCH148 contained an insert of 12.3 kilobase pairs and was shown to restore the Hno+ phenotype to mutants of A. eutrophus and P. facilis. A cosmid isolated from a DNA library of P. facilis also exhibited intergeneric Hno-complementing activity. The cloned hno loci from both organisms showed DNA homology by Southern blot hybridization. A subclone of pCH148 which contained a 6.5-kilobase-pair insert was constructed. The resulting hybrid, pCH170, not only was able to complement Hno- mutants but also relieved glutamine auxotrophy in NtrA- mutants of enteric bacteria. This suggests that the hno gene product from A. eutrophus is functionally similar to the NtrA protein, which has been identified as a novel sigma factor (sigma 54) of RNA polymerase.
Collapse
|
358
|
Saito T, Suzuki K, Yamamoto J, Fukui T, Miwa K, Tomita K, Nakanishi S, Odani S, Suzuki J, Ishikawa K. Cloning, nucleotide sequence, and expression in Escherichia coli of the gene for poly(3-hydroxybutyrate) depolymerase from Alcaligenes faecalis. J Bacteriol 1989; 171:184-9. [PMID: 2644188 PMCID: PMC209571 DOI: 10.1128/jb.171.1.184-189.1989] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The extracellular poly(3-hydroxybutyrate) depolymerase gene from Alcaligenes faecalis T1 was cloned into Escherichia coli DH1 by using the plasmid pUC8. An A. faecalis T1 genomic library was prepared in E. coli from a partial Sau3AI digest and screened with antibody against the depolymerase. Of the 29 antibody-positive clones, 1 (pDP14), containing about 4 kilobase pairs of A. faecalis T1 DNA, caused expression of a high level of depolymerase activity in E. coli. The enzyme purified from E. coli was not significantly different from the depolymerase of A. faecalis in molecular weight, immunological properties, peptide map, specific activity, or substrate specificity. Most of the expressed enzyme was found to be localized in the periplasmic space of E. coli, although about 10% of the total activity was found in the culture medium. Results of a deletion experiment with pDP14 showed that a large SalI fragment of about 2 kilobase pairs was responsible for expression of the enzyme in E. coli. The nucleotide sequence of the large SalI fragment has been determined. Comparison of the deduced amino terminus with that obtained from sequence analysis of the purified protein indicated that poly(3-hydroxybutyrate) depolymerase exists as a 488-amino-acid precursor with a signal peptide of 27 amino acids.
Collapse
|
359
|
Harker AR, Olsen RH, Seidler RJ. Phenoxyacetic acid degradation by the 2,4-dichlorophenoxyacetic acid (TFD) pathway of plasmid pJP4: mapping and characterization of the TFD regulatory gene, tfdR. J Bacteriol 1989; 171:314-20. [PMID: 2914848 PMCID: PMC209589 DOI: 10.1128/jb.171.1.314-320.1989] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Plasmid pJP4 enables Alcaligenes eutrophus JMP134 to degrade 3-chlorobenzoate and 2,4-dichlorophenoxyacetic acid (TFD). Plasmid pRO101 is a derivative of pJP4 obtained by insertion of Tn1721 into a nonessential region of pJP4. Plasmid pRO101 was transferred by conjugation to several Pseudomonas strains and to A. eutrophus AEO106, a cured isolate of JMP134. AEO106(pRO101) and some Pseudomonas transconjugants grew on TFD. Transconjugants with a chromosomally encoded phenol hydroxylase also degraded phenoxyacetic acid (PAA) in the presence of an inducer of the TFD pathway, namely, TFD or 3-chlorobenzoate. A mutant of one such phenol-degrading strain, Pseudomonas putida PPO300(pRO101), grew on PAA as the sole carbon source in the absence of inducer. This isolate carried a mutant plasmid, designated pRO103, derived from pRO101 through the deletion of a 3.9-kilobase DNA fragment. Plasmid pRO103 constitutively expressed the TFD pathway, and this allowed the metabolism of PAA in the absence of the inducer, TFD. Complementation of pRO103 in trans by a DNA fragment corresponding to the fragment deleted in pRO101 indicates that a negative control-regulatory gene (tfdR) is located on the BamHI E fragment of pRO101. Other subcloning experiments resulted in the cloning of the tfdA monooxygenase gene on a 3.5-kilobase fragment derived from pRO101. This subclone, in the absence of other pRO101 DNA, constitutively expressed the tfdA gene and allowed PPO300 to grow on PAA. Preliminary evidence suggests that the monooxygenase activity encoded by this DNA fragment is feedback-inhibited by phenols.
