26
|
Yoon S, Kim M, Shin S, Woo J, Son D, Ryu D, Yoo J, Park D, Jung E. Effect of Cirsium japonicum Flower Extract on Skin Aging Induced by Glycation. Molecules 2022; 27:molecules27072093. [PMID: 35408493 PMCID: PMC9000855 DOI: 10.3390/molecules27072093] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Advanced glycation end products (AGEs) have recently been increasingly discussed as one factor of skin aging. In this study, we investigated the effects of Cirsium japonicum flower (CFE) extract on glycation in relation to skin aging and skin elasticity. Moreover, we learned the main active constituent of CFE that has effects against glycation. To demonstrate the effects of CFE on glycation, we carried out an in vitro glycation study, 3-dimensional culture, and clinical study. As a result, CFE inhibited formation of AGEs in both bovine serum albumin (BSA)/glucose glycation system and aldehyde-derived glycation system. Moreover, CFE reduced Nε-(carboxymethyl), lysine (CML), and carbonylated proteins that increased by glycation. Furthermore, CFE broke crosslinks of collagen–AGEs and inhibited the increase of matrix metalloproteinase-1 (MMP-1) gene expression by AGEs. In the 3D culture condition, CFE restored the reduction of collagen gel contraction by glycation. Moreover, apigenin was detected as the main active constituent in CFE that has anti-glycation effects. In the clinical study, we confirmed that CFE has effects on skin wrinkles and skin elasticity. Our findings suggest that CFE can be used as a cosmetic or cosmeceutical ingredient for improving skin elasticity and wrinkles. Regulation of AGEs can be an interesting target for anti-aging.
Collapse
|
27
|
Roh KB, Jang Y, Cho E, Park D, Kweon DH, Jung E. Chlorogenic Acid Isomers Isolated from Artemisia lavandulaefolia Exhibit Anti-Rosacea Effects In Vitro. Biomedicines 2022; 10:biomedicines10020463. [PMID: 35203672 PMCID: PMC8962347 DOI: 10.3390/biomedicines10020463] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
Rosacea is a chronic inflammatory disease affecting facial skin. It is associated with immune and vascular dysfunction mediated via increased expression and activity of cathelicidin and kallikrein 5 (KLK5), a serine protease of stratum corneum. Therefore, KLK5 inhibitors are considered as therapeutic agents for improving the underlying pathophysiology and clinical manifestation of rosacea. Here, we isolated the active constituents of Artemisia lavandulaefolia (A. lavandulaefolia) and investigated their inhibitory effect on KLK5 protease activity. Using bioassay-guided isolation, two bioactive compounds including chlorogenic acid isomers, 3,5-dicaffeoylquinic acid (isochlorogenic acid A) (1), and 4,5-dicaffeoylquinic acid (isochlorogenic acid C) (2) were isolated from A. lavandulaefolia. In this study, we evaluated the effects of isochlorogenic acids A and C on dysregulation of vascular and immune responses to rosacea, and elucidated their molecular mechanisms of action. The two chlorogenic acid isomers inhibit KLK5 protease activity, leading to reduced conversion of inactive cathelicidin into active LL-37. This inhibition of LL-37 production by isochlorogenic acids A and C reveals the efficacy of suppressing the expression of inflammatory mediators induced by LL-37 in immune cells such as macrophages and mast cells. In addition, both isomers of chlorogenic acid directly inhibited the proliferation and migration of vascular endothelial cells induced by LL-37.
Collapse
|
28
|
Kim Y, Ji H, Cho E, Park NH, Hwang K, Park W, Lee KS, Park D, Jung E. nc886, a Non-Coding RNA, Is a New Biomarker and Epigenetic Mediator of Cellular Senescence in Fibroblasts. Int J Mol Sci 2021; 22:ijms222413673. [PMID: 34948464 PMCID: PMC8705676 DOI: 10.3390/ijms222413673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 12/01/2022] Open
Abstract
Functional studies of organisms and human models have revealed that epigenetic changes can significantly impact the process of aging. Non-coding RNA (ncRNA), one of epigenetic regulators, plays an important role in modifying the expression of mRNAs and their proteins. It can mediate the phenotype of cells. It has been reported that nc886 (=vtRNA2-1 or pre-miR-886), a long ncRNA, can suppress tumor formation and photo-damages of keratinocytes caused by UVB. The aim of this study was to determine the role of nc886 in replicative senescence of fibroblasts and determine whether substances capable of controlling nc886 expression could regulate cellular senescence. In replicative senescence fibroblasts, nc886 expression was decreased while methylated nc886 was increased. There were changes of senescence biomarkers including SA-β-gal activity and expression of p16INK4A and p21Waf1/Cip1 in senescent cells. These findings indicate that the decrease of nc886 associated with aging is related to cellular senescence of fibroblasts and that increasing nc886 expression has potential to suppress cellular senescence. AbsoluTea Concentrate 2.0 (ATC) increased nc886 expression and ameliorated cellular senescence of fibroblasts by inhibiting age-related biomarkers. These results indicate that nc886 has potential as a new target for anti-aging and that ATC can be a potent epigenetic anti-aging ingredient.
