26
|
Pari G, Crerar MM, Nalbantoglu J, Shoubridge E, Jani A, Tsujino S, Shanske S, DiMauro S, Howell JM, Karpati G. Myophosphorylase gene transfer in McArdle's disease myoblasts in vitro. Neurology 1999; 53:1352-4. [PMID: 10522901 DOI: 10.1212/wnl.53.6.1352] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
McArdle's disease is due to a genetic deficiency of glycogen phosphorylase and results in a lack of glucose mobilization from glycogen during anaerobic exercise. A genetic defect in Merino sheep produces a similar picture. We constructed a first-generation adenoviral recombinant containing the full-length human phosphorylase cDNA under the control of the Rous sarcoma virus promoter. Primary myoblast cultures from phosphorylase-deficient human and sheep muscle were efficiently transduced with this vector, resulting in restoration of the phosphorylase activity. A similar correction of the genetic defect in muscles of McArdle's patients in vivo appears feasible, preferably with the use of an adeno-associated viral vector.
Collapse
|
27
|
Karpati G, Li H, Nalbantoglu J. Molecular therapy for glioblastoma. CURRENT OPINION IN MOLECULAR THERAPEUTICS 1999; 1:545-52. [PMID: 11249660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Glioblastoma (GB), the relatively frequent and most malignant form of primary brain tumor, is fatal within 1 to 2 years of onset of symptoms, despite conventional therapy. Molecular therapy promises to be an effective and possibly curative treatment. Several molecular strategies have been tested, either in animal models or clinical trials. These include: prodrug activating systems, introduction of tumor suppressor or cell-cycle-related genes, inhibition of growth factors and/or their receptors, inhibition of neovascularization, immunomodulatory maneuvers, oncolytic viruses and inhibition of matrix metalloproteinases. Of special interest for the development of optimal molecular therapy of GB, is the choice of the most efficient and least toxic gene vectors (adenovirus, retrovirus, herpes simplex virus), the route of administration of the therapeutic agent (intratumoral with or without debulking and intracarotid), avoidance of collateral damage to the perineoplastic neuropil and adequate preclinical studies. The ultimate molecular therapy will probably involve the application of multiple simultaneous (combinatorial) therapeutic modalities. The safety and efficiency of these in humans can only be judged by properly controlled therapeutic trials.
Collapse
|
28
|
|
29
|
Abstract
We have previously demonstrated that patients with mitochondrial myopathies can benefit from short-term aerobic exercise training. In this study, we compared the responses to short-term aerobic training of patients with mitochondrial myopathies, patients with nonmetabolic myopathies, and sedentary normal subjects. Training consisted of 8 weeks of treadmill exercise at 70% to 85% of estimated maximum heart rate reserve. All groups showed significant improvements in estimated aerobic capacity as well as heart rate and blood lactate at submaximal exercise intensities. The increase in estimated aerobic capacity was greater in the mitochondrial myopathy patients than in the other two groups. Phosphorus magnetic resonance spectroscopy demonstrated increased oxidative capacity of muscle in patients with mitochondrial myopathies in response to this training but not in patients with other, nonmetabolic myopathies or sedentary control subjects. A self-assessed measurement of functional status (SF-36) suggested improved quality of life associated with the training. This study demonstrates that short-term aerobic training at low intensity can benefit patients with nonmetabolic myopathies but to a lesser extent than patients with mitochondrial myopathies.