Collapse
|
360
|
Schubert P, Steinbüchel A, Schlegel HG. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 1988; 170:5837-47. [PMID: 2848014 PMCID: PMC211690 DOI: 10.1128/jb.170.12.5837-5847.1988] [Citation(s) in RCA: 342] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Eight mutants of Alcaligenes eutrophus defective in the intracellular accumulation of poly-beta-hydroxybutyric acid (PHB) were isolated after transposon Tn5 mutagenesis with the suicide vector pSUP5011. EcoRI fragments which harbor Tn5-mob were isolated from pHC79 cosmid gene banks. One of them, PPT1, was used as a probe to detect the intact 12.5-kilobase-pair EcoRI fragment PP1 in a lambda L47 gene bank of A. eutrophus genomic DNA. In six of these mutants (PSI, API, GPI, GPIV, GPV, and GPVI) the insertion of Tn5-mob was physically mapped within a region of approximately 1.2 kilobase pairs in PP1; in mutant API, cointegration of vector DNA has occurred. In two other mutants (GPII and GPIII), most probably only the insertion element had inserted into PP1. All PHB-negative mutants were completely impaired in the formation of active PHB synthase, which was measured by a radiometric assay. In addition, activities of beta-ketothiolase and of NADPH-dependent acetoacetyl coenzyme A (acetoacetyl-CoA) reductase were diminished, whereas the activity of NADPH-dependent acetoacetyl-CoA reductase was unaffected. In all PHB-negative mutants the ability to accumulate PHB was restored upon complementation in trans with PP1. The PHB-synthetic pathway of A. eutrophus was heterologously expressed in Escherichia coli. Recombinant strains of E. coli JM83 and K-12, which harbor pUC9-1::PP1, pSUP202::PP1, or pVK101::PP1, accumulated PHB up to 30% of the cellular dry weight. Crude extracts of these cells had significant activities of the enzymes PHB synthase, beta-ketothiolase, and NADPH-dependent acetoacetyl-CoA reductase. Therefore, PP1 most probably encodes all three genes of the PHB-synthetic pathway in A. eutrophus. In addition to PHB-negative mutants, we isolated mutants which accumulate PHB at a much lower rate than the wild type does. These PHB-leaky mutants exhibited activities of all three PHB-synthetic enzymes; Tn5-mob had not inserted into PP1, and the phenotype of the wild type could not be restored with fragment PP1. The rationale for this mutant type remains unknown.
Collapse
|
361
|
Perkins EJ, Lurquin PF. Duplication of a 2,4-dichlorophenoxyacetic acid monooxygenase gene in Alcaligenes eutrophus JMP134(pJP4). J Bacteriol 1988; 170:5669-72. [PMID: 3056910 PMCID: PMC211667 DOI: 10.1128/jb.170.12.5669-5672.1988] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Alcaligenes eutrophus JMP134 plasmid pJP4 contains genes necessary for the complete degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 3-chlorobenzoic acid. tfdA encodes 2,4-D monooxygenase, the initial enzyme in the 2,4-D catabolic pathway. The tfdA locus has recently been localized to a region on pJP4 13 kilobases away from a cluster of five genes, tfdB to tfdF, which encode the enzymes responsible for the further degradation of 2,4-D to chloromaleylacetic acid (W.R. Streber, K. N. Timmis, and M. H. Zenk, J. Bacteriol. 169:2950-2955, 1987). A second, dissimilar locus on pJP4, tfdAII, has been observed which encodes 2,4-D monooxygenase activity. Gas chromatographic analysis of the 2,4-D metabolites of A. eutrophus harboring pJP4 or subclones thereof localized tfdAII to within a 9-kilobase SstI fragment of pJP4 which also carries the genes tfdBCDEF. This fragment was further characterized in Escherichia coli by deletion and subcloning analysis. A region of 2.5 kilobases, adjacent to tfdC, enabled E. coli extracts to degrade 2,4-D to 2,4-dichlorophenol. Hybridization under low-stringency conditions was observed between tfdA and tfdAII, signifying that the 2,4-D monooxygenase gene was present as two related copies on pJP4.