Collapse
|
29
|
Woo J, Shin S, Cho E, Ryu D, Garandeau D, Chajra H, Fréchet M, Park D, Jung E. Senotherapeutic-like effect of Silybum marianum flower extract revealed on human skin cells. PLoS One 2021; 16:e0260545. [PMID: 34914725 PMCID: PMC8675675 DOI: 10.1371/journal.pone.0260545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
Cellular senescence causes irreversible growth arrest of cells. Prolonged accumulation of senescent cells in tissues leads to increased detrimental effects due to senescence associated secretory phenotype (SASP). Recent findings suggest that elimination of senescent cells has a beneficial effect on organismal aging and lifespan. In this study, using a validated replicative senescent human dermal fibroblasts (HDFs) model, we showed that elimination of senescent cells is possible through the activation of an apoptotic mechanism. We have shown in this replicative senescence model, that cell senescence is associated with DNA damage and cell cycle arrest (p21, p53 markers). We have shown that Silybum marianum flower extract (SMFE) is a safe and selective senolytic agent targeting only senescent cells. The elimination of the cells is induced through the activation of apoptotic pathway confirmed by annexin V/propidium iodide and caspase-3/PARP staining. Moreover, SMFE suppresses the expression of SASP factors such as IL-6 and MMP-1 in senescent HDFs. In a co-culture model of senescent and young fibroblasts, we demonstrated that senescent cells impaired the proliferative capacities of young cells. Interestingly, when the co-culture is treated with SMFE, the cell proliferation rate of young cells is increased due to the decrease of the senescent burden. Moreover, we demonstrated in vitro that senescent fibroblasts trigger senescent process in normal keratinocytes through a paracrine effect. Indeed, the conditioned medium of senescent HDFs treated with SMFE reduced the level of senescence-associated beta-galactosidase (SA-β-Gal), p16INK4A and SASP factors in keratinocytes compared with CM of senescent HDFs. These results indicate that SMFE can prevent premature aging due to senescence and even reprograms aged skin. Indeed, thanks to its senolytic and senomorphic properties SMFE is a candidate for anti-senescence strategies.
Collapse
|
30
|
Kim M, Shin S, Ryu D, Cho E, Yoo J, Park D, Jung E. Evaluating the Sun Protection Factor of Cosmetic Formulations Containing Afzelin. Chem Pharm Bull (Tokyo) 2021; 69:1039-1044. [PMID: 34456215 DOI: 10.1248/cpb.c21-00398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to UV radiation damages the skin and increases the risk of skin cancer. Sunscreen is used to protect the skin from the harmful effects of UV radiation. However, the chemical UV filters used in sunscreen can show toxicity and cause allergic reactions. A safe sunscreen that includes a lower content of chemical UV filters and exerts an excellent effect on UV protection needs to be developed. The objective of this study was to investigate whether the addition of afzelin to sunscreen could improve the sun protection factor (SPF). A synergistic effect between afzelin and organic sunscreen agents including padimate O and oxybenzone was confirmed. Interestingly, 100% in vitro SPF-boosting was observed when afzelin (0.05%) was applied with a standard SPF formulation containing organic sunscreens while afzelin alone had no contribution to the SPF. In vivo SPF analysis of the standard SPF formulation showed an SPF value of 13.3 that increased to 20.1 when supplemented with afzelin (0.05%). Additionally, afzelin showed no skin irritation in a human trial. These results suggest that afzelin is useful as a natural additive in sunscreen formulations and provides an SPF-boosting effect. Afzelin supplementation to the formulation showed the potential to reduce the use of synthetic photoprotectors, which could minimize the risk of synthetic agent toxicity.
Collapse
|
31
|
Kim M, Jeon K, Shin S, Yoon S, Kim H, Kang HY, Ryu D, Park D, Jung E. Melanogenesis-promoting effect of Cirsium japonicum flower extract in vitro and ex vivo. Int J Cosmet Sci 2021; 43:703-714. [PMID: 34674286 DOI: 10.1111/ics.12746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE In this study, we examined the effect of C. japonicum flower extract (CFE) on melanogenesis and its mechanism in vitro and ex vivo. METHODS The effect of CFE on melanogenesis was investigated with lightly (HEMn-LP) and moderately (HEMn-MP) pigmented normal human melanocytes, reconstituted three-dimensional skin (3D skin) model and ex vivo human hair follicles. The melanogenesis-inducing effect of CFE was evaluated using melanin content and intracellular tyrosinase activity assay. The amount and type of eumelanin and pheomelanin were analysed by using HPLC method. The mechanism involved in the effect of CFE on hyperpigmentation was explored by cyclic adenosine monophosphate (cAMP) immunoassay and western blot analysis for tyrosinase, microphthalmia-associated transcription factor (MITF) and phosphorylated CRE-binding protein (pCREB) expression. The degree of pigmentation in 3D skin and L-values were measured using a CR-300 chroma meter. The amount of dissolved melanin was measured using a spectrophotometer. The content of melanin in the hair follicles was evaluated by Fontana Masson staining. RESULTS C. japonicum flower extract significantly increased the melanin content and cellular tyrosinase activity in both HEMn-LP and HEMn-MP cells. The markers of pheomelanin and eumelanin in HEMn-LP and HEMn-MP were also increased by CFE. We observed that CFE treatment on melanocytes increased intracellular cAMP with inducing pCREB and up-regulating the protein levels of TYR and MITF. Furthermore, CFE considerably increased the melanin content in a 3D skin model and ex vivo human hair follicles. CONCLUSIONS These results suggest that CFE exerts hyperpigmentation activity through cAMP signalling in human melanocytes that it can improve follicular depigmentation and vitiligo by stimulating the melanin synthesis.
