26
|
Wang X, Thomas TM, Ren R, Zhou Y, Zhang P, Li J, Cai S, Liu K, Ivanov AP, Herrmann A, Edel JB. Nanopore Detection Using Supercharged Polypeptide Molecular Carriers. J Am Chem Soc 2023; 145:6371-6382. [PMID: 36897933 PMCID: PMC10037339 DOI: 10.1021/jacs.2c13465] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The analysis at the single-molecule level of proteins and their interactions can provide critical information for understanding biological processes and diseases, particularly for proteins present in biological samples with low copy numbers. Nanopore sensing is an analytical technique that allows label-free detection of single proteins in solution and is ideally suited to applications, such as studying protein-protein interactions, biomarker screening, drug discovery, and even protein sequencing. However, given the current spatiotemporal limitations in protein nanopore sensing, challenges remain in controlling protein translocation through a nanopore and relating protein structures and functions with nanopore readouts. Here, we demonstrate that supercharged unstructured polypeptides (SUPs) can be genetically fused with proteins of interest and used as molecular carriers to facilitate nanopore detection of proteins. We show that cationic SUPs can substantially slow down the translocation of target proteins due to their electrostatic interactions with the nanopore surface. This approach enables the differentiation of individual proteins with different sizes and shapes via characteristic subpeaks in the nanopore current, thus facilitating a viable route to use polypeptide molecular carriers to control molecular transport and as a potential system to study protein-protein interactions at the single-molecule level.
Collapse
|
27
|
Brenske KO, Emondts M, Hörnig ST, Panitz S, Pieper MI, Ligori A, Schacht A, Henkel J, Klankermayer J, Herrmann A. Parahydrogen-Induced Polarization of a Labeled, Cancer-Targeting DNA Aptamer. Angew Chem Int Ed Engl 2023; 62:e202300531. [PMID: 36883250 DOI: 10.1002/anie.202300531] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Enhancing NMR signals of biomacromolecules by hyperpolarization offers exciting opportunities for diagnostic applications. However, their hyperpolarization via parahydrogen remains challenging as specific catalytic interactions are required, which are difficult to tune due to the large size of the biomolecule and its insolubility in organic solvents. Herein, we show the unprecedented hyperpolarization of the cancer-targeting DNA aptamer AS1411. By screening different molecular motifs for an unsaturated label in nucleosides and in DNA oligomers, we were able to identify structural prerequisites for the hyperpolarization of AS1411. Finally, adjusting the polarity of AS1411 by complexing the DNA backbone with amino polyethylene glycol chains allowed the hydrogenation of the label with parahydrogen while the DNA structure remains stable to maintain its biological function. Our results are expected to advance hyperpolarized molecular imaging technology for disease detection in the future.
Collapse
|
28
|
Li YJ, Zhang C, Martincuks A, Herrmann A, Yu H. STAT proteins in cancer: orchestration of metabolism. Nat Rev Cancer 2023; 23:115-134. [PMID: 36596870 DOI: 10.1038/s41568-022-00537-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 01/04/2023]
Abstract
Reprogrammed metabolism is a hallmark of cancer. However, the metabolic dependency of cancer, from tumour initiation through disease progression and therapy resistance, requires a spectrum of distinct reprogrammed cellular metabolic pathways. These pathways include aerobic glycolysis, oxidative phosphorylation, reactive oxygen species generation, de novo lipid synthesis, fatty acid β-oxidation, amino acid (notably glutamine) metabolism and mitochondrial metabolism. This Review highlights the central roles of signal transducer and activator of transcription (STAT) proteins, notably STAT3, STAT5, STAT6 and STAT1, in orchestrating the highly dynamic metabolism not only of cancer cells but also of immune cells and adipocytes in the tumour microenvironment. STAT proteins are able to shape distinct metabolic processes that regulate tumour progression and therapy resistance by transducing signals from metabolites, cytokines, growth factors and their receptors; defining genetic programmes that regulate a wide range of molecules involved in orchestration of metabolism in cancer and immune cells; and regulating mitochondrial activity at multiple levels, including energy metabolism and lipid-mediated mitochondrial integrity. Given the central role of STAT proteins in regulation of metabolic states, they are potential therapeutic targets for altering metabolic reprogramming in cancer.