Collapse
|
362
|
Jendrossek D, Steinbüchel A, Schlegel HG. Alcohol dehydrogenase gene from Alcaligenes eutrophus: subcloning, heterologous expression in Escherichia coli, sequencing, and location of Tn5 insertions. J Bacteriol 1988; 170:5248-56. [PMID: 2846513 PMCID: PMC211598 DOI: 10.1128/jb.170.11.5248-5256.1988] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The nucleotide sequence of the gene that encodes the fermentative, multifunctional alcohol dehydrogenase (ADH) in Alcaligenes eutrophus, and of adjacent regions on a 1.8-kilobase-pair PstI fragment was determined. From the deduced amino acid sequence, a molecular weight of 38,549 was calculated for the ADH subunit. The amino acid sequence reveals homologies from 22.3 to 26.3% with zinc-containing alcohol dehydrogenases from eucaryotic organisms (Schizosaccharomyces pombe, Zea mays, mouse, horse liver, and human liver). Most of the 22 amino acid residues, which are strictly conserved in this group of ADHs (H. Jörnvall, B. Persson, and J. Jeffery, Eur. J. Biochem. 167:195-201, 1987), either were present in the A. eutrophus enzyme or had been substituted by related amino acids. The A. eutrophus adh gene was transcribed in Escherichia coli only under the control of the lac promoter, but was not expressed by its own promoter. A sequence resembling the E. coli consensus promoter DNA sequence did not contain the invariant T, but a G, in the potential -10 region. In the transposon-induced mutants HC1409 and HC1421, which form ADH constitutively, the insertions of Tn5::mob were localized 56 and 66 base pairs, respectively, upstream of the presumptive translation initiation codon. In contrast to the promoter, the A. eutrophus ribosome-binding site with a GGAG Shine-Dalgarno sequence 6 base pairs upstream of the translation initiation codon was accepted by the E. coli translation apparatus. A stable hairpin structure, which may provide a transcription termination signal, is predicted to occur in the mRNA, with its starting point 21 base pairs downstream from the translation termination codon.
Collapse
|
363
|
Slater SC, Voige WH, Dennis DE. Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J Bacteriol 1988; 170:4431-6. [PMID: 3049530 PMCID: PMC211473 DOI: 10.1128/jb.170.10.4431-4436.1988] [Citation(s) in RCA: 240] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The poly-beta-hydroxybutyrate (PHB) biosynthetic pathway from Alcaligenes eutrophus H16 has been cloned and expressed in Escherichia coli. Initially, an A. eutrophus H16 genomic library was constructed by using cosmid pVK102, and cosmid clones that encoded the PHB biosynthetic pathway were sought by assaying for the first enzyme of the pathway, beta-ketothiolase. Six enzyme-positive clones were identified. Three of these clones manifested acetoacetyl coenzyme A reductase activity, the second enzyme of the biosynthetic pathway, and accumulated PHB. PHB was produced in the cosmid clones at approximately 50% of the level found in A. eutrophus. One cosmid clone was subjected to subcloning experiments, and the PHB biosynthetic pathway was isolated on a 5.2-kilobase KpnI-EcoRI fragment. This fragment, when cloned into small multicopy vectors, can direct the synthesis of PHB in E. coli to levels approaching 80% of the bacterial cell dry weight.
