26
|
Bauer U, Fromm L, Weiß C, Späth F, Bachmann P, Düll F, Steinhauer J, Matysik S, Pominov A, Görling A, Hirsch A, Steinrück HP, Papp C. Surface chemistry of 2,3-dibromosubstituted norbornadiene/quadricyclane as molecular solar thermal energy storage system on Ni(111). J Chem Phys 2019. [PMID: 31091921 DOI: 10.1021/acs.jpcc.8b03746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Dwindling fossil fuels force humanity to search for new energy production routes. Besides energy generation, its storage is a crucial aspect. One promising approach is to store energy from the sun chemically in strained organic molecules, so-called molecular solar thermal (MOST) systems, which can release the stored energy catalytically. A prototypical MOST system is norbornadiene/quadricyclane (NBD/QC) whose energy release and surface chemistry need to be understood. Besides important key parameters such as molecular weight, endergonic reaction profiles, and sufficient quantum yields, the position of the absorption onset of NBD is crucial to cover preferably a large range of sunlight's spectrum. For this purpose, one typically derivatizes NBD with electron-donating and/or electron-accepting substituents. To keep the model system simple enough to be investigated with photoemission techniques, we introduced bromine atoms at the 2,3-position of both compounds. We study the adsorption behavior, energy release, and surface chemistry on Ni(111) using high-resolution X-ray photoelectron spectroscopy (HR-XPS), UV photoelectron spectroscopy, and density functional theory calculations. Both Br2-NBD and Br2-QC partially dissociate on the surface at ∼120 K, with Br2-QC being more stable. Several stable adsorption geometries for intact and dissociated species were calculated, and the most stable structures are determined for both molecules. By temperature-programmed HR-XPS, we were able to observe the conversion of Br2-QC to Br2-NBD in situ at 170 K. The decomposition of Br2-NBD starts at 190 K when C-Br bond cleavage occurs and benzene and methylidene are formed. For Br2-QC, the cleavage already occurs at 130 K when cycloreversion to Br2-NBD sets in.
Collapse
|
27
|
Bauer U, Fromm L, Weiß C, Späth F, Bachmann P, Düll F, Steinhauer J, Matysik S, Pominov A, Görling A, Hirsch A, Steinrück HP, Papp C. Surface chemistry of 2,3-dibromosubstituted norbornadiene/quadricyclane as molecular solar thermal energy storage system on Ni(111). J Chem Phys 2019; 150:184706. [PMID: 31091921 DOI: 10.1063/1.5095583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dwindling fossil fuels force humanity to search for new energy production routes. Besides energy generation, its storage is a crucial aspect. One promising approach is to store energy from the sun chemically in strained organic molecules, so-called molecular solar thermal (MOST) systems, which can release the stored energy catalytically. A prototypical MOST system is norbornadiene/quadricyclane (NBD/QC) whose energy release and surface chemistry need to be understood. Besides important key parameters such as molecular weight, endergonic reaction profiles, and sufficient quantum yields, the position of the absorption onset of NBD is crucial to cover preferably a large range of sunlight's spectrum. For this purpose, one typically derivatizes NBD with electron-donating and/or electron-accepting substituents. To keep the model system simple enough to be investigated with photoemission techniques, we introduced bromine atoms at the 2,3-position of both compounds. We study the adsorption behavior, energy release, and surface chemistry on Ni(111) using high-resolution X-ray photoelectron spectroscopy (HR-XPS), UV photoelectron spectroscopy, and density functional theory calculations. Both Br2-NBD and Br2-QC partially dissociate on the surface at ∼120 K, with Br2-QC being more stable. Several stable adsorption geometries for intact and dissociated species were calculated, and the most stable structures are determined for both molecules. By temperature-programmed HR-XPS, we were able to observe the conversion of Br2-QC to Br2-NBD in situ at 170 K. The decomposition of Br2-NBD starts at 190 K when C-Br bond cleavage occurs and benzene and methylidene are formed. For Br2-QC, the cleavage already occurs at 130 K when cycloreversion to Br2-NBD sets in.
