26
|
Nguyen A, Nguyen D, Phong Nguyen TX, Sebastiani M, Dörr S, Hernandez-Alba O, Debaene F, Cianférani S, Heine A, Klebe G, Reuter K. The Importance of Charge in Perturbing the Aromatic Glue Stabilizing the Protein-Protein Interface of Homodimeric tRNA-Guanine Transglycosylase. ACS Chem Biol 2020; 15:3021-3029. [PMID: 33166460 DOI: 10.1021/acschembio.0c00700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bacterial tRNA-guanine transglycosylase (Tgt) is involved in the biosynthesis of the modified tRNA nucleoside queuosine present in the anticodon wobble position of tRNAs specific for aspartate, asparagine, histidine, and tyrosine. Inactivation of the tgt gene leads to decreased pathogenicity of Shigella bacteria. Therefore, Tgt constitutes a putative target for Shigellosis drug therapy. Since it is only active as homodimer, interference with dimer-interface formation may, in addition to active-site inhibition, provide further means to disable this protein. A cluster of four aromatic residues seems important to stabilize the homodimer. We mutated residues of this aromatic cluster and analyzed each mutated variant with respect to the dimer and thermal stability or enzyme activity by applying native mass spectrometry, a thermal shift assay, enzyme kinetics, and X-ray crystallography. Our structural studies indicate a strong influence of pH on the homodimer stability. Apparently, protonation of a histidine within the aromatic cluster supports the collapse of an essential structural motif within the dimer interface at slightly acidic pH.
Collapse
|
27
|
Duerr GD, Heine A, Hamiko M, Zimmer S, Luetkens JA, Nattermann J, Rieke G, Isaak A, Jehle J, Held SAE, Wasmuth JC, Wittmann M, Strassburg CP, Brossart P, Coburn M, Treede H, Nickenig G, Kurts C, Velten M. Parameters predicting COVID-19-induced myocardial injury and mortality. Life Sci 2020. [PMID: 32918975 DOI: 10.1016/j.lfs.2020.11840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
UNLABELLED Clinical manifestations of COVID-19 affect many organs, including the heart. Cardiovascular disease is a dominant comorbidity and prognostic factors predicting risk for critical courses are highly needed. Moreover, immunomechanisms underlying COVID-induced myocardial damage are poorly understood. OBJECTIVE To elucidate prognostic markers to identify patients at risk. RESULTS Only patients with pericardial effusion (PE) developed a severe disease course, and those who died could be identified by a high CD8/Treg/monocyte ratio. Ten out of 19 COVID-19 patients presented with PE, 7 (78%) of these had elevated APACHE-II mortality risk-score, requiring mechanical ventilation. At admission, PE patients showed signs of systemic and cardiac inflammation in NMR and impaired cardiac function as detected by transthoracic echocardiography (TTE), whereas parameters of myocardial injury e.g. high sensitive troponin-t (hs-TnT) were not yet increased. During the course of disease, hs-TnT rose in 8 of the PE-patients above 16 ng/l, 7 had to undergo ventilatory therapy and 4 of them died. FACS at admission showed in PE patients elevated frequencies of CD3+CD8+ T cells among all CD3+ T-cells, and lower frequencies of Tregs and CD14+HLA-DR+-monocytes. A high CD8/Treg/monocyte ratio predicted a severe disease course in PE patients, and was associated with high serum levels of antiviral cytokines. By contrast, patients without PE and PE patients with a low CD8/Treg/monocyte ratio neither had to be intubated, nor died. CONCLUSIONS PE predicts cardiac injury in COVID-19 patients. Therefore, TTE should be performed at admission. Immunological parameters for dysfunctional antiviral immunity, such as the CD8/Treg/monocyte ratio used here, supports risk assessment by predicting poor prognosis.