Collapse
|
30
|
Figarella-Branger D, Pellissier JF, Bianco N, Karpati G. Sequence of expression of MyoD1 and various cell surface and cytoskeletal proteins in regenerating mouse muscle fibers following treatment with sodium dihydrogen phosphate. J Neurol Sci 1999; 165:106-15. [PMID: 10450794 DOI: 10.1016/s0022-510x(99)00066-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An immunohistochemical study was performed in order to evaluate the sequence of expression of various cell surface proteins [neural cell adhesion molecule (NCAM) and its polysialylated isoform, PSA NCAM, and utrophin], cytoskeletal proteins (myosin heavy chain isoforms, desmin) and the transcription factor MyoD1 in regenerating mouse muscle fibers following treatment with sodium dihydrogen phosphate. The sequence of the regeneration process with this new myotoxic agent is similar to that which can be observed with other myotoxic substances (local anaesthetics such as bupivacaine or snake venoms). The results show that NCAM, PSA NCAM and desmin were already present on the first day after injury in the presumptive myoblasts. The highest level of all of these proteins was observed on the third day. At this stage, regenerating muscle fibers also strongly and diffusely expressed myosin heavy chain isoforms and utrophin throughout their sarcolemma, whereas MyoD1 expression was observed in the regenerating myonuclei. PSA NCAM and MyoD1 had gradually disappeared from the muscle fibers by the seventh day, by which time, the expression of the other developmentally regulated proteins had also decreased. On the 21st day after injury, a few fibers still expressed NCAM but not the other proteins. This study first shows that sodium dihydrogen phosphate is a new myotoxic agent that is cheap, widely available and easy to handle. It also establishes the schedule of expression of various developmentally regulated proteins in regenerating mouse muscle fibers.
Collapse
|
31
|
Abstract
A systematic review of muscle biopsies over a 15 year period in a large neurological hospital revealed 21 cases (7% of the total of non-inflammatory myopathies) with a distinctive pattern of myopathology and a limb-girdle clinical phenotype. The muscle pathology was dominated by a large prevalence (20-90%) of trabecular or lobulated fibers in which maldistribution of intermyofibrillar mitochondria produced a lobulated pattern of oxidative enzyme activity on transverse sections. The clinical picture was characterized by adult onset, slowly progressive muscle weakness affecting mainly proximal limb musculature, although mild distal weakness was also present in 60% of the cases. The trabecular pattern of oxidative enzyme reaction reflects maldistribution of the intermyofibrillar mitochondria; this may be caused by malfunction of a putative anchoring mechanism. While trabecular fibers can occur as a nonspecific alteration of muscle fibers in many diverse myopathies, the high prevalence of trabecular fibers as the dominant pathology in trabecular fiber myopathy makes it a distinctive (though not necessarily etiologically homogeneous) clinico-pathological entity.
Collapse
|
32
|
Taivassalo T, Fu K, Johns T, Arnold D, Karpati G, Shoubridge EA. Gene shifting: a novel therapy for mitochondrial myopathy. Hum Mol Genet 1999; 8:1047-52. [PMID: 10332036 DOI: 10.1093/hmg/8.6.1047] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) are the most frequent causes of mitochondrial myopathy in adults. In the majority of cases mutant and wild-type mtDNAs coexist, a condition referred to as mtDNA heteroplasmy; however, the relative frequency of each species varies widely in different cells and tissues. Nearly complete segregation of mutant and wild-type mtDNAs has been observed in the skeletal muscle of many patients. In such patients mutant mtDNAs pre-dominate in mature myofibers but are rare or undetectable in skeletal muscle satellite cells cultured in vitro. This pattern is thought to result from positive selection for the mutant mtDNA in post-mitotic myofibers and loss of the mutant by genetic drift in satellite cells. Satellite cells are dormant myoblasts that can be stimulated to re-enter the cell cycle and fuse with existing myofibers in response to signals for muscle growth or repair. We tested whether we could normalize the mtDNA genotype in mature myofibers in a patient with mitochondrial myopathy by enhancing the incorporation of satellite cells through regeneration following injury or muscle hypertrophy, induced by either eccentric or concentric resistance exercise training. We show a remarkable increase in the ratio of wild-type to mutant mtDNAs, in the proportion of muscle fibers with normal respiratory chain activity and in muscle fiber cross-sectional area after a short period of concentric exercise training. These data show that it is possible to reverse the molecular events that led to expression of metabolic myopathy and demonstrate the effectiveness of this form of 'gene shifting' therapy.