Collapse
|
28
|
More CE, Papp C, Harsanyi S, Gesztelyi R, Mikaczo A, Tajti G, Kardos L, Seres I, Lorincz H, Csapo K, Zsuga J. Altered irisin/BDNF axis parallels excessive daytime sleepiness in obstructive sleep apnea patients. Respir Res 2019; 20:67. [PMID: 30952206 PMCID: PMC6449996 DOI: 10.1186/s12931-019-1033-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 03/26/2019] [Indexed: 02/08/2023] Open
Abstract
STUDY OBJECTIVES Obstructive sleep apnea hypopnea syndrome (OSAHS) is a sleep-related breathing disorder, characterized by excessive daytime sleepiness (EDS), paralleled by intermittent collapse of the upper airway. EDS may be the symptom of OSAHS per se but may also be due to the alteration of central circadian regulation. Irisin is a putative myokine and has been shown to induce BDNF expression in several sites of the brain. BDNF is a key factor regulating photic entrainment and consequent circadian alignment and adaptation to the environment. Therefore, we hypothesized that EDS accompanying OSAHS is reflected by alteration of irisin/BDNF axis. METHODS Case history, routine laboratory parameters, serum irisin and BDNF levels, polysomnographic measures and Epworth Sleepiness Scale questionnaire (ESS) were performed in a cohort of OSAHS patients (n = 69). Simple and then multiple linear regression was used to evaluate data. RESULTS We found that EDS reflected by the ESS is associated with higher serum irisin and BDNF levels; β: 1.53; CI: 0.35, 6.15; p = 0.012 and β: 0.014; CI: 0.0.005, 0.023; p = 0.02, respectively. Furthermore, influence of irisin and BDNF was significant even if the model accounted for their interaction (p = 0.006 for the terms serum irisin, serum BDNF and their interaction). Furthermore, a concentration-dependent effect of both serum irisin and BDNF was evidenced with respect to their influence on the ESS. CONCLUSIONS These results suggest that the irisin-BDNF axis influences subjective daytime sleepiness in OSAS patients reflected by the ESS. These results further imply the possible disruption of the circadian regulation in OSAHS. Future interventional studies are needed to confirm this observation.
Collapse
|
29
|
Papp C, Kocsis K, Tóth R, Bodai L, Willis JR, Ksiezopolska E, Lozoya-Pérez NE, Vágvölgyi C, Mora Montes H, Gabaldón T, Nosanchuk JD, Gácser A. Echinocandin-Induced Microevolution of Candida parapsilosis Influences Virulence and Abiotic Stress Tolerance. mSphere 2018; 3:e00547-18. [PMID: 30429225 PMCID: PMC6236803 DOI: 10.1128/msphere.00547-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/30/2018] [Indexed: 01/27/2023] Open
Abstract
Candida species are a major cause of life-threatening bloodstream infections worldwide. Although Candida albicans is responsible for the vast majority of infections, the clinical relevance of other Candida species has also emerged over the last twenty years. This shift might be due in part to changes in clinical guidelines, as echinocandins became the first line of therapeutics for the treatment. Candida parapsilosis is an emerging non-albicans Candida species that exhibits lower susceptibility levels to these drugs. Candida species frequently display resistance to echinocandins, and the mechanism for this is well-known in C. albicans and Candida glabrata, where it is mediated by amino acid substitutions at defined locations of the β-1,3-glucan synthase, Fks1p. In C. parapsilosis isolates, Fks1p harbors an intrinsic amino acid change at position 660 of the hot spot 1 (HS1) region, which is thought to be responsible for the high MIC values. Less is known about acquired substitutions in this species. In this study, we used directed evolution experiments to generate C. parapsilosis strains with acquired resistance to caspofungin, anidulafungin, and micafungin. We showed that cross-resistance was dependent on the type of echinocandin used to generate the evolved strains. During their characterization, all mutant strains showed attenuated virulence in vivo and also displayed alterations in the exposure of inner cell wall components. The evolved strains harbored 251 amino acid changes, including three in the HS1, HS2, and HS3 regions of Fks1p. Altogether, our results demonstrate a direct connection between acquired antifungal resistance and virulence of C. parapsilosisIMPORTANCECandida parapsilosis is an opportunistic fungal pathogen with the ability to cause infections in immunocompromised patients. Echinocandins are the currently recommended first line of treatment for all Candida species. Resistance of Candida albicans to this drug type is well characterized. C. parapsilosis strains have the lowest in vitro susceptibility to echinocandins; however, patients with such infections typically respond well to echinocandin therapy. There is little knowledge of acquired resistance in C. parapsilosis and its consequences on other characteristics such as virulence properties. In this study, we aimed to dissect how acquired echinocandin resistance influences the pathogenicity of C. parapsilosis and to develop explanations for why echinocandins are clinically effective in the setting of acquired resistance.