Collapse
|
364
|
Siddiqui RA, Schlegel HG, Meyer M. Inducible and constitutive expression of pMOL28-encoded nickel resistance in Alcaligenes eutrophus N9A. J Bacteriol 1988; 170:4188-93. [PMID: 3410828 PMCID: PMC211427 DOI: 10.1128/jb.170.9.4188-4193.1988] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The nickel and cobalt resistance plasmid pMOL28 was transferred by conjugation from its natural host Alcaligenes eutrophus CH34 to the susceptible A. eutrophus N9A. Strain N9A and its pMOL28-containing transconjugant M220 were studied in detail. At a concentration of 3.0 mM NiCl2, the wild-type N9A did not grow, while M220 started to grow at its maximum exponential growth rate after a lag of 12 to 24 h. When grown in the presence of subinhibitory concentrations (0.5 mM) of nickel salt, M220 grew actively at 3 mM NiCl2 without a lag, indicating that nickel resistance is an inducible property. Expression of nickel resistance required active growth in the presence of nickel salts at a concentration higher than 0.05 mM. Two mutants of M220 were isolated which expressed nickel resistance constitutively. When the plasmids, pMOL28.1 and pMOL28.2, carried by the mutants were transferred to strains H16 and CH34, the transconjugants expressed constitutive nickel resistance. This indicates that the mutation is plasmid located. Both mutants expressed constitutive resistance to nickel and cobalt. Physiological studies revealed the following differences between strain N9A and its pMOL28.1-harboring mutant derivatives. (i) The uptake of 63NiCl2 occurred more rapidly in the susceptible strain and reached a 30- to 60-fold-higher amount that in the pMOL28.1-harboring mutant; (ii) in intact cells of the susceptible strain N9A, the cytoplasmic hydrogenase was inhibited by 1 to 5 nM NiCl2, whereas 10 mM Ni2+ was needed to inhibit the hydrogenase of mutant cells; (iii) the minimal concentration of nickel chloride for the derepressed synthesis of cytoplasmic hydrogenase was lower in strain N9A (1 to 3 microM) than in the constitutive mutant (8 to 10 microM).
Collapse
|
365
|
Perkins EJ, Bolton GW, Gordon MP, Lurquin PF. Partial nucleotide sequence of the chlorocatechol degradative operon tfdCDEF of pJP4 and similarity to promoters of the chlorinated aromatic degradative operons tfdA and clcABD. Nucleic Acids Res 1988; 16:7200. [PMID: 3405772 PMCID: PMC338381 DOI: 10.1093/nar/16.14.7200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
366
|
Wyndham RC, Straus NA. Chlorobenzoate catabolism and interactions between Alcaligenes and Pseudomonas species from Bloody Run Creek. Arch Microbiol 1988; 150:230-6. [PMID: 3178396 DOI: 10.1007/bf00407785] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A mixed community of bacteria from surface runoff waters of the Hyde Park industrial landfill was enriched on 3-chlorobenzoate. Alcaligenes and Pseudomonas species were dominant in the community. Alcaligenes sp. BR60 carried an unstable plasmid specifying 3-chlorobenzoate catabolism. Metabolites detected in culture supernatants included chlorocatechol and chloro-cis, cismuconic acid. Oxygen uptake in the presence of 3- and 4-substituted methyl-catechols revealed a catechol-1,2-oxygenase activity specific for substituted catechols with very limited activity for catechol. The isolate grew very slowly on benzoate. Alcaligenes sp. BR60 was isolated in co-culture with Pseudomonas fluorescens NR52. The latter contained no detectable plasmids and did not grow on benzoate or any of the chlorobenzoates in pure culture. Growth of the co-culture in Bloody Run Creek water supplemented with 3-chlorobenzoate indicated that phosphate concentrations in the water severely limited biodegradation. Under phosphate limited conditions in continuous culture, Pseudomonas fluorescens NR52 effectively scavenged available phosphate when it was present at a ratio of 1 cell to 20 of Alcaligenes sp. BR60. Under these conditions the growth of Alcaligenes sp. BR60 on 3-chlorobenzoate was reduced 5 fold, the frequency of plasmid deletion mutants increased, and 96% of the contaminant remained in the outflow in the form of the starting material or metabolites. No evidence was found for conjugation of the plasmid determining chlorobenzoate catabolism in Alcaligenes sp. BR60 to P. fluorescens NR52.