Collapse
|
32
|
Ratliff M, Schlieper-Scherf S, Hausmann D, Jung E, Maier E, Ratliff TM, Etminan N, Winkler F. P13.12 Effect of tumor treating fields on tumor microtubes in glioma. Neuro Oncol 2021. [DOI: 10.1093/neuonc/noab180.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
BACKGROUND
Tumor microtubes (TMs) are ultralong membrane protrusions of tumor cells in astrocytic gliomas, including glioblastomas. TMs are used as routes for brain invasion and for cells to interconnect over long distances resulting in a functional network that allows multicellular communication. This network mediates resistance against the cytotoxicity of radiation and chemotherapy. One explanation for TM network protection is a better homeostasis of calcium ions that would otherwise increase to toxic intracellular levels in response to these therapies.
Our working hypothesis is that interfering with the integrity of the glioblastoma cell network is key to a potential breakthrough in glioma therapy. Many cellular structures are polarized and composed of charged elements and are thus potential subjects to electrical forces; this might also influence the complex intercellular calcium waves (ICWs) that are characteristic for glioma networks. We were therefore interested in the effect of TTF on glioma network maintenance.
MATERIAL AND METHODS
To examine the effect of TTF on glioma TMs we have established a 2D in vitro glioma model using glioblastoma stem cells (GBSCs) grown in high-glucose medium and a 3D model using glioma tumor organoids. Both models reliably reproduce functionality and complexity of morphological features we observe in our mouse model. We analyzed the disruption of tumor network complexity and disruption of functionality by measuring intercellular calcium waves. Tumor cell death and proliferation was investigated in the 2D in vitro glioma model using the inovitroTM-System.
RESULTS
A peculiar “cricked-TM” phenotype that rarely (0.2% ±0.14) occurred under standard or control conditions was observed in TTF-treated cells (16.22% ±5.12). Cell number was reduced by 75% in two lines of GBSCs after 5 days of TTF exposure; predominantly TM-rich GBSCs (> 4 TMs) were affected. This reduction in tumor cell number corresponded with an increase in cell death (0.3% ±0.09 in untreated cells; 1.4% ±0.45 at day 5 of TTF exposure). The frequency of intercellular calcium transients, a measurement for calcium wave frequency in the glioma networks, was instantly reduced after TTF exposure to 58% ±20.42 of control levels in the primary GBSC 2D culture, and to 57.78% ±12.34 in tumor organoids derived from 3 glioblastoma patients.
CONCLUSION
This data suggests a potential effect of TTF application on tumor cell networks, at least in vitro. Interestingly, particularly those glioblastoma cells that have so far been proven to be resistant to radio- and chemotherapy appeared to be affected. We will confirm the observed effects of TTFs on tumor cell calcium signaling in our in vivo chronic cranial window mouse model. We anticipate that the results of our project will provide important insights into the underlying mechanism of TTF therapy.
Collapse
|
33
|
Weil S, Jung E, Domínguez Azorín D, Higgins J, Reckless J, Ramsden N, Keller P, Grainger D, Wick W, Winkler F. P10.02 Combined methods of a micropump system and a chronic cranial window allows tumor observation with multi photon laser scanning microscopy under continuous treatment. Neuro Oncol 2021. [DOI: 10.1093/neuonc/noab180.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
BACKGROUND
Glioblastomas are notoriously therapy resistant tumors. As opposed to other tumor entities, no major advances in therapeutic success have been made in the past decades. This has been calling for a deeper biological understanding of the tumor, its growth and resistance patterns. We have been using a xenograft glioma model, where human glioblastoma cells are implanted under chronic cranial windows and studied longitudinally over many weeks and months using multi photon laser scanning microscopy (MPLSM). To test the effect of (new) drugs, a stable and direct delivery system avoiding the blood-brain-barrier has come into our interest.
MATERIAL AND METHODS
We implanted cranial windows and fluorescently labeled human glioblastoma stem-like cells into NMRI nude mice to follow up on the tumor development in our MPLSM model. After tumor establishment, an Alzet® micropump was implanted to directly deliver agents via a catheter system continuously over 28 days directly under the cranial window onto the brain surface. Using the MPLSM technique, the continuous delivery and infusion of drugs onto the brain and into the tumor was measured over many weeks in detail using MPLSM.
RESULTS
The establishment of the combined methods allowed reliable concurrent drug delivery over 28 days bypassing the blood-brain-barrier. Individual regions and tumor cells could be measured and followed up before, and after the beginning of the treatment, as well as after the end of the pump activity. Fluorescently labelled drugs were detectable in the MPLSM and its distribution into the brain parenchyma could be quantified. After the end of the micropump activity, further MPLSM measurements offer the possibility to observe long term effects of the applied drug on the tumor.