Collapse
|
30
|
Zsuga J, More CE, Erdei T, Papp C, Harsanyi S, Gesztelyi R. Blind Spot for Sedentarism: Redefining the Diseasome of Physical Inactivity in View of Circadian System and the Irisin/BDNF Axis. Front Neurol 2018; 9:818. [PMID: 30333788 PMCID: PMC6176117 DOI: 10.3389/fneur.2018.00818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
Introduction: The term "diseasome of physical inactivity" was coined by Pedersen to explain clustering of chronic diseases linked to physical inactivity. Accordingly, physical inactivity per se contributes to the accumulation of visceral fat, which, generates chronic low-grade systemic inflammation, contributes to emergence of chronic, non-communicable diseases. Diversity of these disorders posits the possible involvement of a supraphysiological system. Methods: Hypothesis driven literature search and deductive reasoning was used to review relevant literature and formulate a novel theory. Results: We have identified the circadian system, omnipresent in virtually every cell, as a possible vehicle for brain muscle crosstalk, explaining some aspects of the diseasome of physical inactivity This system is hierarchically organized, with the suprachiasmatic nucleus (SCN) being the master clock that entrains to the dark/light cycle and synchronizes subsidiary molecular clocks in the periphery. Insufficient photic entrainment also causes chronic disease evolution. The recently identified irisin, was shown to induce brain-derived neurotrophic factor (BDNF) production in several brain areas. BDNF assumes significant role in gating light's influence in the retinohypothalamic synapse, by having a permissive effect on glutamate signal transduction underlying photic entrainment. Conclusions: Here we provide theoretical evidence to support the hypothesis that irisin may facilitate photic entrainment of the SCN, via BDNF. By this irisin opens up possible pathways for peripheral non-photic entrainment signals to exert influence on the master clock that is otherwise resistant to these. Furthermore, we suggest that intertwining processes of circadian, redox, inflammatory, and myokine systems lay underneath the diseasome of physical inactivity.
Collapse
|
31
|
Bauer U, Späth F, Düll F, Bachmann P, Steinhauer J, Steinrück HP, Papp C. Reactivity of CO and C 2
H 4
on Bimetallic Pt x
Ag 1-x
/Pt(111) Surface Alloys Investigated by High-Resolution X-ray Photoelectron Spectroscopy. Chemphyschem 2018. [DOI: 10.1002/cphc.201800456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Rónavári A, Igaz N, Gopisetty MK, Szerencsés B, Kovács D, Papp C, Vágvölgyi C, Boros IM, Kónya Z, Kiricsi M, Pfeiffer I. Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes. Int J Nanomedicine 2018; 13:695-703. [PMID: 29440895 PMCID: PMC5798539 DOI: 10.2147/ijn.s152010] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Epidemiologic observations indicate that the number of systemic fungal infections has increased significantly during the past decades, however in human mycosis, mainly cutaneous infections predominate, generating major public health concerns and providing much of the impetus for current attempts to develop novel and efficient agents against cutaneous mycosis causing species. Innovative, environmentally benign and economic nanotechnology-based approaches have recently emerged utilizing principally biological sources to produce nano-sized structures with unique antimicrobial properties. In line with this, our aim was to generate silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) by biological synthesis and to study the effect of the obtained nanoparticles on cutaneous mycosis causing fungi and on human keratinocytes. Methods Cell-free extract of the red yeast Phaffia rhodozyma proved to be suitable for nanoparticle preparation and the generated AgNPs and AuNPs were characterized by transmission electron microscopy, dynamic light scattering and X-ray powder diffraction. Results Antifungal studies demonstrated that the biosynthesized silver particles were able to inhibit the growth of several opportunistic Candida or Cryptococcus species and were highly potent against filamentous Microsporum and Trichophyton dermatophytes. Among the tested species only Cryptococcus neoformans was susceptible to both AgNPs and AuNPs. Neither AgNPs nor AuNPs exerted toxicity on human keratinocytes. Conclusion Our results emphasize the therapeutic potential of such biosynthesized nanoparticles, since their biocompatibility to skin cells and their outstanding antifungal performance can be exploited for topical treatment and prophylaxis of superficial cutaneous mycosis.
Collapse
|
33
|
Tóth R, Cabral V, Thuer E, Bohner F, Németh T, Papp C, Nimrichter L, Molnár G, Vágvölgyi C, Gabaldón T, Nosanchuk JD, Gácser A. Investigation of Candida parapsilosis virulence regulatory factors during host-pathogen interaction. Sci Rep 2018; 8:1346. [PMID: 29358719 PMCID: PMC5777994 DOI: 10.1038/s41598-018-19453-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023] Open
Abstract
Invasive candidiasis is among the most life-threatening infections in patients in intensive care units. Although Candida albicans is the leading cause of candidaemia, the incidence of Candida parapsilosis infections is also rising, particularly among the neonates. Due to differences in their biology, these species employ different antifungal resistance and virulence mechanisms and also induce dissimilar immune responses. Previously, it has been suggested that core virulence effecting transcription regulators could be attractive ligands for future antifungal drugs. Although the virulence regulatory mechanisms of C. albicans are well studied, less is known about similar mechanisms in C. parapsilosis. In order to search for potential targets for future antifungal drugs against this species, we analyzed the fungal transcriptome during host-pathogen interaction using an in vitro infection model. Selected genes with high expression levels were further examined through their respective null mutant strains, under conditions that mimic the host environment or influence pathogenicity. As a result, we identified several mutants with relevant pathogenicity affecting phenotypes. During the study we highlight three potentially tractable signaling regulators that influence C. parapsilosis pathogenicity in distinct mechanisms. During infection, CPAR2_100540 is responsible for nutrient acquisition, CPAR2_200390 for cell wall assembly and morphology switching and CPAR2_303700 for fungal viability.