Collapse
|
28
|
Verspohl SH, Schulze-Koops H, Heine A, Schäfer VS. [Prevalence and treatment of rheumatological adverse events due to immune checkpoint inhibitor therapy]. Z Rheumatol 2020; 79:797-808. [PMID: 32926217 DOI: 10.1007/s00393-020-00873-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) have essentially improved the treatment options for various malignant diseases. They lead to an activation of the immune system and subsequent attack of tumor cells by affecting the immune system and preventing tumor cells from avoiding detection. In addition to this desired effect, immune-related adverse events (irAE) can occur in nearly all organ systems and therefore also rheumatological irAE (rh-irAE). OBJECTIVE The occurrence of rh-irAE has been described in various publications and is specifically investigated in this review. The aim is to provide an overview on the prevalence, severity, treatment options and altered tumor response in patients with rh-irAE. MATERIAL AND METHODS We conducted a literature search for studies and case reports on rh-irAE under ICI therapy in PubMed up to January 2020 using the PICO model. RESULTS A total of 18 publications were included, most of which were clinical studies (n = 13) and the rest case reports (n = 5). Several rh-irAE can occur with a wide variety of manifestations of which arthralgia, arthritis and myositis were the most common. Other rheumatic diseases, such as vasculitis, connective tissue diseases and sarcoidosis were less frequently described. The published prevalence of rh-irAE varied with a prevalence between 2.3% and 6.6%. Treatment of rh-irAE depends on the severity and most patients receive nonsteroidal anti-inflammatory drugs and glucocorticosteroids. In some cases, conventional DMARDs, such as methotrexate and biological DMARDs, were administered. Patients with rh-irAE in general had a higher tumor response rate compared to patients without side effects. CONCLUSION A close observation of patients and early detection of rh-irAE are important in order to treat these side effects in time. Further prospective studies are necessary to systematically investigate rh-irAE.
Collapse
|
29
|
Duerr GD, Heine A, Hamiko M, Zimmer S, Luetkens JA, Nattermann J, Rieke G, Isaak A, Jehle J, Held SAE, Wasmuth JC, Wittmann M, Strassburg CP, Brossart P, Coburn M, Treede H, Nickenig G, Kurts C, Velten M. Parameters predicting COVID-19-induced myocardial injury and mortality. Life Sci 2020; 260:118400. [PMID: 32918975 PMCID: PMC7480277 DOI: 10.1016/j.lfs.2020.118400] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 11/02/2022]
Abstract
Clinical manifestations of COVID-19 affect many organs, including the heart. Cardiovascular disease is a dominant comorbidity and prognostic factors predicting risk for critical courses are highly needed. Moreover, immunomechanisms underlying COVID-induced myocardial damage are poorly understood. OBJECTIVE To elucidate prognostic markers to identify patients at risk. RESULTS Only patients with pericardial effusion (PE) developed a severe disease course, and those who died could be identified by a high CD8/Treg/monocyte ratio. Ten out of 19 COVID-19 patients presented with PE, 7 (78%) of these had elevated APACHE-II mortality risk-score, requiring mechanical ventilation. At admission, PE patients showed signs of systemic and cardiac inflammation in NMR and impaired cardiac function as detected by transthoracic echocardiography (TTE), whereas parameters of myocardial injury e.g. high sensitive troponin-t (hs-TnT) were not yet increased. During the course of disease, hs-TnT rose in 8 of the PE-patients above 16 ng/l, 7 had to undergo ventilatory therapy and 4 of them died. FACS at admission showed in PE patients elevated frequencies of CD3+CD8+ T cells among all CD3+ T-cells, and lower frequencies of Tregs and CD14+HLA-DR+-monocytes. A high CD8/Treg/monocyte ratio predicted a severe disease course in PE patients, and was associated with high serum levels of antiviral cytokines. By contrast, patients without PE and PE patients with a low CD8/Treg/monocyte ratio neither had to be intubated, nor died. CONCLUSIONS PE predicts cardiac injury in COVID-19 patients. Therefore, TTE should be performed at admission. Immunological parameters for dysfunctional antiviral immunity, such as the CD8/Treg/monocyte ratio used here, supports risk assessment by predicting poor prognosis.
