26
|
Cardinal JW, Bergman L, Hayward N, Sweet A, Warner J, Marks L, Learoyd D, Dwight T, Robinson B, Epstein M, Smith M, Teh BT, Cameron DP, Prins JB. A report of a national mutation testing service for the MEN1 gene: clinical presentations and implications for mutation testing. J Med Genet 2006; 42:69-74. [PMID: 15635078 PMCID: PMC1735899 DOI: 10.1136/jmg.2003.017319] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Mutation testing for the MEN1 gene is a useful method to diagnose and predict individuals who either have or will develop multiple endocrine neoplasia type 1 (MEN 1). Clinical selection criteria to identify patients who should be tested are needed, as mutation analysis is costly and time consuming. This study is a report of an Australian national mutation testing service for the MEN1 gene from referred patients with classical MEN 1 and various MEN 1-like conditions. RESULTS All 55 MEN1 mutation positive patients had a family history of hyperparathyroidism, had hyperparathyroidism with one other MEN1 related tumour, or had hyperparathyroidism with multiglandular hyperplasia at a young age. We found 42 separate mutations and six recurring mutations from unrelated families, and evidence for a founder effect in five families with the same mutation. DISCUSSION Our results indicate that mutations in genes other than MEN1 may cause familial isolated hyperparathyroidism and familial isolated pituitary tumours. CONCLUSIONS We therefore suggest that routine germline MEN1 mutation testing of all cases of "classical" MEN1, familial hyperparathyroidism, and sporadic hyperparathyroidism with one other MEN1 related condition is justified by national testing services. We do not recommend routine sequencing of the promoter region between nucleotides 1234 and 1758 (Genbank accession no. U93237) as we could not detect any sequence variations within this region in any familial or sporadic cases of MEN1 related conditions lacking a MEN1 mutation. We also suggest that testing be considered for patients <30 years old with sporadic hyperparathyroidism and multigland hyperplasia.
Collapse
|
27
|
Gimm O, Lorenz K, Nguyen Thanh P, Schneyer U, Bloching M, Howell VM, Marsh DJ, Teh BT, Krause U, Dralle H. Das familiäre Nebenschilddrüsenkarzinom. Chirurg 2006; 77:15-24. [PMID: 16418876 DOI: 10.1007/s00104-005-1110-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In contrast to primary hyperparathyroidism, parathyroid carcinoma is a rare disease. In patients with hyperparathyroidism jaw tumor (HPT-JT) syndrome, caused by germline mutations in HRPT2, the development of parathyroid carcinoma is estimated to be 10-15%. This review summarizes the clinical and molecular genetic data of about 100 patients in the literature and three of our own cases. Unfortunately, osteofibromas, which might enable timely diagnosis of HPT-JT syndrome, occur in only about 30% of patients; about 80% have uniglandular disease. Based on the current data, a general recommendation to perform prophylactic parathyroidectomy cannot be given. However, thorough screening of patients at risk is mandatory. Of note in patients thought to have sporadic parathyroid carcinoma, germline HRPT2 mutations are found in up to 20%. Hence, any patient with parathyroid carcinoma should undergo HRPT2 mutation analysis.
Collapse
|
28
|
Tan MH, Teh BT. Gene expression profiling predicts survival in clear cell renal cell carcinoma. J Clin Oncol 2005. [DOI: 10.1200/jco.2005.23.16_suppl.4534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Wang PF, Tan MH, Zhang C, Morreau H, Teh BT. HRPT2, a tumor suppressor gene for hyperparathyroidism-jaw tumor syndrome. Horm Metab Res 2005; 37:380-3. [PMID: 16001331 DOI: 10.1055/s-2005-870150] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Hyperparathyroidism-jaw tumor (HPT-JT) syndrome is a familial multi-tumor syndrome resulting from inactivating mutations in the HRPT2 tumor suppressor gene, which encodes a protein product named parafibromin. Here, we will review recent advances in genetic and protein studies on parafibromin, and examine its biological functions.
Collapse
|
30
|
Abstract
Hyperparathyroidism-jaw tumor (HPT-JT) syndrome is a familial multi-tumor syndrome resulting from mutations in the HRPT2 tumor suppressor gene, which encodes a protein product named parafibromin. We review current knowledge of the renal manifestations of the HPT-JT syndrome, and examine recent advances in understanding the biological function of parafibromin.