Collapse
|
34
|
Szilasi ME, Pak K, Kardos L, Varga VE, Seres I, Mikaczo A, Fodor A, Szilasi M, Tajti G, Papp C, Gesztelyi R, Zsuga J. The Alteration of Irisin-Brain-Derived Neurotrophic Factor Axis Parallels Severity of Distress Disorder in Bronchial Asthma Patients. Front Neurosci 2017; 11:653. [PMID: 29217995 PMCID: PMC5703837 DOI: 10.3389/fnins.2017.00653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/09/2017] [Indexed: 01/27/2023] Open
Abstract
Distress disorder (a collective term for generalized anxiety disorder and major depressive disorder) is a well-known co-morbidity of bronchial asthma. The irisin-brain-derived neurotrophic factor (BDNF) axis is a pathway that influences several neurobehavioral mechanisms involved in the pathogenesis of distress disorder. Thus, the aim of the present study was to quantify the serum irisin and BDNF concentrations in order to investigate the possible link between the irisin/BDNF axis and distress disorder in an asthma patient cohort. Data of 167 therapy-controlled asthma patients were analyzed. Demographic, anthropometric, and anamnestic data were collected, routine laboratory parameters supplemented with serum irisin and BDNF levels were determined, pulmonary function test was performed using whole-body plethysmography, and quality of life was quantified by means of the St. George's Respiratory Questionnaire (SGRQ). Correlation analysis as well as simple and multiple linear regression were used to assess the relationship between the irisin level and the Impacts score of SGRQ, which latter is indicative of the presence and severity of distress disorder. We have found a significant, positive linear relationship between the Impacts score and the reciprocal of irisin level. This association was stronger in patients whose BDNF level was higher, and it was weaker (and statistically non-significant) in patients whose BDNF level was lower. Our results indicate that higher serum irisin level together with higher serum BDNF level are associated with milder (or no) distress disorder. This finding suggests that alteration of the irisin/BDNF axis influences the presence and severity of distress disorder in asthma patients.
Collapse
|
35
|
Papp C, Pak K, Erdei T, Juhasz B, Seres I, Szentpéteri A, Kardos L, Szilasi M, Gesztelyi R, Zsuga J. Alteration of the irisin-brain-derived neurotrophic factor axis contributes to disturbance of mood in COPD patients. Int J Chron Obstruct Pulmon Dis 2017; 12:2023-2033. [PMID: 28744117 PMCID: PMC5511021 DOI: 10.2147/copd.s135701] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
COPD is accompanied by limited physical activity, worse quality of life, and increased prevalence of depression. A possible link between COPD and depression may be irisin, a myokine, expression of which in the skeletal muscle and brain positively correlates with physical activity. Irisin enhances the synthesis of brain-derived neurotrophic factor (BDNF), a neurotrophin involved in reward-related processes. Thus, we hypothesized that mood disturbances accompanying COPD are reflected by the changes in the irisin–BDNF axis. Case history, routine laboratory parameters, serum irisin and BDNF levels, pulmonary function, and disease-specific quality of life, measured by St George’s Respiratory Questionnaire (SGRQ), were determined in a cohort of COPD patients (n=74). Simple and then multiple linear regression were used to evaluate the data. We found that mood disturbances are associated with lower serum irisin levels (SGRQ’s Impacts score and reciprocal of irisin showed a strong positive association; β: 419.97; 95% confidence interval [CI]: 204.31, 635.63; P<0.001). This association was even stronger among patients in the lower 50% of BDNF levels (β: 434.11; 95% CI: 166.17, 702.05; P=0.002), while it became weaker for patients in the higher 50% of BDNF concentrations (β: 373.49; 95% CI: −74.91, 821.88; P=0.1). These results suggest that irisin exerts beneficial effect on mood in COPD patients, possibly by inducing the expression of BDNF in brain areas associated with reward-related processes involved in by depression. Future interventional studies targeting the irisin–BDNF axis (eg, endurance training) are needed to further support this notion.