Collapse
|
33
|
Gilbert R, Nalbantoglu J, Petrof BJ, Ebihara S, Guibinga GH, Tinsley JM, Kamen A, Massie B, Davies KE, Karpati G. Adenovirus-mediated utrophin gene transfer mitigates the dystrophic phenotype of mdx mouse muscles. Hum Gene Ther 1999; 10:1299-310. [PMID: 10365661 DOI: 10.1089/10430349950017987] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Utrophin is a close homolog of dystrophin, the protein whose mutations cause Duchenne muscular dystrophy (DMD). Utrophin is present at low levels in normal and dystrophic muscle, whereas dystrophin is largely absent in DMD. In such cases, the replacement of dystrophin using a utrophin gene transfer strategy could be more advantageous because utrophin would not be a neoantigen. To establish if adenovirus (AV)-mediated utrophin gene transfer is a possible option for the treatment of DMD, an AV vector expressing a shortened version of utrophin (AdCMV-Utr) was constructed. The effect of utrophin overexpression was investigated following intramuscular injection of this AV into mdx mice, the mouse model of DMD. When the tibialis anterior (TA) muscles of 3- to 5-day-old animals were injected with 5 microl of AdCMV-Utr (7.0 x 10(11) virus/ml), an average of 32% of fibers were transduced and the transduction level remained stable for at least 60 days. The presence of utrophin restored the normal histochemical pattern of the dystrophin-associated protein complex at the cell surface and resulted in a reduction in the number of centrally nucleated fibers. The transduced fibers were largely impermeable to the tracer dye Evans blue, suggesting that utrophin protects the surface membrane from breakage. In vitro measurements of the force decline in response to high-stress eccentric contractions demonstrated that the muscles overexpressing utrophin were more resistant to mechanical stress-induced injury. Taken together, these data indicate that AV-mediated utrophin gene transfer can correct various aspects of the dystrophic phenotype. However, a progressive reduction in the number of transduced fibers was observed when the TA muscles of 30- to 45-day-old mice were injected with 25 microl of AdCMV-Utr. This reduction coincides with a humoral response to the AV and transgene, which consists of a hybrid mouse-human cDNA.
Collapse
|
34
|
Galipeau J, Li H, Paquin A, Sicilia F, Karpati G, Nalbantoglu J. Vesicular stomatitis virus G pseudotyped retrovector mediates effective in vivo suicide gene delivery in experimental brain cancer. Cancer Res 1999; 59:2384-94. [PMID: 10344748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Direct in vivo tumor-targeting with "suicide" viral vectors is limited by either inefficient gene transfer (i.e., retroviral vectors) or indiscriminate transfer of a conditionally toxic gene to surrounding nonmalignant tissue (i.e., adenoviral vectors). Retrovectors pseudotyped with the vesicular stomatitis virus G protein (VSVG) may serve as a remedy to this conundrum. These retroviral particles differ from standard murine retroviruses by their very broad tropism and the capacity to be concentrated by ultracentrifugation without loss of activity. We propose that a VSVG-typed retrovector can be used for efficient and tumor-specific herpes simplex virus thymidine kinase (TK) gene delivery in vivo. To test this hypothesis, we developed a bicistronic retroviral vector that expresses TK and green fluorescence protein (pTKiGFP). The 293GPG packaging cell line was used to generate vTKiGFP retroparticles. In cytotoxicity assays, vTKiGFP-transduced human glioma cell lines were sensitized to the cytotoxic effects of gangciclovir (GCV) 10,000-fold. Subsequently, virus was concentrated by ultracentrifugation to a titer of 2.3 x 10(10) cfu/ml. We tested the antitumor activity of vTKiGFP retroparticles in a rat C6 glioma model of brain cancer. Concentrated retrovector stock (9 microl volume) was injected stereotactically in preestablished intracerebral tumor. Subsequently, rats were treated with GCV for 10 days. Control rats (no GCV) had a mean survival of 38 days (range, 20-52 days). Sections performed on postmortem brain tissue revealed large tumors with evidence of high efficiency retrovector transfer and expression (as assessed by GFP fluorescence). Fluorescence was restricted to malignant tissue. In the experimental group (GCV treated), 8 of 12 remain alive and well >120 days after glioma implantation. In conclusion, vTKiGFP is very efficient at transducing human glioma cell lines in vitro and leads to significant GCV sensitization. Recombinant retroviral particles can be concentrated to titers that allow in vivo intratumoral delivery of large viral doses. The therapeutic efficiency of this reagent has been demonstrated in a preclinical model of brain cancer.