Collapse
|
29
|
Zheng Y, de Vries JW, Herrmann A, Bartz-Schmidt KU, Dammeier S, Spitzer MS. CLOUDING OF INTRAOCULAR SILICONE OIL IN THE ABSENCE OF EMULSIFICATION. Retin Cases Brief Rep 2023; 17:144-151. [PMID: 33492074 DOI: 10.1097/icb.0000000000001123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To describe intraocular clouding of silicone oil in the absence of emulsification. METHODS Retrospective observational case series of patients who received silicone oil injections and developed silicone oil discoloration without emulsification after pars plana vitrectomy. Clinical examinations and physicochemical analyses were performed to find out the common cause for the opaque oil. RESULTS Thirteen patients developed silicone oil discoloration after pars plana vitrectomy. It could be traced down that all patients had received silicone oil from one respective production batch. The silicone oil was removed as soon as possible after the changes were detected (range, 8-16 weeks). Gas chromatography flame ionization detector, size exclusion chromatography, and high-performance liquid chromatography analysis showed the absence of low-molecular-weight compounds in the opaque lot. Thermogravimetric analysis revealed the opaque lot was more temperature stable. During the follow-ups, no obvious retinal toxicity could be observed and best-recorded visual acuity improved considerably in 12 patients and was only limited by the underlying retinal pathologic conditions. CONCLUSION This is the first report on opacification of intraocular silicone oil without emulsification. This discoloration of silicone oil may disturb vision and prevent proper fundus examination; however, it seems to be a nontoxic phenomenon without serious long-term consequences.
Collapse
|
30
|
Schnichels S, Simmang D, Löscher M, Herrmann A, de Vries JW, Spitzer MS, Hurst J. Lipid-DNA Nanoparticles as Drug-Delivery Vehicles for the Treatment of Retinal Diseases. Pharmaceutics 2023; 15:pharmaceutics15020532. [PMID: 36839853 PMCID: PMC9961589 DOI: 10.3390/pharmaceutics15020532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/08/2023] Open
Abstract
Retinal eye diseases are the leading cause of blindness in the Western world. Up to date, the only efficient treatment for many retinal diseases consists of invasive intravitreal injections of highly concentrated drugs. Despite the fact that these injections are unpleasant for the patients, they potentially cause serious side effects, e.g., infections, bleeding within the eye or retinal detachment, especially when performed on a monthly basis, thus decreasing the injection frequency and lowering the desired drug dose. Therefore, a sustained released at the region of interest with a sustained release is desired. Recently, novel lipid-DNA nanoparticles (NPs) were shown to be an efficient drug delivery platform to the anterior segment of the eye. In this study, we investigated the distribution and tropism of the NPs when applied intravitreally, as a potential medication carrier to the posterior part of the eye. This technology is perfectly suited for the delivery of low molecular weight drugs to the back of the eye, which so far is greatly hindered by fast diffusion rates of the free drugs in the vitreous body and their intrinsically low retainability in ocular tissue. Excellent biodistribution, adherence and presence for up to five days was found for the different tested nanoparticles ex vivo and in vivo. In conclusion, our lipid-DNA based nanocarrier system was able to reach the retina within minutes and penetrate the retina providing potentially safe and long-term carrier systems for small molecules or nucleotide-based therapies.
Collapse
|
31
|
Herrmann A, Zekri M, Maalej R, Rüssel C. The Effect of Glass Structure on the Luminescence Spectra of Sm 3+-Doped Aluminosilicate Glasses. MATERIALS (BASEL, SWITZERLAND) 2023; 16:564. [PMID: 36676301 PMCID: PMC9864254 DOI: 10.3390/ma16020564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Peralkaline Sm3+-doped aluminosilicate glasses with different network modifier ions (Mg2+, Ca2+, Sr2+, Ba2+, Zn2+) were investigated to clarify the effect of glass composition and glass structure on the optical properties of the doped Sm3+ ions. For this purpose, the Sm3+ luminescence emission spectra were correlated with the molecular structure of the glasses derived by molecular dynamics (MD) simulations. The different network modifier ions have a clear and systematic effect on the peak area ratio of the Sm3+ emission peaks which correlates with the average rare earth site symmetry in the glasses. The highest site symmetry is found for the calcium aluminosilicate glass. Glasses with network modifier ions of lower and higher ionic radii show a notably lower average site symmetry. The symmetry could be correlated to the rare earth coordination number with oxygen atoms derived by MD simulations. A coordination number of 6 seems to offer the highest average site symmetry. Higher rare earth coordination probabilities with non-bridging oxygen result in an increased splitting of the emission peaks and a notable broadening of the peaks. The zinc containing glass seems to play a special role. The Zn2+ ions notably modify the glass structure and especially the rare earth coordination in comparison to the other network modifier ions in the other investigated glasses. The knowledge on how glass structure affects the optical properties of doped rare earth ions can be used to tailor the rare earth absorption and emission spectra for specific applications.