Collapse
|
36
|
Papp C, Romano-Miller M, Descalzo A, Michelin S, Molinari A, Rossini A, Plotkin C, Bodino G, Esperanza G, Di Giorgio M, Touzet R. RESULTS OF RELID STUDY 2014-BUENOS AIRES, ARGENTINA RETROSPECTIVE EVALUATION OF LENS INJURIES AND DOSE. RADIATION PROTECTION DOSIMETRY 2017; 173:212-217. [PMID: 27885097 DOI: 10.1093/rpd/ncw339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
High levels of scatter radiation in catheterization laboratories may lead to posterior subcapsular opacities in the lens of the staff. The international Retrospective Evaluation of Lens Injuries and Dose (RELID) was performed in Argentina for the first time in 2010 in the context of the congress of the Latin American Society of Interventional Cardiology (SOLACI) and recently, in 2014, was carried out for the second time (SOLACI-CACI 2014). The 2014 study included 115 participants: interventional cardiologists, technicians and nurses. Posterior subcapsular lens changes typical of ionizing radiation exposure were found in 91.5% of interventional cardiologists, in 77% of technicians and in 100% of nurses, according to the Merriam-Focht scale. This RELID study (Argentina 2014) has particular importance since it allowed the follow-up of 10 professionals evaluated in 2010. The results obtained in the study population highlight the importance of the availability and proper use of the elements of radiation protection, as well as staff training.
Collapse
|
37
|
Tajti G, Gesztelyi R, Pak K, Papp C, Keki S, Szilasi ME, Mikaczo A, Fodor A, Szilasi M, Zsuga J. Positive correlation of airway resistance and serum asymmetric dimethylarginine level in COPD patients with systemic markers of low-grade inflammation. Int J Chron Obstruct Pulmon Dis 2017; 12:873-884. [PMID: 28352168 PMCID: PMC5358999 DOI: 10.2147/copd.s127373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The major feature of COPD is a progressive airflow limitation caused by chronic airway inflammation and consequent airway remodeling. Modified arginase and nitric oxide synthase (NOS) pathways are presumed to contribute to the inflammation and fibrosis. Asymmetric dimethylarginine (ADMA) may shunt L-arginine from the NOS pathway to the arginase one by uncoupling and competitive inhibition of NOS and by enhancing arginase activity. To attest the interplay of these pathways, the relationship between ADMA and airflow limitation, described by airway resistance (Raw), was investigated in a cohort of COPD patients. Every COPD patient willing to give consent to participate (n=74) was included. Case history, laboratory parameters, serum arginine and ADMA, pulmonary function (whole-body plethysmography), and disease-specific quality of life (St George’s Respiratory Questionnaire) were determined. Multiple linear regression was used to identify independent determinants of Raw. The final multiple model was stratified based on symptom control. The log Raw showed significant positive correlation with log ADMA in the whole sample (Pearson’s correlation coefficient: 0.25, P=0.03). This association remained significant after adjusting for confounders in the whole data set (β: 0.42; confidence interval [CI]: 0.06, 0.77; P=0.022) and in the worse-controlled stratum (β: 0.84; CI: 0.25, 1.43; P=0.007). Percent predicted value of forced expiratory flow between 25% and 75% of forced vital capacity showed that significant negative, elevated C-reactive protein exhibited significant positive relationship with Raw in the final model. Positive correlation of Raw with ADMA in COPD patients showing evidence of a systemic low-grade inflammation implies that ADMA contributes to the progression of COPD, probably by shunting L-arginine from the NOS pathway to the arginase one.
Collapse
|
38
|
Zsuga J, Biro K, Tajti G, Szilasi ME, Papp C, Juhasz B, Gesztelyi R. 'Proactive' use of cue-context congruence for building reinforcement learning's reward function. BMC Neurosci 2016; 17:70. [PMID: 27793098 PMCID: PMC5086043 DOI: 10.1186/s12868-016-0302-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 10/14/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Reinforcement learning is a fundamental form of learning that may be formalized using the Bellman equation. Accordingly an agent determines the state value as the sum of immediate reward and of the discounted value of future states. Thus the value of state is determined by agent related attributes (action set, policy, discount factor) and the agent's knowledge of the environment embodied by the reward function and hidden environmental factors given by the transition probability. The central objective of reinforcement learning is to solve these two functions outside the agent's control either using, or not using a model. RESULTS In the present paper, using the proactive model of reinforcement learning we offer insight on how the brain creates simplified representations of the environment, and how these representations are organized to support the identification of relevant stimuli and action. Furthermore, we identify neurobiological correlates of our model by suggesting that the reward and policy functions, attributes of the Bellman equitation, are built by the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC), respectively. CONCLUSIONS Based on this we propose that the OFC assesses cue-context congruence to activate the most context frame. Furthermore given the bidirectional neuroanatomical link between the OFC and model-free structures, we suggest that model-based input is incorporated into the reward prediction error (RPE) signal, and conversely RPE signal may be used to update the reward-related information of context frames and the policy underlying action selection in the OFC and ACC, respectively. Furthermore clinical implications for cognitive behavioral interventions are discussed.