Collapse
|
367
|
Wyndham RC, Singh RK, Straus NA. Catabolic instability, plasmid gene deletion and recombination in Alcaligenes sp. BR60. Arch Microbiol 1988; 150:237-43. [PMID: 2845877 DOI: 10.1007/bf00407786] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An Alcaligenes sp. BR60, isolated from surface runoff waters of the Hyde Park industrial landfill, contained a novel 85 kb catabolic plasmid (pBR60) functional in 3-chlorobenzoate (3Cba) degradation. The plasmid exhibited a spontaneous 3.2% frequency of deletion of a 14 kb fragment specifying 3Cba degradation. The deletion mutant BR 40 and mitomycin C cured strains were not able to grow on 3Cba and had reversion frequencies of less than 10(-10) cell-1 generation-1. Transformation or conjugation of pBR60 into cured strains restored catabolic activity. An EcoRI, BglII, HindIII and SalI restriction map of the deletion region was constructed, and EcoRI and HindIII fragments spanning the deletion region of the plasmid were cloned in pUC18. Conjugation of resistance plasmid R68.45 into Alcaligenes sp. BR 60, with selection on antibiotics, resulted in the elimination of pBR60 and maintenance of unaltered R68.45. In 30% of the exconjugants, 3Cba degradative capacity was retained, although variation in the regulation of 3Cba degradation was observed in these strains. Hybridization of deletion region fragments to BglII digested total DNA of BR60 and the R68.45 cured exconjugants revealed the presence of pBR60 deletion region sequences in the chromosome of exconjugants. Hybridization also revealed a repeated sequence flanking the deletion region of pBR60. Selection on 4-chlorobenzoate as a sole source of carbon and energy resulted in the isolation of 4Cba+ mutants of Alcaligenes sp. BR60.
Collapse
|
368
|
Ghosal D, You IS. Gene duplication in haloaromatic degradative plasmids pJP4 and pJP2. Can J Microbiol 1988; 34:709-15. [PMID: 3203254 DOI: 10.1139/m88-121] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
pJP2 and pJP4 are 2,4-dichlorophenoxyacetic acid catabolic plasmids, and they show DNA sequence homology. Most of the pJP2 molecules (80% or more) isolated from 2,4-dichlorophenoxyacetic acid grown cells of Alcaligenes eutrophus harbor a tandem duplication of a 25-kilobase (kb) segment encoding the catabolic functions. Unlike plasmid pJP4, pJP2 in A. eutrophus gives rise to a 3-chlorobenzoate phenotype without further genetic rearrangement. pJP4 under 3-chlorobenzoate selection contains an inverted duplication of 24.5 kb. Absence of selective pressure results in the prompt loss of one copy of the duplication in pJP4, but not of the tandem duplication in pJP2. In both pJP4 and pJP2, mutation of the duplicated copy, rather than gene dosage, is likely to be the basis of phenotypic change of catabolic functions. Experiments using the cloned DNA suggest that a tandem duplication is more stable than an inverted duplication.