Collapse
|
30
|
Braun NJ, Quek JP, Huber S, Kouretova J, Rogge D, Lang‐Henkel H, Cheong EZK, Chew BLA, Heine A, Luo D, Steinmetzer T. Structure-Based Macrocyclization of Substrate Analogue NS2B-NS3 Protease Inhibitors of Zika, West Nile and Dengue viruses. ChemMedChem 2020; 15:1439-1452. [PMID: 32501637 PMCID: PMC7497253 DOI: 10.1002/cmdc.202000237] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 11/06/2022]
Abstract
A series of cyclic active-site-directed inhibitors of the NS2B-NS3 proteases from Zika (ZIKV), West Nile (WNV), and dengue-4 (DENV4) viruses has been designed. The most potent compounds contain a reversely incorporated d-lysine residue in the P1 position. Its side chain is connected to the P2 backbone, its α-amino group is converted into a guanidine to interact with the conserved Asp129 side chain in the S1 pocket, and its C terminus is connected to the P3 residue via different linker segments. The most potent compounds inhibit the ZIKV protease with Ki values <5 nM. Crystal structures of seven ZIKV protease inhibitor complexes were determined to support the inhibitor design. All the cyclic compounds possess high selectivity against trypsin-like serine proteases and furin-like proprotein convertases. Both WNV and DENV4 proteases are inhibited less efficiently. Nonetheless, similar structure-activity relationships were observed for these enzymes, thus suggesting their potential application as pan-flaviviral protease inhibitors.
Collapse
|
31
|
Stieler M, Büchold C, Schmitt M, Heine A, Hils M, Pasternack R, Klebe G. Structure-Based Design of FXIIIa-Blockers: Addressing a Transient Hydrophobic Pocket in the Active Site of FXIIIa. ChemMedChem 2020; 15:900-905. [PMID: 32181986 PMCID: PMC7317430 DOI: 10.1002/cmdc.202000056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/16/2020] [Indexed: 01/23/2023]
Abstract
Blood coagulation factor XIII (FXIII, F13) is considered to be a promising target for anticoagulants with reduced bleeding risk because of its unique position in the coagulation cascade downstream of thrombin. However, until now, no potent drug addressing FXIII has been available, indeed no compound has even entered clinical trials yet. In 2013, we published the co-crystal structure of FXIII in the active state (FXIIIa°), thereby providing a detailed map of the active site for the rational design of potent FXIIIa blockers. Here we report, for the first time, a structure-based approach to improving the affinity of FXIIIa inhibitors. FXIII was crystallized in complex with a methyl thiazole moiety to address a novel transient hydrophobic pocket close to the catalytic center. By subsequent structure-based design to rationalize the introduction of an ethyl ester, the potency of the inhibitor was improved significantly compared to that of the parent lead compound. The occupancy of the hydrophobic pocket described here might turn out to be a key step in the development of a potent reversible and orally available FXIIIa blocker.
Collapse
|
32
|
Wollenhaupt J, Metz A, Barthel T, Lima GMA, Heine A, Mueller U, Klebe G, Weiss MS. F2X-Universal and F2X-Entry: Structurally Diverse Compound Libraries for Crystallographic Fragment Screening. Structure 2020; 28:694-706.e5. [PMID: 32413289 DOI: 10.1016/j.str.2020.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/02/2020] [Accepted: 04/23/2020] [Indexed: 11/15/2022]
Abstract
Crystallographic fragment screening (CFS) provides excellent starting points for projects concerned with drug discovery or biochemical tool compound development. One of the fundamental prerequisites for effective CFS is the availability of a versatile fragment library. Here, we report on the assembly of the 1,103-compound F2X-Universal Library and its 96-compound sub-selection, the F2X-Entry Screen. Both represent the available fragment chemistry and are highly diverse in terms of their 3D-pharmacophore variations. Validation of the F2X-Entry Screen in CFS campaigns using endothiapepsin and the Aar2/RNaseH complex yielded hit rates of 30% and 21%, respectively, and revealed versatile binding sites. Dry presentation of the libraries allows CFS campaigns to be carried out with or without the co-solvent DMSO present. Most of the hits in our validation campaigns could be reproduced also in the absence of DMSO. Consequently, CFS can be carried out more efficiently and for a wider range of conditions and targets.