Collapse
|
35
|
Nalbantoglu J, Pari G, Karpati G, Holland PC. Expression of the primary coxsackie and adenovirus receptor is downregulated during skeletal muscle maturation and limits the efficacy of adenovirus-mediated gene delivery to muscle cells. Hum Gene Ther 1999; 10:1009-19. [PMID: 10223734 DOI: 10.1089/10430349950018409] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Skeletal muscle fibers are infected efficiently by adenoviral vectors only in neonatal animals. This lack of tropism for mature skeletal muscle may be partly due to inefficient binding of adenoviral particles to the cell surface. We evaluated in developing mouse muscle the expression levels of two high-affinity receptors for adenovirus, MHC class I and the coxsackie and adenovirus receptor (CAR). The moderate levels of MHC class I transcripts that were detected in quadriceps, gastrocnemius, and heart muscle did not vary between postnatal day 3 and day 60 adult tissue. A low level of CAR expression was detected on postnatal day 3 in quadriceps and gastrocnemius muscles, but CAR expression was barely detectable in adult skeletal muscle even by reverse transcriptase-polymerase chain reaction. In contrast, CAR transcripts were moderately abundant at all stages of heart muscle development. Ectopic expression of CAR in C2C12 mouse myoblast cells increased their transducibility by adenovirus at all multiplicities of infection (MOIs) tested as measured by lacZ reporter gene activity following AVCMVlacZ infection, with an 80-fold difference between CAR-expressing cells and control C2C12 cells at an MOI of 50. Primary myoblasts ectopically expressing CAR were injected into muscles of syngeneic hosts; following incorporation of the exogenous myoblasts into host myofibers, an increased transducibility of adult muscle fibers by AVCMVlacZ was observed in the host. Expression of the lacZ reporter gene in host myofibers coincided with CAR immunoreactivity. Furthermore, sarcolemmal CAR expression was markedly increased in regenerating muscle fibers of the dystrophic mdx mouse, fibers that are susceptible to adenovirus transduction. These analyses show that CAR expression by skeletal muscle correlates with its susceptibility to adenovirus transduction, and that forced CAR expression in mature myofibers dramatically increases their susceptibility to adenovirus transduction.
Collapse
|
36
|
Gramolini AO, Karpati G, Jasmin BJ. Discordant expression of utrophin and its transcript in human and mouse skeletal muscles. J Neuropathol Exp Neurol 1999; 58:235-44. [PMID: 10197815 DOI: 10.1097/00005072-199903000-00003] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In order to determine the mechanisms regulating utrophin expression in human skeletal muscle, we examined the expression and distribution of utrophin and its transcript in biopsies from normal subjects as well as from Duchenne muscular dystrophy (DMD) and polymyositis (PM) patients. We first determined by immunoblotting that in comparison to biopsies from normal subjects, utrophin levels were indeed higher in muscle samples from both DMD and PM patients as previously shown. By contrast, levels of utrophin mRNAs as determined by both RT-PCR assays and in situ hybridization, were identical in muscle samples obtained from normal subjects versus DMD and PM patients. In these experiments, we also noted that while utrophin transcripts had a clear tendency to accumulate within the postsynaptic sarcoplasm of normal human muscle fibers, the extent of synaptic accumulation was considerably less than that which we recently observed in mouse muscle fibers. The distribution of utrophin transcripts in synaptic and extrasynaptic compartments of muscle fibers obtained from DMD and PM patients was similar to that seen along muscle fibers from normal subjects. Finally, we also monitored expression of utrophin and its transcripts during regeneration of mouse muscle induced to degenerate by cardiotoxin injections. In these regenerating muscles, we observed by both immunoblotting and immunofluorescence, a large increase (4- to 7-fold) in the levels of utrophin. In agreement with our results obtained with human muscle, the increase in utrophin levels in regenerating mouse muscle was not accompanied by parallel changes in the abundance of utrophin transcripts. Taken together, these results indicate that the levels of utrophin and its transcript in muscle are discordantly regulated under certain conditions thereby highlighting the important contribution of post-transcriptional regulatory mechanisms in the control of utrophin levels in skeletal muscle fibers.