Collapse
|
31
|
Warner J, Epstein M, Sweet A, Singh D, Burgess J, Stranks S, Hill P, Perry-Keene D, Learoyd D, Robinson B, Birdsey P, Mackenzie E, Teh BT, Prins JB, Cardinal J. Genetic testing in familial isolated hyperparathyroidism: unexpected results and their implications. J Med Genet 2004; 41:155-60. [PMID: 14985373 PMCID: PMC1735699 DOI: 10.1136/jmg.2003.016725] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Familial hyperparathyroidism is not uncommon in clinical endocrine practice. It encompasses a spectrum of disorders including multiple endocrine neoplasia types 1 (MEN1) and 2A, hyperparathyroidism-jaw tumour syndrome (HPT-JT), familial hypocalciuric hypercalcaemia (FHH), and familial isolated hyperparathyroidism (FIHP). Distinguishing among the five syndromes is often difficult but has profound implications for the management of patient and family. The availability of specific genetic testing for four of the syndromes has improved diagnostic accuracy and simplified family monitoring in many cases but its current cost and limited accessibility require rationalisation of its use. No gene has yet been associated exclusively with FIHP. FIHP phenotypes have been associated with mutant MEN1 and calcium-sensing receptor (CASR) genotypes and, very recently, with mutation in the newly identified HRPT2 gene. The relative proportions of these are not yet clear. We report results of MEN1, CASR, and HRPT2 genotyping of 22 unrelated subjects with FIHP phenotypes. We found 5 (23%) with MEN1 mutations, four (18%) with CASR mutations, and none with an HRPT2 mutation. All those with mutations had multiglandular hyperparathyroidism. Of the subjects with CASR mutations, none were of the typical FHH phenotype. These findings strongly favour a recommendation for MEN1 and CASR genotyping of patients with multiglandular FIHP, irrespective of urinary calcium excretion. However, it appears that HRPT2 genotyping should be reserved for cases in which other features of the HPT-JT phenotype have occurred in the kindred. Also apparent is the need for further investigation to identify additional genes associated with FIHP.
Collapse
|
32
|
Schoumans J, Anderlid BM, Blennow E, Teh BT, Nordenskjöld M. The performance of CGH array for the detection of cryptic constitutional chromosome imbalances. J Med Genet 2004; 41:198-202. [PMID: 14985382 PMCID: PMC1735686 DOI: 10.1136/jmg.2003.013920] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
33
|
Villablanca A, Calender A, Forsberg L, Höög A, Cheng JD, Petillo D, Bauters C, Kahnoski K, Ebeling T, Salmela P, Richardson AL, Delbridge L, Meyrier A, Proye C, Carpten JD, Teh BT, Robinson BG, Larsson C. Germline and de novo mutations in the HRPT2 tumour suppressor gene in familial isolated hyperparathyroidism (FIHP). J Med Genet 2004; 41:e32. [PMID: 14985403 PMCID: PMC1735713 DOI: 10.1136/jmg.2003.012369] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
34
|
Gray SG, Qian CN, Furge K, Guo X, Teh BT. Microarray profiling of the effects of histone deacetylase inhibitors on gene expression in cancer cell lines. Int J Oncol 2004; 24:773-95. [PMID: 15010814 DOI: 10.3892/ijo.24.4.773] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Chromatin is a highly dynamic environment playing critical roles in the regulation of gene expression. Modifications to the proteins which make up the nucleosome core have been shown to have profound regulatory effects on gene expression. Of these, the best known modification is acetylation of the histone tails. Two enzymes regulate these processes, histone deacetylases and histone acetyltransferases. Both have been shown to have dysregulated functions in certain tumors. Several classes of histone deacetylase inhibitors have been isolated and are currently undergoing evaluation as potential therapeutic modalities in the treatment of cancer. In this study we examined the effects of three such inhibitors on general gene expression in three tumor cell lines derived from three separate tumor types using microarray gene profiling. Our results show that the patterns of alterations which emerge are similar for each cell type.