CONCLUSION
The combination of tumor observation in the MPSLM and concurrent continuous drug delivery is a feasible and reliable method for the investigation of (novel) anti-tumor agents, especially drugs that are not blood-brain-barrier penetrant. Morphological or even functional changes of individual tumor cells can be measured under and after treatment. These techniques can be used to test new drugs targeting the tumor, its tumor microtubes and tumor cells networks, and measure the effects longitudinally.
Collapse
|
34
|
Shin S, Lee J, Yoon SH, Park D, Hwang JS, Jung E. Anti-glycation activities of methyl gallate in vitro and in human explants. J Cosmet Dermatol 2021; 21:2602-2609. [PMID: 34418257 DOI: 10.1111/jocd.14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/17/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The build-up of advanced glycation end products (AGEs) is one of important factor of skin aging. Natural compounds with anti-glycation activities might have great anti-aging potential. AIMS The objective of this study was to evaluate an anti-glycation effects of methyl gallate as a potent ingredient for anti-aging. METHODS We first evaluated the AGEs inhibitory ability of methyl gallate in BSA/glucose system. Levels of Nε-CML and carbonyl contents were also measured in BSA/glucose system. To further investigate if methyl gallate could prevent glycation in full-thickness human skin explants. Glycation action was determined by the observation of the general morphology of dermis and epidermis structures and FBN-1 and of CML immunostaining. In an in-vivo study, primary irritation test was also performed to ensure the safety of methyl gallate for human skin. RESULTS It is known that methyl gallate can suppress glycation reaction between BSA and glucose. Methyl gallate also has a remarkable potential to reduce the oxidation of proteins. Furthermore, the anti-glycation activity of methyl gallate has been confirmed in a human skin ex-vivo model. Methyl gallate decreased the expression of CML but stimulated the expression of FBN-1 compared with MGO treatment. In an in-vivo study, methyl gallate (0.1%) did not cause any skin irritation, suggesting that methyl gallate could be used as an active ingredient in cosmetics. CONCLUSION Our results showed that methyl gallate could protect against glucose-mediated glycation in vitro. Furthermore, methyl gallate significantly prevented glycation in living human skin explants. Due to these beneficial effects, methyl gallate can be used to prevent or manage AGE-mediated skin aging.
Collapse
|
35
|
Xin Y, Roh K, Cho E, Park D, Whang W, Jung E. Isookanin Inhibits PGE 2-Mediated Angiogenesis by Inducing Cell Arrest through Inhibiting the Phosphorylation of ERK1/2 and CREB in HMEC-1 Cells. Int J Mol Sci 2021; 22:ijms22126466. [PMID: 34208772 PMCID: PMC8234715 DOI: 10.3390/ijms22126466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Inflammation is increasingly recognized as a critical mediator of angiogenesis, and unregulated angiogenic responses often involve human diseases. The importance of regulating angiogenesis in inflammatory diseases has been demonstrated through some successful cases of anti-angiogenesis therapies in related diseases, including arthritis, but it has been reported that some synthetic types of antiangiogenic drugs have potential side effects. In recent years, the importance of finding alternative strategies for regulating angiogenesis has begun to attract the attention of researchers. Therefore, identification of natural ingredients used to prevent or treat angiogenesis-related diseases will play a greater role. Isookanin is a phenolic flavonoid presented in Bidens extract, and it has been reported that isookanin possesses some biological properties, including antioxidative and anti-inflammatory effects, anti-diabetic properties, and an ability to inhibit α-amylase. However, its antiangiogenic effects and mechanism thereof have not been studied yet. In this study, our results indicate that isookanin has an effective inhibitory effect on the angiogenic properties of microvascular endothelial cells. Isookanin shows inhibitory effects in multiple stages of PGE2-induced angiogenesis, including the growth, proliferation, migration, and tube formation of microvascular endothelial cells. In addition, isookanin induces cell cycle arrest in S phase, which is also the reason for subsequent inhibition of cell proliferation. The mechanism of inhibiting angiogenesis by isookanin is related to the inhibition of PGE2-mediated ERK1/2 and CREB phosphorylation. These findings make isookanin a potential candidate for the treatment of angiogenesis-related diseases.
Collapse
|
36
|
Choi H, Kim JY, Lee KH, Kim JS, Lee JY, Choi EK, Seong HJ, Kim G, Park H, Jung E, Hong SH, Kronbichler A, Eisenhut M, Koyanagi A, Jacob L, Yon DK, Lee SW, Kim MS, Kostev K, Shin JI, Yang JW, Smith L. Omega-3 fatty acids supplementation on major cardiovascular outcomes: an umbrella review of meta-analyses of observational studies and randomized controlled trials. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2021; 25:2079-2092. [PMID: 33660821 DOI: 10.26355/eurrev_202102_25113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Omega-3 fatty acids are commonly used as a lipid-lowering agent or dietary supplement for the purpose of prevention of cardiovascular diseases. However, even large-scale clinical trials have not shown significant results demonstrating clear clinical benefits in cardiovascular diseases. Thus, this umbrella review aims to summarize and evaluate the evidence of clinical effects of omega-3 fatty acids supplementation on cardiovascular outcomes through comprehensive analyses of previous randomized controlled trials (RCTs) or observational cohort studies. MATERIALS AND METHODS We conducted relevant publication search in PubMed, Embase, and Cochrane Database of Systematic Reviews. We retrieved and analyzed 3,298 articles published until August 28th, 2019. RESULTS We identified 29 relevant articles and analyzed 83 meta-analyses of RCTs or cohort studies therefrom. As a result, we identified 12 cardiovascular outcomes that are related to omega-3 fatty acids supplementation. Among them, total mortality from major cardiovascular causes (RR 0.92, 95% CI 0.86 to 0.98) had significant inverse associations, and moreover, statistical significances were maintained even in subgroup analysis of large-scale RCTs including more than 1,000 patients (RR 0.94, 95% CI 0.88 to 0.99). CONCLUSIONS Our umbrella review study shows that omega-3 fatty acids supplementation have a clinical benefit in reducing mortality from cardiovascular causes. However, many studies still have shown conflicting results, and therefore, further studies will be needed to verify the clinical benefit of omega-3 supplementation.