Collapse
|
39
|
Zsuga J, Biro K, Papp C, Tajti G, Gesztelyi R. The "proactive" model of learning: Integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept. Behav Neurosci 2016; 130:6-18. [PMID: 26795580 DOI: 10.1037/bne0000116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reinforcement learning (RL) is a powerful concept underlying forms of associative learning governed by the use of a scalar reward signal, with learning taking place if expectations are violated. RL may be assessed using model-based and model-free approaches. Model-based reinforcement learning involves the amygdala, the hippocampus, and the orbitofrontal cortex (OFC). The model-free system involves the pedunculopontine-tegmental nucleus (PPTgN), the ventral tegmental area (VTA) and the ventral striatum (VS). Based on the functional connectivity of VS, model-free and model based RL systems center on the VS that by integrating model-free signals (received as reward prediction error) and model-based reward related input computes value. Using the concept of reinforcement learning agent we propose that the VS serves as the value function component of the RL agent. Regarding the model utilized for model-based computations we turned to the proactive brain concept, which offers an ubiquitous function for the default network based on its great functional overlap with contextual associative areas. Hence, by means of the default network the brain continuously organizes its environment into context frames enabling the formulation of analogy-based association that are turned into predictions of what to expect. The OFC integrates reward-related information into context frames upon computing reward expectation by compiling stimulus-reward and context-reward information offered by the amygdala and hippocampus, respectively. Furthermore we suggest that the integration of model-based expectations regarding reward into the value signal is further supported by the efferent of the OFC that reach structures canonical for model-free learning (e.g., the PPTgN, VTA, and VS).
Collapse
|
40
|
Mirolovics Á, Papp C, Zsuga J, Bereczki D. [THE IMPORTANCE OF ANTICOAGULANT THERAPY IN PATIENTS WITH ARTIAL FIBRILLATION IN STROKE PREVENTION--SUMMARY OF INTERNATIONAL DATA AND NOVEL THERAPEUTIC MODALITIES]. IDEGGYOGYASZATI SZEMLE 2016; 69:76-87. [PMID: 27188000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The most common cardiogenic cause of ischaemic stroke is atrial fibrillation which increases the probability of stroke five-fold and doubles case fatality. Based on international data the incidence of atrial fibrillation is approx. 2% however this rapidly increases with age. The necessity of using oral anticoagulants in the prevention of non-valvular atrial fibrillation related stroke is decided based on estimated stroke risk. The CHADS2 and the more predictive CHA2DS2-VASc scales are used for this purpose while the bleeding risk of patients treated with anticoagulant may be estimated by the HAS-BLED scoring scale. For decades oral anticoagulation meant using vitamin-K antagonists. Based on international data we can see that rate of anticoagulation is unacceptably low, furthermore most of the anticoagulated patients aren't within the therapeutic range of INR (INR: 2-3). A lot of disadvantages of vitamin-K antagonists are known (e.g. food-drug interaction, need for regular coagulation monitoring, increased risk of bleeding), therefore compounds with new therapeutic target have been developed. The novel oral anticoagulants (NOAC) can be divided in two major subgroups: direct thrombin inhibitors (dabigatran etexilate) and Xa-factor inhibitors (rivaroxaban, apixaban, edoxaban). These products are administered in fix doses, they less frequently interact with other medications or food, and regular coagulation monitoring is not needed when using these drugs. Moreover several studies have shown that they are at least as effective in the prevention of ischaemic stroke than the vitamin-K antagonists, with no more haemorrhagic complications.
Collapse
|
41
|
Zsuga J, Tajti G, Papp C, Juhasz B, Gesztelyi R. FNDC5/irisin, a molecular target for boosting reward-related learning and motivation. Med Hypotheses 2016; 90:23-8. [PMID: 27063080 DOI: 10.1016/j.mehy.2016.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 01/10/2023]
Abstract
Interventions focusing on the prevention and treatment of chronic non-communicable diseases are on rise. In the current article, we propose that dysfunction of the mesocortico-limbic reward system contributes to the emergence of the WHO-identified risk behaviors (tobacco use, unhealthy diet, physical inactivity and harmful use of alcohol), behaviors that underlie the evolution of major non-communicable diseases (e.g. cardiovascular diseases, cancer, diabetes and chronic respiratory diseases). Given that dopaminergic neurons of the mesocortico-limbic system are tightly associated with reward-related processes and motivation, their dysfunction may fundamentally influence behavior. While nicotine and alcohol alter dopamine neuron function by influencing some receptors, mesocortico-limbic system dysfunction was associated with elevation of metabolic set-point leading to hedonic over-eating. Although there is some empirical evidence, precise molecular mechanism for linking physical inactivity and mesocortico-limbic dysfunction per se seems to be missing; identification of which may contribute to higher success rates for interventions targeting lifestyle changes pertaining to physical activity. In the current article, we compile evidence in support of a link between exercise and the mesocortico-limbic system by elucidating interactions on the axis of muscle - irisin - brain derived neurotrophic factor (BDNF) - and dopaminergic function of the midbrain. Irisin is a contraction-regulated myokine formed primarily in skeletal muscle but also in the brain. Irisin stirred considerable interest, when its ability to induce browning of white adipose tissue parallel to increasing thermogenesis was discovered. Furthermore, it may also play a role in the regulation of behavior given it readily enters the central nervous system, where it induces BDNF expression in several brain areas linked to reward processing, e.g. the ventral tegmental area and the hippocampus. BDNF is a neurotropic factor that increases neuronal dopamine content, modulates dopamine release relevant for neuronal plasticity and increased neuronal survival as well as learning and memory. Further linking BDNF to dopaminergic function is BDNF's ability to activate tropomyosin-related kinase B receptor that shares signalization with presynaptic dopamine-3 receptors in the ventral tegmental area. Summarizing, we propose that the skeletal muscle derived irisin may be the link between physical activity and reward-related processes and motivation. Moreover alteration of this axis may contribute to sedentary lifestyle and subsequent non-communicable diseases. Preclinical and clinical experimental models to test this hypothesis are also proposed.