Collapse
|
35
|
Abstract
Epidemiological studies over the past several decades have consistently supported the concept that a proportion of breast cancers develop as the result of an inherited familial predisposition. However, until recently our understanding and knowledge of the underlying genetic processes involved have been limited. Current advances in molecular biology have shown that hereditary breast cancer may arise as the result of mutations of several specific gene loci including BRCA1, BRCA2, ATM gene, PTEN and p53. Several other less frequently occurring predisposition genes such as the androgen receptor gene (AR), the HNPCC genes and the oestrogen receptor gene may also be involved, but to a lesser extent. It is estimated that approximately 5-10% of all breast cancers involve one of these inherited predisposition genes, with BRCA1 and BRCA2 accounting for up to 90% of this group. Mutation analysis is complex in nature and is presently in a developmental and evolving phase, for which reason genetic testing should be offered on a selective basis and through genetic counselling clinics. This report reviews the current knowledge and roles of the various predisposition genes and discusses the management implications for both affected and nonaffected members of breast cancer families. Comprehensive and informative counselling is critical for women with an inherited predisposition to breast cancer and this has led to the evolution of familial cancer clinics involving a multi-disciplinary specialist team approach. Familial cancer clinics can provide individuals with information about their risk of developing breast cancer and offer advice regarding the various management options presently available.
Collapse
|
36
|
Teh BT, Howell VM, Haven CJ, Kahnoski K, Khoo SK, Petillo D, Chen J, Fleuren GJ, Robinson BG, Delbridge LW, Philips J, Nelson AE, Krause U, Hammje K, Dralle H, Hoang-Vu C, Gimm O, Marsh DJ, Morreau H. Human gene mutations. Gene symbol: HRPT2. Disease: Hyperparathyroidism Jaw-tumor syndrome. Hum Genet 2004; 114:222. [PMID: 15046094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
|
37
|
Teh BT, Howell VM, Haven CJ, Kahnoski K, Khoo SK, Petillo D, Chen J, Fleuren GJ, Robinson BG, Delbridge LW, Philips J, Nelson AE, Krause U, Hammje K, Dralle H, Hoang-Vu C, Gimm O, Marsh DJ, Morreau H. Human gene mutations. Gene symbol: HRPT2. Disease: Hyperparathyroidism Jaw-tumor syndrome. Hum Genet 2004; 114:224. [PMID: 15046109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
|
38
|
Teh BT, Howell VM, Haven CJ, Kahnoski K, Khoo SK, Petillo D, Chen J, Fleuren GJ, Robinson BG, Delbridge LW, Philips J, Nelson AE, Krause U, Hammje K, Dralle H, Hoang-Vu C, Gimm O, Marsh DJ, Morreau H. Human gene mutations. Gene symbol: HRPT2. Disease: Hyperparathyroidism Jaw-tumor syndrome. Hum Genet 2004; 114:221. [PMID: 15046050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
|
39
|
Teh BT, Howell VM, Haven CJ, Kahnoski K, Khoo SK, Petillo D, Chen J, Fleuren GJ, Robinson BG, Delbridge LW, Philips J, Nelson AE, Krause U, Hammje K, Dralle H, Hoang-Vu C, Gimm O, Marsh DJ, Morreau H. Human gene mutations. Gene symbol: HRPT2. Disease: Hyperparathyroidism Jaw-tumor syndrome. Hum Genet 2004; 114:223. [PMID: 15046105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
|
40
|
Teh BT, Howell VM, Haven CJ, Kahnoski K, Khoo SK, Petillo D, Chen J, Fleuren GJ, Robinson BG, Delbridge LW, Philips J, Nelson AE, Krause U, Hammje K, Dralle H, Hoang-Vu C, Gimm O, Marsh DJ, Morreau H. Human gene mutations. Gene symbol: HRPT2. Disease: Hyperparathyroidism Jaw-tumor syndrome. Hum Genet 2004; 114:223. [PMID: 15046102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
|
41
|