Collapse
|
369
|
Kucheras RV, Bilinskaia IS, Girna OV. [The biogenetic interrelationships between flavins and vitamin B12 in Achromobacter cobalamini]. MIKROBIOLOGICHESKII ZHURNAL 1988; 50:46-9. [PMID: 2854877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
370
|
Kuhn M, Jendrossek D, Fründ C, Steinbüchel A, Schlegel HG. Cloning of the Alcaligenes eutrophus alcohol dehydrogenase gene. J Bacteriol 1988; 170:685-92. [PMID: 2828319 PMCID: PMC210709 DOI: 10.1128/jb.170.2.685-692.1988] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mutants of Alcaligenes eutrophus which are altered with respect to the utilization of 2,3-butanediol and acetoin were isolated after transposon mutagenesis. The suicide vehicle pSUP5011 was used to introduce the drug resistance transposable element Tn5 into A. eutrophus. Kanamycin-resistant transconjugants of the 2,3-butanediol-utilizing parent strains CF10141 and AS141 were screened for mutants impaired in the utilization of 2,3-butanediol or acetoin. Eleven mutants were negative for 2,3-butanediol but positive for acetoin; they were unable to synthesize active fermentative alcohol dehydrogenase protein (class 1). Forty mutants were negative for 2,3-butanediol and for acetoin (class 2). Tn5-mob was also introduced into a Smr derivative of the 2,3-butanediol-nonutilizing parent strain H16. Of about 35,000 transconjugants, 2 were able to grow on 2,3-butanediol. Both mutants synthesized the fermentative alcohol dehydrogenase constitutively (class 3). The Tn5-labeled EcoRI fragments of genomic DNA of four class 1 and two class 3 mutants were cloned from a cosmid library. They were biotinylated and used as probes for the detection of the corresponding wild-type fragments in a lambda L47 and a cosmid gene bank. The gene which encodes the fermentative alcohol dehydrogenase in A. eutrophus was cloned and localized to a 2.5-kilobase (kb) SalI fragment which is located within a 11.5-kb EcoRI-fragment. The gene was heterologously expressed in A. eutrophus JMP222 and in Pseudomonas oxalaticus. The insertion of Tn5-mob in class 3 mutants mapped near the structural gene for alcohol dehydrogenase on the same 2.5-kb SalI fragment.
Collapse
|
371
|
Ghosal D, You IS. Nucleotide homology and organization of chlorocatechol oxidation genes of plasmids pJP4 and pAC27. MOLECULAR & GENERAL GENETICS : MGG 1988; 211:113-20. [PMID: 2830460 DOI: 10.1007/bf00338401] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The 2,4-dichlorophenoxyacetate (2,4-D) catabolic plasmid pJP4 of Alcaligenes eutrophus JMP134 contains two sets of nonidentical chlorocatechol oxidation gene sequences physically separated by a 7 kb DNA region. We determined the nucleotide sequence of the 1.6 kb HindIII fragment containing the known genes tfdC and tfdD (Don et al. 1985) which encode pyrocatechase and cycloisomerase, respectively. The 1.3 kb BglII-HindIII segment of recombinant plasmid pDC25 containing at least three chlorocatechol (clc) oxidation genes of the pAC27 plasmid in Pseudomonas putida AC867 (Ghosal et al. 1985a; Frantz and Chakrabarty 1986), was also sequenced. When the tfdC gene of the pJP4 plasmid was compared with gene clcA of plasmid pAC27, which encodes the chlorocatechol specific pyrocatechase (pyrocatechase II), the two genes showed 63% nucleotide sequence homology with 60% homology in their amino acid sequences. In both plasmid pJP4 and pAC27, the two genes encoding the pyrocatechase and the cycloisomerase showed a 4 bp overlap spanning the initiation codon of the cycloisomerase gene and the termination codon of the pyrocatechase gene. The sizes of the polypeptides encoded by the isofunctional genes tfdC and clcA are very similar and thus reflect their functional homology.
Collapse
|
372
|
Rojo F, Pieper DH, Engesser KH, Knackmuss HJ, Timmis KN. Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics. Science 1987; 238:1395-8. [PMID: 3479842 DOI: 10.1126/science.3479842] [Citation(s) in RCA: 173] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genetic engineering is a powerful means of accelerating the evolution of new biological activities and has considerable potential for constructing microorganisms that can degrade environmental pollutants. Critical enzymes from five different catabolic pathways of three distinct soil bacteria have been combined in patchwork fashion into a functional ortho cleavage route for the degradation of methylphenols and methylbenzoates. The new bacterium thereby evolved was able to degrade and grow on mixtures of chloro- and methylaromatics that were toxic even for the bacteria that could degrade the individual components of the mixtures. Except for one enzymatic step, the pathway was fully regulated and its component enzymes were only synthesized in response to the presence of pathway substrates.