Collapse
|
37
|
Xin YJ, Choi S, Roh KB, Cho E, Ji H, Weon JB, Park D, Whang WK, Jung E. Anti-Inflammatory Activity and Mechanism of Isookanin, Isolated by Bioassay-Guided Fractionation from Bidens pilosa L. Molecules 2021; 26:molecules26020255. [PMID: 33419109 PMCID: PMC7825412 DOI: 10.3390/molecules26020255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 02/02/2023] Open
Abstract
Bidens pilosa L. (Asteraceae) has been used historically in traditional Asian medicine and is known to have a variety of biological effects. However, the specific active compounds responsible for the individual pharmacological effects of Bidens pilosa L. (B. pilosa) extract have not yet been made clear. This study aimed to investigate the anti-inflammatory phytochemicals obtained from B. pilosa. We isolated a flavonoids-type phytochemical, isookanin, from B. pilosa through bioassay-guided fractionation based on its capacity to inhibit inflammation. Some of isookanin’s biological properties have been reported; however, the anti-inflammatory mechanism of isookanin has not yet been studied. In the present study, we evaluated the anti-inflammatory activities of isookanin using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We have shown that isookanin reduces the production of proinflammatory mediators (nitric oxide, prostaglandin E2) by inhibiting the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated macrophages. Isookanin also inhibited the expression of activator protein 1 (AP-1) and downregulated the LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-jun NH2-terminal kinase (JNK) in the MAPK signaling pathway. Additionally, isookanin inhibited proinflammatory cytokines (tumor necrosis factor-a (TNF-α), interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β)) in LPS-induced THP-1 cells. These results demonstrate that isookanin could be a potential therapeutic candidate for inflammatory disease.
Collapse
|
38
|
Woo H, Kim H, Shin S, Shin JH, Ryu D, Park D, Jung E. Rhus semialata M. extract ameliorate para-phenylenediamine-induced toxicity in keratinocytes. Toxicol Rep 2020; 8:96-105. [PMID: 33437652 PMCID: PMC7786012 DOI: 10.1016/j.toxrep.2020.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/15/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
para-Phenylediamine (PPD), a major component of hair dyeing ingredients, can induce allergenic sensitization and exert mutagenic, tumorigenic and cytotoxic effect. In this study, we determined the cytotoxic effect of PPD on human keratinocytes and evaluated the protective effect of Rhus semialata M. extracts (RSE) on PPD induced cytotoxicity for the first time. We observed that RSE is a strong inhibitory agent against PPD-induced toxicity in human keratinocytes. The results indicated that RSE pretreatment significantly could suppress PPD induced cytotoxic effects, including decrease of cell viability, accumulation in subG1 phase of cells, and relocation of phosphatidylserine on keratinocytes. Also, we found that PPD caused cytotoxicity was associated with mitochondrial membrane potential loss and subsequent activation of caspase and PARP degradation. However, pretreatment of RSE showed preventive activities against PPD induced mitochondrial membrane potential loss and ROS production in keratinocytes. In conclusion, the results of present study suggest that RSE was able to protect the skin from several cytotoxic effects of PPD and could be a meaningful material in many industries using PPD.
Collapse
Key Words
- Apoptosis
- DCFH-DA, 2',7'-dichlorodihydrofluorescein diacetate
- DMEM, Dulbecco’s modified Eagle’s medium
- DMSO, Dimethyl sulfoxide
- DiOC6, 3,3'dihexyloxacarbocyanine iodide
- FBS, Fetal bovine serum
- Keratinocytes
- MTT, 3-[4,5-Dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide
- Mitochondrial damage
- PI, Propidium iodide
- PPD, para-Phenylenediamine
- ROS, Reactive oxygen species
- RSE, Rhus semialata M extracts
- Rhus semialata M
- para-Phenylenediamine
Collapse
|
39
|
Lee KS, Cho E, Weon JB, Park D, Fréchet M, Chajra H, Jung E. Inhibition of UVB-Induced Inflammation by Laminaria japonica Extract via Regulation of nc886-PKR Pathway. Nutrients 2020; 12:E1958. [PMID: 32630038 PMCID: PMC7400497 DOI: 10.3390/nu12071958] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/21/2022] Open
Abstract
Continuous exposure to ultraviolet B (UVB) can cause photodamage of the skin. This photodamage can be inhibited by the overexpression of the non-coding RNA, nc886, via the protein kinase RNA-activated (PKR) pathway. The study aims to identify how UVB inhibits nc886 expression, and it also seeks to determine whether substances that can control nc886 expression can influence UV-induced inflammation, and the mechanisms involved. The results suggest that UVB irradiation accelerates the methylation of the nc886 gene, therefore, reducing its expression. This induces the activation of the PKR, which accelerates the expression of metalloproteinase-9 (MMP-9) and cyclooxygenase (COX-2), and the production of MMP-9, prostaglandin-endoperoxide synthase (PGE2), and certain pro-inflammatory cytokines, specifically interleukin-8 (IL-8), and tumor necrosis factor- (TNF-). Conversely, in a model of nc886 overexpression, the expression and production of those inflammatory factors are inhibited. In addition, Laminaria japonica extract (LJE) protect the levels of nc886 against UVB irradiation then subsequently inhibit the production of UV-induced inflammatory factors through the PKR pathway.