Collapse
|
32
|
Lamboley S, Vuichoud B, de Saint Laumer JY, Herrmann A. Release of Volatile Cyclopentanone Derivatives from Imidazolidin-4-One Profragrances in a Fabric Softener Application. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010382. [PMID: 36615574 PMCID: PMC9822342 DOI: 10.3390/molecules28010382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Imidazolidin-4-ones were investigated as hydrolytically cleavable profragrances to increase the long-lastingness of perfume perception in a fabric softener application. The reaction of different amino acid amides with 2-alkyl- or 2-alkenylcyclopentanones as the model fragrances to be released afforded the corresponding bi- or tricyclic imidazolidin-4-ones as mixtures of diastereoisomers, which were separated by column chromatography. In polar solution, the different stereoisomers equilibrated under thermodynamic conditions to form mixtures with constant isomeric distributions, as shown by NMR spectroscopy. Dynamic headspace analysis on dry cotton demonstrated the controlled fragrance release from the precursors in practical application. Under non-equilibrium conditions (continuous evaporation of the fragrance) and depending on the structure and stereochemistry of the profragrances, the recorded headspace concentrations of the fragrance released from the precursors increased by a factor of 2 up to 100 with respect to the unmodified reference. Prolinamide-based precursors released the highest amount of fragrance and were thus found to be particularly suitable for prolonging the evaporation of cyclopentanone-derived fragrances on a dry cotton surface.
Collapse
|
33
|
Yildiz D, Göstl R, Herrmann A. Sonopharmacology: controlling pharmacotherapy and diagnosis by ultrasound-induced polymer mechanochemistry. Chem Sci 2022; 13:13708-13719. [PMID: 36544723 PMCID: PMC9709924 DOI: 10.1039/d2sc05196f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Active pharmaceutical ingredients are the most consequential and widely employed treatment in medicine although they suffer from many systematic limitations, particularly off-target activity and toxicity. To mitigate these effects, stimuli-responsive controlled delivery and release strategies for drugs are being developed. Fueled by the field of polymer mechanochemistry, recently new molecular technologies enabled the emergence of force as an unprecedented stimulus for this purpose by using ultrasound. In this research area, termed sonopharmacology, mechanophores bearing drug molecules are incorporated within biocompatible macromolecular scaffolds as preprogrammed, latent moieties. This review presents the novelties in controlling drug activation, monitoring, and release by ultrasound, while discussing the limitations and challenges for future developments.
Collapse
|
34
|
Rybol L, Amelung D, Nieder J, Hachad H, Depoux A, Sauerborn R, Herrmann A. Medical studentś needs for an integration of climate change into the medical curriculum. Eur J Public Health 2022. [DOI: 10.1093/eurpub/ckac130.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
The impacts of climate change (CC) on health comprise increased human morbidity and mortality. Consequently, physicians need to be systematically trained to address CC in their professional life. Due to lacking research on educational needs of medical students, we developed a survey instrument to assess studentś attitudinal and knowledge-based needs for the integration of CC into medical curricula and their readiness to learn.
Methods
Our survey was administered online to 788 students at the Medical Faculty of Heidelberg University between 06/2021 and 02/2022. Data analyses included descriptive statistics, reliability analyses as well as regression modeling with regard to readiness to learn.
Results
214 students participated in the survey, 170 fully completed datasets were included in the analysis. A majority of students (72.35%) (strongly) agreed that doctors carry a responsibility to address CC in their work setting, while only 4.71% (strongly) agreed, that their current medical training had imparted them with enough skill to do so. Students showed both considerable knowledge and interest in the area of CC, its health impacts, vulnerabilities and clinical adaptation (70.09% correct answers). Knowledge gaps were identified in the areas of health co-benefits and sustainable healthcare (55.53% and 16.71% of correct answers). 79.42% of students want to learn about CC through the integration into existing mandatory courses.