Collapse
|
33
|
Konstantinidou M, Magari F, Sutanto F, Haupenthal J, Jumde VR, Ünver MY, Heine A, Camacho CJ, Hirsch AKH, Klebe G, Dömling A. Rapid Discovery of Aspartyl Protease Inhibitors Using an Anchoring Approach. ChemMedChem 2020; 15:680-684. [PMID: 32187447 PMCID: PMC7317454 DOI: 10.1002/cmdc.202000024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Indexed: 11/11/2022]
Abstract
Pharmacophore searches that include anchors, fragments contributing above average to receptor binding, combined with one‐step syntheses are a powerful approach for the fast discovery of novel bioactive molecules. Here, we are presenting a pipeline for the rapid and efficient discovery of aspartyl protease inhibitors. First, we hypothesized that hydrazine could be a multi‐valent warhead to interact with the active site Asp carboxylic acids. We incorporated the hydrazine anchor in a multicomponent reaction and created a large virtual library of hydrazine derivatives synthetically accessible in one‐step. Next, we performed anchor‐based pharmacophore screening of the libraries and resynthesized top‐ranked compounds. The inhibitory potency of the molecules was finally assessed by an enzyme activity assay and the binding mode confirmed by several soaked crystal structures supporting the validity of the hypothesis and approach. The herein reported pipeline of tools will be of general value for the rapid generation of receptor binders beyond Asp proteases.
Collapse
|
34
|
Glöckner S, Heine A, Klebe G. A Proof-of-Concept Fragment Screening of a Hit-Validated 96-Compounds Library against Human Carbonic Anhydrase II. Biomolecules 2020; 10:biom10040518. [PMID: 32235320 PMCID: PMC7226012 DOI: 10.3390/biom10040518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022] Open
Abstract
Fragment screening is a powerful tool to identify and characterize binding pockets in proteins. We herein present the results of a proof-of-concept screening campaign of a versatile 96-entry fragment library from our laboratory against the drug target and model protein human carbonic anhydrase II. The screening revealed a novel chemotype for carbonic anhydrase inhibition, as well as less common non-covalent interaction types and unexpected covalent linkages. Lastly, different runs of the PanDDA tool reveal a practical hint for its application.
Collapse
|
35
|
Glöckner S, Ngo K, Wagner B, Heine A, Klebe G. The Influence of Varying Fluorination Patterns on the Thermodynamics and Kinetics of Benzenesulfonamide Binding to Human Carbonic Anhydrase II. Biomolecules 2020; 10:E509. [PMID: 32230853 PMCID: PMC7226267 DOI: 10.3390/biom10040509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
The fluorination of lead-like compounds is a common tool in medicinal chemistry to alter molecular properties in various ways and with different goals. We herein present a detailed study of the binding of fluorinated benzenesulfonamides to human Carbonic Anhydrase II by complementing macromolecular X-ray crystallographic observations with thermodynamic and kinetic data collected with the novel method of kinITC. Our findings comprise so far unknown alternative binding modes in the crystalline state for some of the investigated compounds as well as complex thermodynamic and kinetic structure-activity relationships. They suggest that fluorination of the benzenesulfonamide core is especially advantageous in one position with respect to the kinetic signatures of binding and that a higher degree of fluorination does not necessarily provide for a higher affinity or more favorable kinetic binding profiles. Lastly, we propose a relationship between the kinetics of binding and ligand acidity based on a small set of compounds with similar substitution patterns.
Collapse
|
36
|
Glöckner S, Ngo K, Sager CP, Hüfner-Wulsdorf T, Heine A, Klebe G. Conformational Changes in Alkyl Chains Determine the Thermodynamic and Kinetic Binding Profiles of Carbonic Anhydrase Inhibitors. ACS Chem Biol 2020; 15:675-685. [PMID: 32027480 DOI: 10.1021/acschembio.9b00895] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thermodynamics and kinetics of protein-ligand binding are both important aspects for the design of novel drug molecules. Presently, thermodynamic data are collected with isothermal titration calorimetry, while kinetic data are mostly derived from surface plasmon resonance. The new method of kinITC provides both thermodynamic and kinetic data from calorimetric titration measurements. The present study demonstrates the convenient collection of calorimetric data suitable for both thermodynamic and kinetic analysis for two series of congeneric ligands of human carbonic anhydrase II and correlates these findings with structural data obtained by macromolecular crystallography to shed light on the importance of shape complementarity for thermodynamics and kinetics governing a protein-ligand binding event. The study shows how minute chemical alterations change preferred ligand conformation and can be used to manipulate thermodynamic and kinetic signatures of binding. They give rise to the observation that analogous n-alkyl and n-alkyloxy derivatives of identical chain length swap their binding kinetic properties at unchanged binding affinity.