Collapse
|
37
|
Li H, Alonso-Vanegas M, Colicos MA, Jung SS, Lochmuller H, Sadikot AF, Snipes GJ, Seth P, Karpati G, Nalbantoglu J. Intracerebral adenovirus-mediated p53 tumor suppressor gene therapy for experimental human glioma. Clin Cancer Res 1999; 5:637-42. [PMID: 10100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Malignant gliomas of astrocytic origin are good candidates for gene therapy because they have proven incurable with conventional treatments. Although mutation or inactivation of the p53 tumor suppressor gene occurs at early stages in gliomas and is associated with tumor progression, many tumors including high-grade glioblastoma multiforme carry a functionally intact p53 gene. To evaluate the effectiveness of p53-based therapy in glioma cells that contain endogenous wild-type p53, a clinically relevant model of malignant human glioma was established in athymic nu/nu mice. Intracerebral, rapidly growing tumors were produced by stereotactic injection of the human U87 MG glioma cell line that had been genetically modified for tracking purposes to express the Escherichia coli lacZ gene encoding beta-galactosidase. Overexpression of the p53 gene by adenovirus-mediated delivery into the tumor mass resulted in rapid cell death with the eradication of beta-galactosidase-expressing glioma cells through apoptosis. In long-term experiments, the survival of mice treated with the p53 adenoviral recombinant was significantly longer than that of mice that had received control adenoviral recombinant. During the observation period of 1 year, a complete cure was achieved in 27% of animals after a single injection of p53 adenoviral recombinant, and 38% of the animals were tumor free in the group receiving multiple injections of p53 adenoviral recombinant into a larger tumor mass. These experiments demonstrate that overexpression of p53 in gliomas, even in the presence of endogenous functional wildtype p53, leads to efficient elimination of tumor cells. These results point to the potential therapeutic usefulness of this approach for all astrocytic brain tumors.
Collapse
|
38
|
Mezei MM, Mankodi A, Brais B, Marineau C, Thornton CA, Rouleau GA, Karpati G. Minimal expansion of the GCG repeat in the PABP2 gene does not predispose to sporadic inclusion body myositis. Neurology 1999; 52:669-70. [PMID: 10025815 DOI: 10.1212/wnl.52.3.669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
39
|
|
40
|
Argov Z, Taivassalo T, De Stefano N, Genge A, Karpati G, Arnold DL. Intracellular phosphates in inclusion body myositis--a 31P magnetic resonance spectroscopy study. Muscle Nerve 1998; 21:1523-5. [PMID: 9771678 DOI: 10.1002/(sici)1097-4598(199811)21:11<1523::aid-mus22>3.0.co;2-#] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Muscle phosphorus magnetic resonance spectroscopy was used to study oxidative metabolism at rest and during recovery from exercise in 7 patients with sporadic inclusion body myositis (s-IBM), compared with normal controls (n=8) and mitochondrial myopathies (n=20). At rest, 6/7 patients had elevated inorganic phosphates. Recovery parameters were not different from controls, in contrast with mitochondrial myopathies, who showed abnormal rest and recovery. The normal recovery suggests that mitochondrial oxidative capacity is not impaired in s-IBM.
Collapse
|
41
|
Moisset PA, Gagnon Y, Karpati G, Tremblay JP. Expression of human dystrophin following the transplantation of genetically modified mdx myoblasts. Gene Ther 1998; 5:1340-6. [PMID: 9930339 DOI: 10.1038/sj.gt.3300753] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transplantation of genetically modified autologous myoblasts has been proposed as a possible solution to avoid long-term use of immunosuppressive drugs. To determine the conditions to be used in this kind of approach for possible treatment of dystrophin deficiency, mdx myoblasts were infected at different multiplicities of infection (MOI or 0.01-1000) with an adenoviral vector containing a CMV promoter/enhancer driven 6.3 kb human dystrophin cDNA (minigene) and tested in vitro for transgene expression. In these cultures, dystrophin mRNA was found to be proportionate with increasing MOI. Primary myoblast cultures derived from transgenic mdx mice expressing beta-Gal under a muscle-specific promoter and showing high expression of the human mini-dystrophin transgene introduced by the adenoviral vector were grafted into anterior tibialis muscles of SCID mice. Ten and 24 days after transplantation, numerous muscle fibers expressing both human dystrophin and beta-Gal were detected throughout the mouse muscles by immunohistochemistry using an antibody specific for human dystrophin. The presence of the human mini-dystrophin mRNA was also detected by RT-PCR. These results demonstrate that three essential conditions in autologous myoblast transplantation can be achieved: (1) in vivo survival of at least some of the transduced myoblasts; (2) efficient fusion of these cells with the host muscle fibers; and (3) the high expression of the dystrophin transgene in situ. Furthermore, this article provides a novel RT-PCR-based technique to quantify the human dystrophin minigene expression in vitro and in vivo.