Collapse
|
40
|
Hwang JS, Jeong EJ, Choi J, Lee YJ, Jung E, Kim SK, Min JK, Han TS, Kim JS. MicroRNA-1258 Inhibits the Proliferation and Migration of Human Colorectal Cancer Cells through Suppressing CKS1B Expression. Genes (Basel) 2019; 10:genes10110912. [PMID: 31717435 PMCID: PMC6896137 DOI: 10.3390/genes10110912] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence has demonstrated that increased expression of cyclin-dependent kinase regulatory subunit 1B (CKS1B) is associated with the pathogenesis of many human cancers, including colorectal cancer (CRC). However, the regulatory mechanisms underlying the expression of CKS1B in CRC are not completely understood. Here, we investigate the role played by microRNAs in the expression of CKS1B and carcinogenesis in CRC. Among the six microRNAs predicted to target CKS1B gene expression, only miR-1258 was revealed to downregulate CKS1B expression through binding to its 3’-UTR region, as ectopic miR-1258 expression suppressed CKS1B expression and vice versa. In CRC, miR-1258 expression also decreased cell proliferation and migration in vitro and tumor growth in vivo, similar to cells with silenced CKS1B expression. Considering the highly increased levels of CKS1B and decreased expression of miR-1258 in tumors from CRC patients, these findings suggest that miR-1258 may play tumor-suppressive roles by targeting CKS1B expression in CRC. However, the therapeutic significance of these findings should be evaluated in clinical settings.
Collapse
|
41
|
Choi EK, Jung E, Van Riper M, Lee YJ. Sleep problems in Korean children with Down syndrome and parental quality of life. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2019; 63:1346-1358. [PMID: 31353681 DOI: 10.1111/jir.12675] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 06/28/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Sleep problems are common among children with Down syndrome (DS), and they can have a serious impact on children with DS as well as their parents and other family members. Specific aims of this study were to evaluate parent-reported sleep problems in children with DS and to examine the relationship between the sleep behaviour of children with DS and their parents' quality of life (QOL). METHOD A cross-sectional survey was conducted in September and October of 2017. Parents of children with DS were recruited from an online self-support community for parents of children with DS in South Korea. The mean age of the parents and children with DS was 40.40 years (SD = 5.09) and 7.89 years (SD = 3.03), respectively. Children's sleep problems and parents' QOL were assessed using the Children's Sleep Habits Questionnaire and the abbreviated version of the World Health Organization Quality of Life scale, respectively. RESULTS Results revealed that 83% of the parents reported that their child with DS experienced sleep problems. Children with DS had significantly more bedtime resistance, night waking, parasomnias and sleep-disordered breathing than did typically developing children. In addition, their Children's Sleep Habits Questionnaire scores were higher than those of typically developing children. Moreover, being older, being male and having more severe developmental delays were significant risk factors for sleep problems among children with DS. Furthermore, sleep problems in children with DS negatively affected parents' QOL. CONCLUSIONS Sleep problems negatively affect children with DS as well as their parents; therefore, health care providers should be aware of these issues and help parents manage sleep problems proactively.
Collapse
|
42
|
Jung E, Domínguez Azorín D, Hausmann D, Mall M, Koch P, Wick W, Winkler F. P11.29 Development of ex vivo models for deeper insights into the biology and therapeutic targeting of tumor microtube networks in gliomas. Neuro Oncol 2019. [DOI: 10.1093/neuonc/noz126.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
BACKGROUND
The formation of multicellular networks via thin cellular protrusions named tumor microtubes (TMs) emerged as a novel mechanism of therapy resistance in malignant glioma. TMs are also involved in tumor cell invasion and growth. Within these tumor cell networks, connected tumor cells communicate via intercellular calcium waves (ICWs). Only few molecular drivers of TMs (Gap43, Ttyh1, Connexin 43) have been identified until now. Furthermore, the molecular mechanisms underlying ICWs as well as their specific biological role in glioma remains to be elucidated. A better understanding of the biology and the identification of molecular key drivers is essential for the development of drugs targeting TM formation and function.