Collapse
|
373
|
Yamamoto K, Uozumi T, Beppu T. The blue copper protein gene of Alcaligenes faecalis S-6 directs secretion of blue copper protein from Escherichia coli cells. J Bacteriol 1987; 169:5648-52. [PMID: 2824441 PMCID: PMC214024 DOI: 10.1128/jb.169.12.5648-5652.1987] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The gene encoding a blue copper protein (a member of the pseudoazurins) of 123 amino acid residues, containing a single type I Cu2+ ion, was cloned from Alcaligenes faecalis S-6. The nucleotide sequence of the coding region, as well as the 5'- and 3'-flanking regions, was determined. The deduced amino acid sequence after Glu-24 coincided with the reported sequence of the blue protein, and its NH2-terminal sequence of 23 residues resembled a typical signal peptide. The cloned gene was expressed under the control of the tac promoter in Escherichia coli, and the correctly processed blue protein was secreted into the periplasm. The blue protein produced in E. coli possessed the activity to transfer electrons to the copper-containing nitrite reductase of A. faecalis S-6 in vitro.
Collapse
|
374
|
Blake CK, Hegeman GD. Plasmid pCBI carries genes for anaerobic benzoate catabolism in Alcaligenes xylosoxidans subsp. denitrificans PN-1. J Bacteriol 1987; 169:4878-83. [PMID: 2822651 PMCID: PMC213880 DOI: 10.1128/jb.169.11.4878-4883.1987] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas sp. strain PN-1 is reclassified as Alcaligenes xylosoxidans subsp. denitrificans PN-1. Strain PN-1 is a gram-negative, rod-shaped organism, is motile by means of lateral flagella, is oxidase positive, and does not ferment sugars. Plasmid pCBI, carrying genes for the anaerobic degradation of benzoate in strain PN-1, is 17.4 kilobase pairs in length and is transmissible to a number of denitrifying Pseudomonas aeruginosa and Pseudomonas stutzeri strains. A restriction endonuclease map was constructed.
Collapse
|
375
|
Arroyo JC, Jordan W, Lema MW, Brown A. Diversity of plasmids in Achromobacter xylosoxidans isolates responsible for a seemingly common-source nosocomial outbreak. J Clin Microbiol 1987; 25:1952-5. [PMID: 3667915 PMCID: PMC269374 DOI: 10.1128/jcm.25.10.1952-1955.1987] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Achromobacter xylosoxidans, an uncommon yet highly resistant opportunistic pathogen, was isolated from nine hospitalized patients during an 8-month period. It had been isolated from only seven patients with either nonfatal infection or colonization from 1981 to 1984. From June 1985 to January 1986, A. xylosoxidans was isolated 18 times from seven different sites (sputum, 7 times; urine, 4 times; blood, 3 times; and lung, pleural fluid, wound tissue, and tracheal aspirate, 1 time each). Four patients died, including the three with bacteremia. All but two patients had nosocomial infections and either were on the same ward or were cared for by the same staff members. Eleven A. xylosoxidans strains yielded eight distinct plasmids (8, 21, 23, 26, 38, 50, 51, and 64 megadaltons). Whole-cell peptide patterns of 10 of these strains were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Isolates from the same patient contained the same plasmids and had identical peptide patterns but differed from other strains in both parameters. Plasmids were absent from the two community-acquired isolates. Although nosocomial strains showed similar antibiotic resistance patterns (only moxalactam and ticarcillin-clavulanic acid were uniformly active) and cross-contamination was strongly suggested epidemiologically, results of plasmid and peptide analyses did not support the possibility of a single-strain outbreak.
Collapse
|