Conclusions
Results encourage the integration of CC topics with a focus on knowledge and professional role development into existing mandatory courses of the medical curriculum. Specifically, they also pinpoint health impacts and adaptation as greatest areas of interest for students and at health co-benefits and sustainable healthcare as areas with least prior knowledge.
Key messages
Collapse
|
35
|
Krippl N, Mezger NCS, Fischer H, Schildmann J, Mikolajczyk R, Danquah I, Kantelhardt EJ, Herrmann A. Climate-sensitive health counselling: a quantitative survey on addressing climate change. Eur J Public Health 2022. [DOI: 10.1093/eurpub/ckac130.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Climate change and its mitigation have significant health implications. Hence, medical associations call on physicians to inform the population about health risks of climate change and possible health co-benefits of climate action. However, so far it is unclear what preferences the general public has about climate-sensitive health counselling (CSHC). Therefore, we developed a survey tool to a) characterize experiences of CSHC, b) identify preferences about communication methods and themes, and c) determine associations of socioeconomic characteristics and climate change attitudes with CSHC preferences.
Methods
The tool development for this cross-sectional online-based survey was embedded in a bigger research project on the conceptualization of CSHC, which follows an exploratory mixed-methods design. Results of preceding qualitative interviews about CSHC were integrated into the tool development. After two pilot tests, the tool was administered from April to June 2022 through the population-based HeReCa panel (Health Related Beliefs and Health Care Experiences in Germany), comprising 3200 participants from 5 federal states. Sociodemographic data is available for all participants.
Results
The final tool entails 46 items, sorted into 7 sections. Two sections serve as dependent variables for the association analysis: 13 items about the acceptability of different communicative approaches of CSHC and 18 items on preferences for themes in CSHC. Three sections serve as independent variables for the analysis: attitudes on climate change, level of engagement, and sociodemographic data. Two sections assess experiences with CSHC and preferred information channels to serve as descriptive results.
Conclusions
A rigorous methodology proved helpful for survey development within a mixed methods study. In triangulation with qualitative data, results of the survey will help physicians to deliver CSHC tailored to the preferences of different sociodemographic groups.
Key messages
Collapse
|
36
|
Busch M, Bredeck G, Waag F, Rahimi K, Ramachandran H, Bessel T, Barcikowski S, Herrmann A, Rossi A, Schins R. P12-27 THP-1 cells as a suitable screening tool for NLRP3 inflammasome activation applied to micro- and nanoplastics. Toxicol Lett 2022. [DOI: 10.1016/j.toxlet.2022.07.506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Klok HA, Herrmann A, Göstl R. Force ahead: Emerging Applications and Opportunities of Polymer Mechanochemistry. ACS POLYMERS AU 2022; 2:208-212. [PMID: 35971420 PMCID: PMC9372995 DOI: 10.1021/acspolymersau.2c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Adam L, Müller E, Ludwig K, Klenk S, Lauster D, Liese S, Herrmann A, Hackenberger CPR. Design and Functional Analysis of Heterobifunctional Multivalent Phage Capsid Inhibitors Blocking the Entry of Influenza Virus. Bioconjug Chem 2022; 33:1269-1278. [PMID: 35759354 PMCID: PMC9305970 DOI: 10.1021/acs.bioconjchem.2c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Multiple conjugation
of virus-binding ligands to multivalent carriers
is a prominent strategy to construct highly affine virus binders for
the inhibition of viral entry into host cells. In a previous study,
we introduced rationally designed sialic acid conjugates of bacteriophages
(Qβ) that match the triangular binding site geometry on hemagglutinin
spike proteins of influenza A virions, resulting in effective infection
inhibition in vitro and in vivo.
In this work, we demonstrate that even partially sialylated Qβ
conjugates retain the inhibitory effect despite reduced activity.
These observations not only support the importance of trivalent binding
events in preserving high affinity, as supported by computational
modeling, but also allow us to construct heterobifunctional modalities.
Capsids carrying two different sialic acid ligand–linker structures
showed higher viral inhibition than their monofunctional counterparts.