Collapse
|
42
|
Weis J, Lie DC, Ragoss U, Züchner SL, Schröder JM, Karpati G, Farruggella T, Stahl N, Yancopoulos GD, DiStefano PS. Increased expression of CNTF receptor alpha in denervated human skeletal muscle. J Neuropathol Exp Neurol 1998; 57:850-7. [PMID: 9737548 DOI: 10.1097/00005072-199809000-00006] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The functional receptor for ciliary neurotrophic factor (CNTF) is comprised of a CNTF binding entity termed CNTF receptor alpha (CNTFRalpha), and 2 signaling molecules called LIF receptor beta and gp130. CNTFRalpha can be released from the cell surface; the soluble form can confer CNTF responsiveness to cells. CNTFRalpha has recently been localized to several nonneuronal cell types including rat skeletal muscle fibers. In this study we examined the expression pattern of CNTFRalpha in normal, denervated and dystrophic human muscle. In muscle biopsies from 12 normal subjects, 16 cases of neurogenic muscular atrophy, 4 cases of Duchenne muscular dystrophy, and 4 cases of limb girdle dystrophy, CNTFRalpha mRNA levels were determined by Northern blotting. Transcript levels were significantly increased in cases of neurogenic atrophy compared to normal controls and dystrophic muscle. By nonradioactive in situ hybridization, CNTFRalpha transcripts were detected in the sarcoplasm of both normal sized and atrophic muscle fibers. In addition, soluble CNTFRalpha was elevated 4.4-fold in the urine of ALS patients compared to normal adults. These results suggest that the expression of CNTFRalpha in human skeletal muscle fibers is regulated by innervation. This regulation appears to be selective, because CNTFRalpha mRNA was not increased in dystrophic human muscle. Increased CNTFRalpha could confer higher sensitivity to CNTF during neurodegeneration or nerve fiber regeneration.
Collapse
|
43
|
Hou Y, McInnes B, Hinek A, Karpati G, Mahuran D. A Pro504 --> Ser substitution in the beta-subunit of beta-hexosaminidase A inhibits alpha-subunit hydrolysis of GM2 ganglioside, resulting in chronic Sandhoff disease. J Biol Chem 1998; 273:21386-92. [PMID: 9694901 DOI: 10.1074/jbc.273.33.21386] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GM2 gangliosidoses are caused by mutations in the genes encoding the alpha- (Tay-Sachs) or beta- (Sandhoff) subunits of heterodimeric beta-hexosaminidase A (Hex A), or the GM2 activator protein (AB variant), a substrate-specific co-factor for Hex A. Although the active site associated with the hydrolysis of GM2 ganglioside, as well as part of the binding site for the ganglioside-activator complex, is associated with the alpha-subunit, elements of the beta-subunit are also involved. Missense mutations in these genes normally result in the mutant protein being retained in the endoplasmic reticulum and degraded. The mutations associated with the B1-variant of Tay-Sachs are rare exceptions that directly affect residues in the alpha-active site. We have previously reported two sisters with chronic Sandhoff disease who were heterozygous for the common HEXB deletion allele. Cells from these patients had higher than expected levels of mature beta-protein and residual Hex A activity, approximately 20%. We now identify these patients' second mutant allele as a C1510T transition encoding a beta-Pro504 --> Ser substitution. Biochemical characterization of Hex A from both patient cells and cotransfected CHO cells demonstrated that this substitution (a) decreases the level of heterodimer transport out of the endoplasmic reticulum by approximately 45%, (b) lowers its heat stability, (c) does not affect its Km for neutral or charged artificial substrates, and (d) lowers the ratio of units of ganglioside/units of artificial substrate hydrolyzed by a factor of 3. We concluded that the beta-Pro504 --> Ser mutation directly affects the ability of Hex A to hydrolyze its natural substrate but not its artificial substrates. The effect of the mutation on ganglioside hydrolysis, combined with its effect on intracellular transport, produces chronic Sandhoff disease.