MATERIAL AND METHODS
For this purpose, we have developed novel ex vivo models that not only provide insights into TM biology but further allow medium throughput drug screening. As classical response parameters such as the inhibition of cell growth or cytotoxicity do not necessarily correlate with effects on TM formation or function, a morphometrical approach employing laser scanning microscopy and machine-learning based image analysis tools is used. The application of fluorescent probes and genetic fluorescent reporter systems provides novel longitudinal insights into cytoskeletal dynamics, the role and exchange of organelles such as mitochondria, mechanisms of homeostasis within tumor cell networks (e.g. redox homeostasis) and ICWs in live cells. In addition to 2D glioma cell and co-culture models we have developed a fully human and mature brain organoid model. Here, complex 3D tumor cell networks corresponding to the morphology and exhibiting calcium communication patterns observed in our mouse model can be established and studied ex vivo. Furthermore, with these models not only the role of the brain microenvironment on TM formation but also direct interactions of glioma cells with neurons and glial cells as well as drug effects such as cytotoxicity on these brain cells can be investigated ex vivo.
CONCLUSION
In summary, novel tumor models enable further insights into TM biology and hence provide the basis for development of TM- and network disrupting drugs. First results of this screening opportunity will be presented.
Collapse
|
43
|
Shin S, Cho SH, Park D, Jung E. Anti‐skin aging properties of protocatechuic acid in vitro and in vivo. J Cosmet Dermatol 2019; 19:977-984. [DOI: 10.1111/jocd.13086] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/13/2019] [Accepted: 06/28/2019] [Indexed: 12/24/2022]
|
44
|
Chajra H, Garandeau D, Delluc C, Lee K, Jung E, Frechet M. 434 Novel anti-ageing function discovered in skin for the long non coding RNA nc886. J Invest Dermatol 2019. [DOI: 10.1016/j.jid.2019.03.510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Kim M, Son D, Shin S, Park D, Byun S, Jung E. Protective effects of Camellia japonica flower extract against urban air pollutants. Altern Ther Health Med 2019; 19:30. [PMID: 30691451 PMCID: PMC6350298 DOI: 10.1186/s12906-018-2405-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022]
Abstract
Background Exposure of skin to urban air pollutants is closely related to skin aging and inflammatory responses such as wrinkles formation, pigmentation spot, atopic dermatitis, and acne. Thus, a great deal of interest has been focused on the development of natural resources that can provide a protective effect to skin from pollutants. Methods The antioxidative activity of Camellia japonica flower extract (CJFE) was evaluated by 1,2-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assay, and the inhibitory effect of CJFE by urban air pollutants-induced reactive oxygen species (ROS) production was determined in cultured normal human dermal fibroblasts (NHDFs). We additionally investigated the protective effects of CJFE against urban air pollutant using in vitro and ex vivo model. Results CJFE with high phenolic concentration showed antioxidative activity on scavenging capacity of 1,2-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical cation in a concentration dependent manner. CJFE inhibited urban air pollutants-induced ROS generation, matrixmetalloproteinase-1 (MMP-1) production and a xenobiotic response element (XRE)-luciferase activity indicating the aryl hydrocarbon receptor (AhR) transactivation. In addition, CJFE showed an excellent protective activity against pollutants-induced deteriorating effect in ex vivo model. CJFE reduced the level of pollutants-induced malondialdehyde (MDA), lipid peroxidation marker, inhibited MMP-1 expression and increased collagen synthesis. It also reduced the cell numbers with pyknotic nuclei (mainly occurring in apoptosis) and detachment of dermo-epidermal junction (DEJ) induced by pollutants. Conclusions Apparently, it is proposed that CJFE can be used as a protective material against pollutant-induced skin damages. Electronic supplementary material The online version of this article (10.1186/s12906-018-2405-4) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Lee KS, Shin S, Cho E, Im WK, Jeon SH, Kim Y, Park D, Fréchet M, Chajra H, Jung E. nc886, a non-coding RNA, inhibits UVB-induced MMP-9 and COX-2 expression via the PKR pathway in human keratinocytes. Biochem Biophys Res Commun 2019; 512:647-652. [PMID: 30685091 DOI: 10.1016/j.bbrc.2019.01.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/14/2019] [Indexed: 01/30/2023]
Abstract
nc886, a long non-coding RNA (ncRNA) of 101 nucleotides in length, is known as a vault RNA or microRNA precursor. Despite the recent discovery that ncRNAs in the nucleus play a crucial role in regulating chromosomal transformation and transcription, only a few studies have focused on the function of ncRNAs in the cytoplasm, such as nc886. Several studies have investigated the function of nc886 as a suppressor of carcinogenesis and inflammation in different cancer cell types; however, its role in the skin has yet to be clearly elucidated. The two RNA binding sites for protein kinase RNA-activated (PKR) are located in the central region of the stable structure of nc886, which competes with other double-stranded RNA species. Successful binding results in decreased PKR activity. Among changes in skin cells induced by ultraviolet B (UVB) radiation, nc886 expression decreases, whereas PKR phosphorylation via mitogen-activated protein kinases (MAPKs) increases. Reduced nc886 expression leads to uncontrolled PKR activity and increases in the expression of inflammatory cytokines, matrix metalloproteinase-9 (MMP-9), type IV collagenase, and cyclooxygenase (COX-2), which ultimately accelerate inflammatory responses and skin aging. The present study investigated the regulatory mechanism associated with PKR activity and nc886-PKR binding in skin cell aging and inflammation. These results suggest a role for nc886 in controlling photoaging and inflammation in skin cells.