Furthermore, capsids carrying a fluorescent dye in addition to sialic
acid ligands were used to track their interaction with cells. These
findings support exploring broader applications as multivalent inhibitors
in the future.
Collapse
|
39
|
Herrmann A, Weil T. Realizing Function by Carbon-Rich Molecular Architectures for Future Technologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203029. [PMID: 35794085 PMCID: PMC9259714 DOI: 10.1002/advs.202203029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
40
|
Xuan M, Schumacher C, Bolm C, Göstl R, Herrmann A. The Mechanochemical Synthesis and Activation of Carbon-Rich π-Conjugated Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105497. [PMID: 35048569 PMCID: PMC9259731 DOI: 10.1002/advs.202105497] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Indexed: 05/14/2023]
Abstract
Mechanochemistry uses mechanical force to break, form, and manipulate chemical bonds to achieve functional transformations and syntheses. Over the last years, many innovative applications of mechanochemistry have been developed. Specifically for the synthesis and activation of carbon-rich π-conjugated materials, mechanochemistry offers reaction pathways that either are inaccessible with other stimuli, such as light and heat, or improve reaction yields, energy consumption, and substrate scope. Therefore, this review summarizes the recent advances in this research field combining the viewpoints of polymer and trituration mechanochemistry. The highlighted mechanochemical transformations include π-conjugated materials as optical force probes, the force-induced release of small dye molecules, and the mechanochemical synthesis of polyacetylene, carbon allotropes, and other π-conjugated materials.
Collapse
|
41
|
Bastian AA, Bastian M, Jäger M, Loznik M, Warszawik EM, Yang X, Tahiri N, Fodran P, Witte MD, Thoma A, Köhler J, Minnaard AJ, Herrmann A. Late-Stage Modification of Aminoglycoside Antibiotics Overcomes Bacterial Resistance Mediated by APH(3') Kinases. Chemistry 2022; 28:e202200883. [PMID: 35388562 PMCID: PMC9321007 DOI: 10.1002/chem.202200883] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 12/25/2022]
Abstract
The continuous emergence of antimicrobial resistance is causing a threat to patients infected by multidrug-resistant pathogens. In particular, the clinical use of aminoglycoside antibiotics, broad-spectrum antibacterials of last resort, is limited due to rising bacterial resistance. One of the major resistance mechanisms in Gram-positive and Gram-negative bacteria is phosphorylation of these amino sugars at the 3'-position by O-phosphotransferases [APH(3')s]. Structural alteration of these antibiotics at the 3'-position would be an obvious strategy to tackle this resistance mechanism. However, the access to such derivatives requires cumbersome multi-step synthesis, which is not appealing for pharma industry in this low-return-on-investment market. To overcome this obstacle and combat bacterial resistance mediated by APH(3')s, we introduce a novel regioselective modification of aminoglycosides in the 3'-position via palladium-catalyzed oxidation. To underline the effectiveness of our method for structural modification of aminoglycosides, we have developed two novel antibiotic candidates overcoming APH(3')s-mediated resistance employing only four synthetic steps.
Collapse
|
42
|
Wagner AM, Quandt J, Söder D, Garay‐Sarmiento M, Joseph A, Petrovskii VS, Witzdam L, Hammoor T, Steitz P, Haraszti T, Potemkin II, Kostina NY, Herrmann A, Rodriguez‐Emmenegger C. Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200617. [PMID: 35393756 PMCID: PMC9189634 DOI: 10.1002/advs.202200617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The construction of biomembranes that faithfully capture the properties and dynamic functions of cell membranes remains a challenge in the development of synthetic cells and their application. Here a new concept for synthetic cell membranes based on the self-assembly of amphiphilic comb polymers into vesicles, termed ionic combisomes (i-combisomes) is introduced. These combs consist of a polyzwitterionic backbone to which hydrophobic tails are linked by electrostatic interactions. Using a range of microscopies and molecular simulations, the self-assembly of a library of combs in water is screened. It is discovered that the hydrophobic tails form the membrane's core and force the backbone into a rod conformation with nematic-like ordering confined to the interface with water. This particular organization resulted in membranes that combine the stability of classic polymersomes with the biomimetic thickness, flexibility, and lateral mobility of liposomes. Such unparalleled matching of biophysical properties and the ability to locally reconfigure the molecular topology of its constituents enable the harboring of functional components of natural membranes and fusion with living bacteria to "hijack" their periphery. This provides an almost inexhaustible palette to design the chemical and biological makeup of the i-combisomes membrane resulting in a powerful platform for fundamental studies and technological applications.