Collapse
|
37
|
Hassaan E, Eriksson P, Geschwindner S, Heine A, Klebe G. Fragments as Novel Starting Points for tRNA-Guanine Transglycosylase Inhibitors Found by Alternative Screening Strategies. ChemMedChem 2020; 15:324-337. [PMID: 31808981 PMCID: PMC7687107 DOI: 10.1002/cmdc.201900604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/02/2019] [Indexed: 12/02/2022]
Abstract
Crystallography provides structural information crucial for fragment optimization, however several criteria must be met to screen directly on protein crystals as soakable, well-diffracting specimen must be available. We screened a 96-fragment library against the tRNA-modifying enzyme TGT using crystallography. Eight hits, some with surprising binding poses, were detected. However, the amount of data collection, reduction and refinement is assumed substantial. Therefore, having a reliable cascade of fast and cost-efficient methods available for pre-screening before embarking to elaborate crystallographic screening appears beneficial. This allows filtering of compounds to the most promising hits, available to rapidly progress from hit-to-lead. But how to ensure that this workflow is reliable? To answer this question, we also applied SPR and NMR to the same screening sample to study whether identical hits are retrieved. Upon hit-list comparisons, crystallography shows with NMR and SPR, only one overlapping hit and all three methods shared no common hits. This questions a cascade-type screening protocol at least in the current example. Compared to crystallography, SPR and NMR detected higher percentages of non-active-site binders suggesting the importance of running reporter ligand-based competitive screens in SPR and NMR, a requirement not needed in crystallography. Although not specific, NMR proved a more sensitive method relative to SPR and crystallography, as it picked up the highest numbers of binders.
Collapse
|
38
|
Ngo K, Collins-Kautz C, Gerstenecker S, Wagner B, Heine A, Klebe G. Protein-Induced Change in Ligand Protonation during Trypsin and Thrombin Binding: Hint on Differences in Selectivity Determinants of Both Proteins? J Med Chem 2020; 63:3274-3289. [DOI: 10.1021/acs.jmedchem.9b02061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Wienen-Schmidt B, Schmidt D, Gerber HD, Heine A, Gohlke H, Klebe G. Surprising Non-Additivity of Methyl Groups in Drug-Kinase Interaction. ACS Chem Biol 2019; 14:2585-2594. [PMID: 31638770 DOI: 10.1021/acschembio.9b00476] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drug optimization is guided by biophysical methods with increasing popularity. In the context of lead structure modifications, the introduction of methyl groups is a simple but potentially powerful approach. Hence, it is crucial to systematically investigate the influence of ligand methylation on biophysical characteristics such as thermodynamics. Here, we investigate the influence of ligand methylation in different positions and combinations on the drug-kinase interaction. Binding modes and complex structures were analyzed using protein crystallography. Thermodynamic signatures were measured via isothermal titration calorimetry (ITC). An extensive computational analysis supported the understanding of the underlying mechanisms. We found that not only position but also stereochemistry of the methyl group has an influence on binding potency as well as the thermodynamic signature of ligand binding to the protein. Strikingly, the combination of single methyl groups does not lead to additive effects. In our case, the merger of two methyl groups in one ligand leads to an entirely new alternative ligand binding mode in the protein ligand complex. Moreover, the combination of the two methyl groups also resulted in a nonadditive thermodynamic profile of ligand binding. Molecular dynamics (MD) simulations revealed distinguished characteristic motions of the ligands in solution explaining the pronounced thermodynamic changes. The unexpected drastic change in protein ligand interaction highlights the importance of crystallographic control even for minor modifications such as the introduction of a methyl group. For an in-depth understanding of ligand binding behavior, MD simulations have shown to be a powerful tool.