Teh BT, Howell VM, Haven CJ, Kahnoski K, Khoo SK, Petillo D, Chen J, Fleuren GJ, Robinson BG, Delbridge LW, Philips J, Nelson AE, Krause U, Hammje K, Dralle H, Hoang-Vu C, Gimm O, Marsh DJ, Morreau H. Human gene mutations. Gene symbol: HRPT2. Disease: Hyperparathyroidism Jaw-tumor syndrome. Hum Genet 2004; 114:223. [PMID: 15046107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
|
42
|
Teh BT, Howell VM, Haven CJ, Kahnoski K, Khoo SK, Petillo D, Chen J, Fleuren GJ, Robinson BG, Delbridge LW, Philips J, Nelson AE, Krause U, Hammje K, Dralle H, Hoang-Vu C, Gimm O, Marsh DJ, Morreau H. Human gene mutations. Gene symbol: HRPT2. Disease: Hyperparathyroidism Jaw-tumor syndrome. Hum Genet 2004; 114:222. [PMID: 15046098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
|
43
|
Chiu CL, Teh BT, Wang CY. Temporary cardiopulmonary bypass and isolated lung ventilation for tracheal stenosis and reconstruction. Br J Anaesth 2003; 91:742-4. [PMID: 14570801 DOI: 10.1093/bja/aeg244] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A 27-yr-old lady with a past history of prolonged ventilation presented with worsening respiratory distress caused by tracheal stenosis. She required urgent tracheal resection and reconstruction. Because of the risk of an acute respiratory obstruction, spinal anaesthesia was used to establish cardiopulmonary bypass by cannulating the femoral artery and femoral vein. Adequate gas exchange was possible with full flow rate. Thoracotomy was then carried out to mobilize the left main bronchus. After successfully securing an airway by intubation of the left main bronchus, cardiopulmonary bypass was discontinued and tracheal resection and anastomosis was done under conventional one lung anaesthesia.
Collapse
|
44
|
Howell VM, Haven CJ, Kahnoski K, Khoo SK, Petillo D, Chen J, Fleuren GJ, Robinson BG, Delbridge LW, Philips J, Nelson AE, Krause U, Hammje K, Dralle H, Hoang-Vu C, Gimm O, Marsh DJ, Morreau H, Teh BT. HRPT2 mutations are associated with malignancy in sporadic parathyroid tumours. J Med Genet 2003; 40:657-63. [PMID: 12960210 PMCID: PMC1735580 DOI: 10.1136/jmg.40.9.657] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Hyperparathyroidism is a common endocrinopathy characterised by the formation of parathyroid tumours. In this study, we determine the role of the recently identified gene, HRPT2, in parathyroid tumorigenesis. METHODS Mutation analysis of HRPT2 was undertaken in 60 parathyroid tumours: five HPT-JT, three FIHP, three MEN 1, one MEN 2A, 25 sporadic adenomas, 17 hyperplastic glands, two lithium associated tumours, and four sporadic carcinomas. Loss of heterozygosity at 1q24-32 was performed on a subset of these tumours. RESULTS HRPT2 somatic mutations were detected in four of four sporadic parathyroid carcinoma samples, and germline mutations were found in five of five HPT-JT parathyroid tumours (two families) and two parathyroid tumours from one FIHP family. One HPT-JT tumour with germline mutation also harboured a somatic mutation. In total, seven novel and one previously reported mutation were identified. "Two-hits" (double mutations or one mutation and loss of heterozygosity at 1q24-32) affecting HRPT2 were found in two sporadic carcinomas, two HPT-JT-related and two FIHP related tumours. CONCLUSIONS The results in this study support the role of HRPT2 as a tumour suppressor gene in sporadic parathyroid carcinoma, and provide further evidence for HRPT2 as the causative gene in HPT-JT, and a subset of FIHP. In light of the strong association between mutations of HRPT2 and sporadic parathyroid carcinoma demonstrated in this study, it is hypothesised that HRPT2 mutation is an early event that may lead to parathyroid malignancy and suggest intragenic mutation of HRPT2 as a marker of malignant potential in both familial and sporadic parathyroid tumours.