Collapse
|
42
|
Krick Calderón S, Grabau M, Óvári L, Kress B, Steinrück HP, Papp C. CO oxidation on Pt(111) at near ambient pressures. J Chem Phys 2016; 144:044706. [DOI: 10.1063/1.4940318] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
43
|
Varga E, Pusztai P, Óvári L, Oszkó A, Erdőhelyi A, Papp C, Steinrück HP, Kónya Z, Kiss J. Probing the interaction of Rh, Co and bimetallic Rh-Co nanoparticles with the CeO2 support: catalytic materials for alternative energy generation. Phys Chem Chem Phys 2015; 17:27154-66. [PMID: 26415514 DOI: 10.1039/c5cp03549j] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of CeO2-supported Rh, Co and bimetallic Rh-Co nanoparticles, which are active catalysts in hydrogen production via steam reforming of ethanol, a process related to renewable energy generation, was studied by X-ray diffraction (XRD), high resolution electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). Furthermore, diffuse reflectance infrared spectroscopy (DRIFTS) of adsorbed CO as a probe molecule was used to characterize the morphology of metal particles. At small loadings (0.1%), Rh is in a much dispersed state on ceria, while at higher contents (1-5%), Rh forms 2-8 nm particles. Between 473-673 K pronounced oxygen transfer from ceria to Rh is observed and at 773 K significant agglomeration of Rh occurs. On reduced ceria, XPS indicates a possible electron transfer from Rh to ceria. The formation of smaller ceria crystallites upon loading with Co was concluded from XRD and HRTEM; for 10% Co, the CeO2 particle size decreased from 27.6 to 10.7 nm. A strong dissolution of Co into ceria and a certain extent of encapsulation by ceria were deduced by XRD, XPS and LEIS. In the bimetallic system, the presence of Rh enhances the reduction of cobalt and ceria. During thermal treatments, reoxidation of Co occurs, and Rh agglomeration as well as oxygen migration from ceria to Rh are hindered in the presence of cobalt.
Collapse
|
44
|
Nagy B, Nagy RG, Lazar L, Schonleber J, Papp C, Rigo J. Detection of sex chromosome aneuploidies using quantitative fluorescent PCR in the Hungarian population. Clin Chim Acta 2015; 445:2-6. [PMID: 25791892 DOI: 10.1016/j.cca.2015.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 01/27/2023]
Abstract
BACKGROUND Aneuploidies are the most frequent chromosomal abnormalities at birth. Autosomal aneuploidies cause serious malformations like trisomy 21, trisomy 18 and trisomy 13. However sex chromosome aneuploidies are causing less severe syndromes. For the detection of these aneuploidies, the "gold standard" method is the cytogenetic analysis of fetal cells, karyograms show all numerical and structural abnormalities, but it takes 2-4 weeks to get the reports. Molecular biological methods were developed to overcome the long culture time, thus, FISH and quantitative fluorescent PCR were introduced. In this work we show our experience with a commercial kit for the detection of sex chromosome aneuploidies. METHODS We analyzed 20.173 amniotic fluid samples for the period of 2006-2013 in our department. A conventional cytogenetic analysis was performed on the samples. We checked the reliability of quantitative fluorescent PCR and DNA fragment analysis on those samples where sex chromosomal aneuploidy was diagnosed. RESULTS From the 20.173 amniotic fluid samples we found 50 samples with sex chromosome aneuploidy. There were 19 samples showing 46, XO, 17 samples with 46, XXY, 9 samples with 47, XXX and 5 samples with 47, XYY karyotypes. The applied quantitative fluorescent PCR and DNA fragment analyses method are suitable to detect all abnormal sex chromosome aneuploidies. CONCLUSIONS Quantitative fluorescent PCR is a fast and reliable method for detection of sex chromosome aneuploidies.