Collapse
|
43
|
Zhang L, Isselstein M, Köhler J, Eleftheriadis N, Huisjes NM, Guirao‐Ortiz M, Narducci A, Smit JH, Stoffels J, Harz H, Leonhardt H, Herrmann A, Cordes T. Inside Back Cover: Linker Molecules Convert Commercial Fluorophores into Tailored Functional Probes during Biolabelling (Angew. Chem. Int. Ed. 19/2022). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/anie.202205055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Zhang L, Isselstein M, Köhler J, Eleftheriadis N, Huisjes NM, Guirao-Ortiz M, Narducci A, Smit JH, Stoffels J, Harz H, Leonhardt H, Herrmann A, Cordes T. Linker Molecules Convert Commercial Fluorophores into Tailored Functional Probes during Biolabelling. Angew Chem Int Ed Engl 2022; 61:e202112959. [PMID: 35146855 PMCID: PMC9305292 DOI: 10.1002/anie.202112959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 12/27/2022]
Abstract
Many life‐science techniques and assays rely on selective labeling of biological target structures with commercial fluorophores that have specific yet invariant properties. Consequently, a fluorophore (or dye) is only useful for a limited range of applications, e.g., as a label for cellular compartments, super‐resolution imaging, DNA sequencing or for a specific biomedical assay. Modifications of fluorophores with the goal to alter their bioconjugation chemistry, photophysical or functional properties typically require complex synthesis schemes. We here introduce a general strategy that allows to customize these properties during biolabelling with the goal to introduce the fluorophore in the last step of biolabelling. For this, we present the design and synthesis of ‘linker’ compounds, that bridge biotarget, fluorophore and a functional moiety via well‐established labeling protocols. Linker molecules were synthesized via the Ugi four‐component reaction (Ugi‐4CR) which facilitates a modular design of linkers with diverse functional properties and bioconjugation‐ and fluorophore attachment moieties. To demonstrate the possibilities of different linkers experimentally, we characterized the ability of commercial fluorophores from the classes of cyanines, rhodamines, carbopyronines and silicon‐rhodamines to become functional labels on different biological targets in vitro and in vivo via thiol‐maleimide chemistry. With our strategy, we showed that the same commercial dye can become a photostable self‐healing dye or a sensor for bivalent ions subject to the linker used. Finally, we quantified the photophysical performance of different self‐healing linker–fluorophore conjugates and demonstrated their applications in super‐resolution imaging and single‐molecule spectroscopy.
Collapse
|
45
|
Zhang L, Isselstein M, Köhler J, Eleftheriadis N, Huisjes NM, Guirao‐Ortiz M, Narducci A, Smit JH, Stoffels J, Harz H, Leonhardt H, Herrmann A, Cordes T. Innenrücktitelbild: Linker Molecules Convert Commercial Fluorophores into Tailored Functional Probes during Biolabelling (Angew. Chem. 19/2022). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Huo S, Liao Z, Zhao P, Zhou Y, Göstl R, Herrmann A. Mechano-Nanoswitches for Ultrasound-Controlled Drug Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104696. [PMID: 35195372 PMCID: PMC9036040 DOI: 10.1002/advs.202104696] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/30/2022] [Indexed: 05/10/2023]
Abstract
Current pharmacotherapy is challenged by side effects and drug resistance issues due to the lack of drug selectivity. Mechanochemistry-based strategies provide new avenues to overcome the related problems by improving drug selectivity. It is recently shown that sonomechanical bond scission enables the remote-controlled drug release from their inactive parent macromolecules using ultrasound (US). To further expand the scope of the US-controlled drug activation strategy, herein a mechano-responsive nanoswitch for the selective activation of doxorubicin (DOX) to inhibit cancer cell proliferation is constructed. As a proof-of-concept, the synthesis, characterization, and US-responsive drug activation evaluation of the mechano-nanoswitch, which provides a blueprint for tailoring nanosystems for force-induced pharmacotherapy is presented.