Collapse
|
40
|
Sandner A, Hüfner-Wulsdorf T, Heine A, Steinmetzer T, Klebe G. Strategies for Late-Stage Optimization: Profiling Thermodynamics by Preorganization and Salt Bridge Shielding. J Med Chem 2019; 62:9753-9771. [PMID: 31633354 DOI: 10.1021/acs.jmedchem.9b01196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Structural fixation of a ligand in its bioactive conformation may, due to entropic reasons, improve affinity. We present a congeneric series of thrombin ligands with a variety of functional groups triggering preorganization prior to binding. Fixation in solution and complex formation have been characterized by crystallography, isothermal titration calorimetry (ITC), and molecular dynamics (MD) simulations. First, we show why these preorganizing modifications do not affect the overall binding mode and how key interactions are preserved. Next, we demonstrate how preorganization thermodynamics can be largely dominated by enthalpy rather than entropy because of the significant population of low-energy conformations. Furthermore, a salt bridge is shielded by actively reducing its surface exposure, thus leading to an enhanced enthalpic binding profile. Our results suggest that the consideration of the ligand solution ensemble by MD simulation is necessary to predict preorganizing modifications that enhance the binding behavior of already promising binders.
Collapse
|
41
|
Heine A, Siefker C, Klebe G. A case study of fragment screening: protein kinase A and PIM1-kinase. Acta Crystallogr A Found Adv 2019. [DOI: 10.1107/s2053273319095123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
42
|
Kanitz M, Blanck S, Heine A, Gulyaeva AA, Gorbalenya AE, Ziebuhr J, Diederich WE. Structural basis for catalysis and substrate specificity of a 3C-like cysteine protease from a mosquito mesonivirus. Virology 2019; 533:21-33. [PMID: 31078932 PMCID: PMC7111312 DOI: 10.1016/j.virol.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 01/05/2023]
Abstract
Cavally virus (CavV) is a mosquito-borne plus-strand RNA virus in the family Mesoniviridae (order Nidovirales). We present X-ray structures for the CavV 3C-like protease (3CLpro), as a free enzyme and in complex with a peptide aldehyde inhibitor mimicking the P4-to-P1 residues of a natural substrate. The 3CLpro structure (refined to 1.94 Å) shows that the protein forms dimers. The monomers are comprised of N-terminal domains I and II, which adopt a chymotrypsin-like fold, and a C-terminal α-helical domain III. The catalytic Cys-His dyad is assisted by a complex network of interactions involving a water molecule that mediates polar contacts between the catalytic His and a conserved Asp located in the domain II-III junction and is suitably positioned to stabilize the developing positive charge of the catalytic His in the transition state during catalysis. The study also reveals the structural basis for the distinct P2 Asn-specific substrate-binding pocket of mesonivirus 3CLpros. First structure of a 3CLpro of an invertebrate RNA virus. Structural basis of the unique substrate specificity defined by Asn at the P2 position of mesonivirus 3CLpro substrates. Emerging role of a conserved Asp residue that assists the Cys-His catalytic dyad in vertebrate and invertebrate 3CLpros.
Collapse
|
43
|
Badran MJ, Bertoletti N, Keils A, Heine A, Klebe G, Marchais-Oberwinkler S. Mutational and structural studies uncover crucial amino acids determining activity and stability of 17β-HSD14. J Steroid Biochem Mol Biol 2019; 189:135-144. [PMID: 30836176 DOI: 10.1016/j.jsbmb.2019.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 01/31/2023]
Abstract
17β-Hydroxysteroid dehydrogenase type 14 (17β-HSD14) catalyzes the conversion of highly active estrogens and androgens into their less active oxidized forms in presence of NAD+ as cofactor. The crystal structure of 17β-HSD14 has been determined, however, the role of individual amino acids likely involved in the enzymatic function remains poorly understood. Objective of this study was to further characterize the enzyme by site-directed mutagenesis considering five amino acids next to the catalytic center. The tools used for the characterization of the enzyme variants are X-ray crystallography and enzyme kinetics. Lys158 was confirmed to belong to the catalytic triad. Tyr253', located on the C-terminal loop of the adjacent monomer, enters into the active site of the neighboring monomer and interacts with the catalytic Tyr154. Therefore, Tyr253' helps to tie the two monomers together. Cys255, located at the interface between both monomers, can form a disulfide bridge with the Cys255' from the adjacent monomer. In contrast to the contact provided by Tyr253, the latter interaction is not crucial for dimer formation. His93 and Gln148 are located at the rim of the substrate binding pocket. His93 does not interact directly with the ligand in the active site. However, it influences the turnover of the enzyme. The Gln148 restricts in size the access tunnel of the substrate to the binding pocket.