Collapse
|
45
|
Kahnoski K, Khoo SK, Nassif NT, Chen J, Lobo GP, Segelov E, Teh BT. Alterations of the Birt-Hogg-Dubé gene (BHD) in sporadic colorectal tumours. J Med Genet 2003; 40:511-5. [PMID: 12843323 PMCID: PMC1735520 DOI: 10.1136/jmg.40.7.511] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
46
|
Tso AWK, Rong R, Lo CY, Tan KCB, Tiu SC, Wat NMS, Xu JY, Villablanca A, Larsson C, Teh BT, Lam KSL. Multiple endocrine neoplasia type 1 (MEN1): genetic and clinical analysis in the Southern Chinese. Clin Endocrinol (Oxf) 2003; 59:129-35. [PMID: 12807514 DOI: 10.1046/j.1365-2265.2003.01812.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Multiple endocrine neoplasia type 1 (MEN1) is characterized by a triad of neoplasia affecting the parathyroid glands, enteropancreatic endocrine tissue and the anterior pituitary gland. DESIGN In order to define the prevalence of MEN1 germ-line mutations in Southern Chinese patients with MEN1 syndrome, we performed direct sequencing of the entire open reading frame of the MEN1 gene for 12 index patients and their first-degree relatives. RESULTS Six patients had familial MEN1 syndrome and six had apparently sporadic disease. Nine different germ-line mutations at the MEN1 gene were identified, including three novel mutations [248-249delTT in exon 2, K559X(AAG --> TAG) in exon 10 and IVS 2nt + 2(G --> T) in intron 2]. All patients with familial MEN1 syndrome were heterozygous carriers of a germ-line mutation and MEN1-related disorders were only evident in their first-degree relatives who also carried the mutation. All patients with an enteropancreatic lesion were mutation carriers and the absence of mutation in three apparently sporadic MEN1 patients with only hyperparathyroidism and pituitary microadenoma might represent the presence of MEN1 phenocopy. CONCLUSIONS The finding of MEN1 germ-line mutation in all patients with familial MEN1 syndrome suggests that genetic screening should be useful in our population to identify affected individuals within a kindred and allow early detection of MEN1-related tumours.
Collapse
|
47
|
Abstract
Amongst hyperparathyroidism-related syndromes, hyperparathyroidism-jaw tumour syndrome is one of the least common and relatively unknown but its clinical and genetic aspects are not less interesting or important. With the recent identification of its genes, we can now better characterize the disease, both clinically and genetically, which will certainly impact the field of endocrinology and oncology. In this article, we review the clinico-pathological features and genetic basis of this syndrome with the hope that it will create awareness and interest in this disease amongst clinicians and basic scientists.
Collapse
|
48
|
|
49
|
Abstract
Multiple endocrine neoplasia type 1 is an autosomal dominant cancer syndrome affecting primarily parathyroid, enteropancreatic endocrine and pituitary tissues. The inactivating germline and somatic mutations spread throughout the gene and the accompanying loss of the second allele in tumours show that the MEN1 gene is a tumour suppressor. The MEN1-encoded protein, menin, is a novel nuclear protein. Menin binds and alters JunD-, NF-kappaB-, Smad3-mediated transcriptional activation. The mouse Men1 knockout model mimicks the human MEN1 condition contributing to the understanding of tumorigenesis in MEN1.
Collapse
|
50
|
Gray SG, Iglesias AH, Teh BT, Dangond F. Modulation of splicing events in histone deacetylase 3 by various extracellular and signal transduction pathways. Gene Expr 2003; 11:13-21. [PMID: 12691522 PMCID: PMC5991154 DOI: 10.3727/000000003783992342] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2002] [Indexed: 11/24/2022]
Abstract
Within the context of the chromatin environment histone deacetylases are important transcriptional regulators. Three classes of human histone deacetylases have currently been identified on the basis of their similarity to yeast proteins. The class I enzymes contain four members: HDACs 1-3 and HDAC8. Of these, HDAC3 is known to generate transcript variants with altered amino-terminal regions. Here we describe the identification of a novel splice variant of HDAC3, in which exon 3 is alternatively spliced from the messenger RNA transcript. We show that this human HDAC3 splice transcript is upregulated by treatments with histone deacetylase inhibitors. We also demonstrate evidence of splicing events in murine HDAC3 as a response to various signals, including switching between splice transcript isoforms following treatments with kinase inhibitors or by osmotic shock. In contrast, such switching events were not observed in human cells. These results indicate that differential pathways in mouse and human may control the regulation of HDAC3, and that splice variants may play important roles in responding to exogenous stimuli that act via signal transduction pathways.
Collapse
|