Collapse
|
45
|
Tóth R, Tóth A, Papp C, Jankovics F, Vágvölgyi C, Alonso MF, Bain JM, Erwig LP, Gácser A. Kinetic studies of Candida parapsilosis phagocytosis by macrophages and detection of intracellular survival mechanisms. Front Microbiol 2014; 5:633. [PMID: 25477874 PMCID: PMC4238376 DOI: 10.3389/fmicb.2014.00633] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/05/2014] [Indexed: 01/08/2023] Open
Abstract
Even though the number of Candida infections due to non-albicans species like C. parapsilosis has been increasing, little is known about their pathomechanisms. Certain aspects of C. parapsilosis and host interactions have already been investigated; however we lack information about the innate cellular responses toward this species. The aim of our project was to dissect and compare the phagocytosis of C. parapsilosis to C. albicans and to another Candida species C. glabrata by murine and human macrophages by live cell video microscopy. We broke down the phagocytic process into three stages: macrophage migration, engulfment of fungal cells and host cell killing after the uptake. Our results showed increased macrophage migration toward C. parapsilosis and we observed differences during the engulfment processes when comparing the three species. The engulfment time of C. parapsilosis was comparable to that of C. albicans regardless of the pseudohypha length and spatial orientation relative to phagocytes, while the rate of host cell killing and the overall uptake regarding C. parapsilosis showed similarities mainly with C. glabrata. Furthermore, we observed difference between human and murine phagocytes in the uptake of C. parapsilosis. UV-treatment of fungal cells had varied effects on phagocytosis dependent upon which Candida strain was used. Besides statistical analysis, live cell imaging videos showed that this species similarly to the other two also has the ability to survive in host cells via the following mechanisms: yeast replication, and pseudohypha growth inside of phagocytes, exocytosis of fungal cells and also abortion of host cell mitosis following the uptake. According to our knowledge this is the first study that provides a thorough examination of C. parapsilosis phagocytosis and reports intracellular survival mechanisms associated with this species.
Collapse
|
46
|
Ferencz Z, Erdőhelyi A, Baán K, Oszkó A, Óvári L, Kónya Z, Papp C, Steinrück HP, Kiss J. Effects of Support and Rh Additive on Co-Based Catalysts in the Ethanol Steam Reforming Reaction. ACS Catal 2014. [DOI: 10.1021/cs500045z] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
47
|
Pak K, Papp C, Galajda Z, Szerafin T, Varga B, Juhasz B, Haines D, Szentmiklosi AJ, Tosaki A, Gesztelyi R. Approximation of A1 adenosine receptor reserve appertaining to the direct negative inotropic effect of adenosine in hyperthyroid guinea pig left atria. Gen Physiol Biophys 2014; 33:177-88. [DOI: 10.4149/gpb_2013079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/16/2013] [Indexed: 11/08/2022]
|
48
|
Zhao W, Gebhardt J, Gotterbarm K, Höfert O, Gleichweit C, Papp C, Görling A, Steinrück HP. Gold intercalation of boron-doped graphene on Ni(111): XPS and DFT study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:445002. [PMID: 24056002 DOI: 10.1088/0953-8984/25/44/445002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The intercalation of a graphene layer adsorbed on a metal surface by gold or other metals is a standard procedure. While it was previously shown that pristine, i.e., undoped, and nitrogen-doped graphene sheets can be decoupled from a nickel substrate by intercalation with gold atoms in order to produce quasi-free-standing graphene, we find the gold intercalation behavior for boron-doped graphene on a Ni(111) surface to be more complex: for low boron contents (2-5%) in the graphene lattice only partial gold intercalation occurs and for higher boron contents (up to 20%) no intercalation is observed. In order to understand this different behavior, a density functional theory investigation is carried out, comparing undoped as well as substitutional nitrogen- and boron-doped graphene on Ni(111). We identify the stronger binding of the boron atoms to the nickel substrate as the factor responsible for the different intercalation behavior in the case of boron doping. However, the calculations predict that this energetic effect prevents the intercalation process only for large boron concentrations and that it can be overcome for smaller boron coverages, in line with our x-ray photoelectron spectroscopy experiments.
Collapse
|
49
|
Óvári L, Krick Calderon S, Lykhach Y, Libuda J, Erdőhelyi A, Papp C, Kiss J, Steinrück HP. Near ambient pressure XPS investigation of the interaction of ethanol with Co/CeO2(111). J Catal 2013. [DOI: 10.1016/j.jcat.2013.07.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Höfert O, Lorenz MPA, Streber R, Zhao W, Bayer A, Steinrück HP, Papp C. Adsorption and reaction of acetylene on clean and oxygen-precovered Pd(100) studied with high-resolution X-ray photoelectron spectroscopy. J Chem Phys 2013; 139:164706. [DOI: 10.1063/1.4825112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|