Collapse
|
44
|
Jumde VR, Mondal M, Gierse RM, Unver MY, Magari F, van Lier RCW, Heine A, Klebe G, Hirsch AKH. Design and Synthesis of Bioisosteres of Acylhydrazones as Stable Inhibitors of the Aspartic Protease Endothiapepsin. ChemMedChem 2018; 13:2266-2270. [PMID: 30178575 PMCID: PMC6282583 DOI: 10.1002/cmdc.201800446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Indexed: 12/11/2022]
Abstract
Acylhydrazone‐based dynamic combinatorial chemistry (DCC) is a powerful strategy for the rapid identification of novel hits. Even though acylhydrazones are important structural motifs in medicinal chemistry, their further progression in development may be hampered by major instability and potential toxicity under physiological conditions. It is therefore of paramount importance to identify stable replacements for acylhydrazone linkers. Herein, we present the first report on the design and synthesis of stable bioisosteres of acylhydrazone‐based inhibitors of the aspartic protease endothiapepsin as a follow‐up to a DCC study. The most successful bioisostere is equipotent, bears an amide linker, and we confirmed its binding mode by X‐ray crystallography. Having some validated bioisosteres of acylhydrazones readily available might accelerate hit‐to‐lead optimization in future acylhydrazone‐based DCC projects.
Collapse
|
45
|
Schiebel J, Gaspari R, Wulsdorf T, Ngo K, Sohn C, Schrader TE, Cavalli A, Ostermann A, Heine A, Klebe G. Intriguing role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes. Nat Commun 2018; 9:3559. [PMID: 30177695 PMCID: PMC6120877 DOI: 10.1038/s41467-018-05769-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 07/26/2018] [Indexed: 11/09/2022] Open
Abstract
Hydrogen bonds are key interactions determining protein-ligand binding affinity and therefore fundamental to any biological process. Unfortunately, explicit structural information about hydrogen positions and thus H-bonds in protein-ligand complexes is extremely rare and similarly the important role of water during binding remains poorly understood. Here, we report on neutron structures of trypsin determined at very high resolutions ≤1.5 Å in uncomplexed and inhibited state complemented by X-ray and thermodynamic data and computer simulations. Our structures show the precise geometry of H-bonds between protein and the inhibitors N-amidinopiperidine and benzamidine along with the dynamics of the residual solvation pattern. Prior to binding, the ligand-free binding pocket is occupied by water molecules characterized by a paucity of H-bonds and high mobility resulting in an imperfect hydration of the critical residue Asp189. This phenomenon likely constitutes a key factor fueling ligand binding via water displacement and helps improving our current view on water influencing protein-ligand recognition.
Collapse
|
46
|
Wienen-Schmidt B, Wulsdorf T, Jonker HRA, Saxena K, Kudlinzki D, Linhard V, Sreeramulu S, Heine A, Schwalbe H, Klebe G. On the Implication of Water on Fragment-to-Ligand Growth in Kinase Binding Thermodynamics. ChemMedChem 2018; 13:1988-1996. [DOI: 10.1002/cmdc.201800438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Indexed: 11/06/2022]
|
47
|
Heine A, Siefker C, Klebe G. Fragment screening on protein kinase A and PIM1-kinase. Acta Crystallogr A Found Adv 2018. [DOI: 10.1107/s2053273318092264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
48
|
Metz A, Huschmann F, Schiebel J, Müller U, Weiss M, Heine A, Klebe G. High-throughput crystallographic fragment screening for drug discovery. Acta Crystallogr A Found Adv 2018. [DOI: 10.1107/s2053273318094858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
49
|
Ehrmann FR, Kalim J, Pfaffeneder T, Bernet B, Hohn C, Schäfer E, Botzanowski T, Cianférani S, Heine A, Reuter K, Diederich F, Klebe G. Austausch der Proteinkontaktflächen in der homodimeren tRNA-Guanin-Transglycosylase: ein Weg der funktionellen Regulation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Espinel D, Jordan R, Pinoni V, Martinez J, Verbanaz S, giorgio P, Eusebio M, Navarro K, Bustos A, Becker V, Giovanakis M, Heine A, Efron E. A prospective study on active surveillance of bacterial colonization in oncohaematological patients and its association with bacteraemias. Int J Infect Dis 2018. [DOI: 10.1016/j.ijid.2018.04.3484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|