Collapse
|
47
|
Trachsel A, Paret N, Berthier D, Herrmann A. Light‐Induced Fragrance Release from 2‐Oxoacetates: Impact of Compound Mixtures on the Efficiency of the Norrish Type II Photoreaction in Solution and in Encapsulation Systems. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Nie C, Sahoo AK, Netz RR, Herrmann A, Ballauff M, Haag R. Charge Matters: Mutations in Omicron Variant Favor Binding to Cells. Chembiochem 2022; 23:e202100681. [PMID: 35020256 PMCID: PMC9015620 DOI: 10.1002/cbic.202100681] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Indexed: 11/13/2022]
Abstract
Evidence is strengthening to suggest that the novel SARS-CoV-2 mutant Omicron, with its more than 60 mutations, will spread and dominate worldwide. Although the mutations in the spike protein are known, the molecular basis for why the additional mutations in the spike protein that have not previously occurred account for Omicron's higher infection potential, is not understood. We propose, based on chemical rational and molecular dynamics simulations, that the elevated occurrence of positively charged amino acids in certain domains of the spike protein (Delta: +4; Omicron: +5 vs. wild type) increases binding to cellular polyanionic receptors, such as heparan sulfate due to multivalent charge-charge interactions. This observation is a starting point for targeted drug development.
Collapse
|
49
|
Zhang X, Abel T, Su S, Herrmann A, Ludwig K, Veit M. Structural and functional analysis of the roles of influenza C virus membrane proteins in assembly and budding. J Biol Chem 2022; 298:101727. [PMID: 35157850 PMCID: PMC8914389 DOI: 10.1016/j.jbc.2022.101727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Assembly and budding of the influenza C virus is mediated by three membrane proteins: the hemagglutinin-esterase-fusion glycoprotein (HEF), the matrix protein (CM1), and the ion channel (CM2). Here we investigated whether the formation of the hexagonal HEF arrangement, a distinctive feature of influenza C virions is important for virus budding. We used super resolution microscopy and found 250-nm sized HEF clusters at the plasma membrane of transfected cells, which were insensitive to cholesterol extraction and cytochalasin treatment. Overexpression of either CM1, CM2, or HEF caused the release of membrane-enveloped particles. Cryo-electron microscopy of the latter revealed spherical vesicles exhibiting the hexagonal HEF clusters. We subsequently used reverse genetics to identify elements in HEF required for this clustering. We found that deletion of the short cytoplasmic tail of HEF reduced virus titer and hexagonal HEF arrays, suggesting that an interaction with CM1 stabilizes the HEF clusters. In addition, we substituted amino acids at the surface of the closed HEF conformation and identified specific mutations that prevented virus rescue, others reduced virus titers and the number of HEF clusters in virions. Finally, mutation of two regions that mediate contacts between trimers in the in-situ structure of HEF was shown to prevent rescue of infectious virus particles. Mutations at residues thought to mediate lateral interactions were revealed to promote intracellular trafficking defects. Taken together, we propose that lateral interactions between the ectodomains of HEF trimers are a driving force for virus budding, although CM2 and CM1 also play important roles in this process.
Collapse
|
50
|
Grifell-Junyent M, Baum JF, Välimets S, Herrmann A, Paulusma CC, López-Marqués RL, Günther Pomorski T. CDC50A is required for aminophospholipid transport and cell fusion in mouse C2C12 myoblasts. J Cell Sci 2022; 135:jcs258649. [PMID: 34664668 PMCID: PMC10405909 DOI: 10.1242/jcs.258649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/02/2021] [Indexed: 11/20/2022] Open
Abstract
Myoblast fusion is essential for the formation of multinucleated muscle fibers and is promoted by transient changes in the plasma membrane lipid distribution. However, little is known about the lipid transporters regulating these dynamic changes. Here, we show that proliferating myoblasts exhibit an aminophospholipid flippase activity that is downregulated during differentiation. Deletion of the P4-ATPase flippase subunit CDC50A (also known as TMEM30A) results in loss of the aminophospholipid flippase activity and compromises actin remodeling, RAC1 GTPase membrane targeting and cell fusion. In contrast, deletion of the P4-ATPase ATP11A affects aminophospholipid uptake without having a strong impact on cell fusion. Our results demonstrate that myoblast fusion depends on CDC50A and may involve multiple CDC50A-dependent P4-ATPases that help to regulate actin remodeling.
Collapse
|