Collapse
|
47
|
Kang YS, Jeong EJ, Seok HJ, Kim SK, Hwang JS, Choi ML, Jo DG, Kim Y, Choi J, Lee YJ, Jung E, Min JK, Han TS, Kim JS. Cks1 regulates human hepatocellular carcinoma cell progression through osteopontin expression. Biochem Biophys Res Commun 2018; 508:275-281. [PMID: 30497779 DOI: 10.1016/j.bbrc.2018.11.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
Abstract
Precise cell cycle regulation is critical to prevent aberrant cell proliferation and cancer progression. Cks1 was reported to be an essential accessory factor for SCFSkp2, the ubiquitin ligase that targets p27Kip1 for proteasomal degradation; these actions drive mammalian cell transition from G1 to S phase. In this study, we investigated the role played by Cks1 in the growth and progression of human hepatocellular carcinoma (HCC) cells. Silencing Cks1 expression abrogated osteopontin (OPN) expression in a p27Kip1-dependent manner in Huh7 HCC cells. OPN increased the proliferation, migration and invasion of Huh7 cells. Pharmacological inhibitor studies demonstrated that ERK1/2 signaling is responsible mainly for Cks1-mediated OPN expression. Cks1 appears to regulate ERK1/2 signaling through the expression of dual-specificity phosphatase 16 (DUSP16) because both Cks1 knockdown, which leads to DUSP16 upregulation, and DUSP16 overexpression decreased ERK1/2 phosphorylation and the resulting OPN expression. The same is true for the Cks1-mediated increases in p27Kip1, suggesting that Cks1 regulates OPN expression through activating ERK1/2 signaling either by suppressing DUSP16 expression or by a p27Kip1-dependent mechanism. Cks1 and OPN expression levels were significantly higher, but DUSP16 expression levels were significantly lower in HCC tissues than in normal liver tissues. Both Cks1 and OPN expression were negatively correlated with DUSP16 expression, whereas Cks1 expression was positively correlated with OPN expression. Moreover, combined panels for the expression levels of Cks1, DUSP16 and OPN showed significant prognostic power for the risk assessment of HCC patient overall survival. In conclusion, our data propose a novel function for Cks1 as a tumor promoter through the expression of the strongly oncogenic protein OPN in HCC.
Collapse
|
48
|
Park G, Kim C, Han H, Kim J, Jung E, Kim ER, Kim KS, Lee B. Effects of a fish oil-containing lipid emulsion on serum triglyceride levels and clinical outcomes in extremely low birth weight infants. Clin Nutr 2018. [DOI: 10.1016/j.clnu.2018.06.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Kim Y, Cho JY, Oh SW, Kang M, Lee SE, Jung E, Park YS, Lee J. Globular adiponectin acts as a melanogenic signal in human epidermal melanocytes. Br J Dermatol 2018; 179:689-701. [PMID: 29485733 DOI: 10.1111/bjd.16488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Adiponectin is an adipocyte-derived cytokine that circulates as a full-length protein and a fragment containing the globular domain of adiponectin (gAd). A recent study has reported the antimelanogenic effects of full-length adiponectin. OBJECTIVES To examine the involvement of gAd in melanogenesis and its mechanisms of action. METHODS The effects of gAd on melanogenesis and its mechanisms of action were investigated in human epidermal melanocytes and reconstructed epidermis, including melanin content, cellular tyrosinase activity, cyclic adenosine monophosphate (cAMP) production and protein kinase A (PKA) activity, expression and phosphorylation of signalling molecules. RESULTS Exogenous gAd increased melanin content, and the mRNA levels of microphthalmia-associated transcription factor (MITF) and its downstream genes TRP1, but not TRP2, were increased by gAd. However, cAMP production and PKA activity were not affected by gAd. Moreover, attempts to elucidate the underlying mechanism behind the gAd-mediated effect revealed that gAd could regulate melanogenesis by upregulating MITF through phosphorylation of the cAMP response element-binding protein (CREB). In addition, upregulation of MITF was mediated by activation of adenosine monophosphate-activated protein kinase (AMPK)-p38 mitogen-activated protein kinase (MAPK) signalling. Taken together, these findings indicate that promotion of melanogenesis by gAd occurs through increased expression of MITF, which is mediated by activation of the AMPK-p38 MAPK-CREB pathway. CONCLUSIONS These findings suggest that gAd contributes to epidermal homeostasis via its effect on melanocyte biology, and products of adipose tissue could affect epidermal biology.
Collapse
|
50
|
Duckert F, Jung E, Shmerling DH. A Hitherto Undescribed Congenital Haemorrhagic Diathesis Probably Due to Fibrin Stabilizing Factor Deficiency. Thromb Haemost 2018. [DOI: 10.1055/s-0038-1654918] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
SummaryA new congenital haemorrhagic diathesis is described. It is characterized by the poor and slaw wound healing, profuse and long bleeding and by probable absence of spontaneous and joint bleeding. It is due to the deficiency of a factor which makes the fibrin clots insoluble in urea. This factor is probably the fibrin stabilizing factor of Laki and Lorand, although no proof of their identity can yet be given. The deficiency appears in both sexes and is probably an autosomal recessive disease.
Collapse
|