Collapse
|
44
|
Moisset PA, Skuk D, Asselin I, Goulet M, Roy B, Karpati G, Tremblay JP. Successful transplantation of genetically corrected DMD myoblasts following ex vivo transduction with the dystrophin minigene. Biochem Biophys Res Commun 1998; 247:94-9. [PMID: 9636661 DOI: 10.1006/bbrc.1998.8739] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myoblast transplantation and gene therapy are two promising therapeutical approaches for the treatment of Duchenne Muscular Dystrophy (DMD). So far, both strategies have met many hurdles, mainly because of immune reactions. In this study, we investigated a third and novel strategy based on the combination of these two basic ones, i.e., transplantation of genetically modified myoblasts. We first derived a primary culture from a muscle biopsy of a young DMD patient (3 years old). Adenoviral-mediated dystrophin gene transfer into these DMD cultures and expression of the dystrophin transgene were achieved in vitro. The transduced cultures were then transplanted the same day in immunodeficient SCID mouse muscles. Three weeks following the graft, many human dystrophin-positive fibers were observed throughout sections of the injected muscles. However, many fibers expressed human MHC antigens without expressing human dystrophin due to the low percentage of infected primary muscle cells in vitro (even when a high MOI [400] was used) and to a reduction and even to a complete loss of transgene copy number during myoblast replication. From our results, we conclude that, although not at a high proportion, (1) DMD primary myoblast cultures are infectable by adenoviruses; (2) they can be efficiently transplanted back in a muscle, leading to normal fusion of infected myoblasts with the host fibers; and (3) they can correct the dystrophin deficiency in the host fibers by the expression of a mini-dystrophin transgene.
Collapse
|
45
|
Argov Z, Sadeh M, Eisenberg I, Karpati G, Mitrani-Rosenbaum S. Facial weakness in hereditary inclusion body myopathies. Neurology 1998; 50:1925-6. [PMID: 9633772 DOI: 10.1212/wnl.50.6.1925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
46
|
Guibinga GH, Lochmuller H, Massie B, Nalbantoglu J, Karpati G, Petrof BJ. Combinatorial blockade of calcineurin and CD28 signaling facilitates primary and secondary therapeutic gene transfer by adenovirus vectors in dystrophic (mdx) mouse muscles. J Virol 1998; 72:4601-9. [PMID: 9573223 PMCID: PMC109975 DOI: 10.1128/jvi.72.6.4601-4609.1998] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recombinant adenovirus vectors (AdV) have been considered a potential vehicle for performing gene therapy in patients suffering from Duchenne muscular dystrophy but are limited by a cellular and humoral immune response that prevents long-term transgene expression as well as effective transduction after AdV readministration. Conventional immunosuppressive agents such as cyclosporine and FK506, which act by interfering with CD3-T-cell receptor-mediated signaling via calcineurin, are only partially effective in reversing these phenomena and may also produce substantial organ toxicity. We hypothesized that activation of redundant T-cell activation pathways could limit the effectiveness of these drugs at clinically tolerable doses. Therefore, we have tested the ability of immunomodulatory immunoglobulins (Ig) with different modes of action to facilitate AdV-mediated gene transfer to adult dystrophic (mdx) mice. When used in isolation, immunomodulatory Ig (anti-intercellular adhesion molecule-1, anti-leukocyte function-associated antigen-1, anti-CD2, and CTLA4Ig) were only mildly effective in mitigating cellular and/or humoral immunity against adenovirus capsid proteins and the therapeutic transgene product, dystrophin. However, the combination of FK506 plus CTLA4Ig abrogated the immune response against adenovirus proteins and dystrophin to a degree not achievable with the use of either agent alone. At 30 days after AdV injection, >90% of myofibers could be found to express dystrophin with little or no evidence of a cellular immune response against transduced fibers. In addition, the humoral immune response was markedly suppressed, and this was associated with increased transduction efficiency following vector readministration. These data suggest that by facilitating both primary and secondary transduction after AdV administration, combined targeting of CD3-T-cell receptor-mediated signaling via calcineurin and the B7:CD28 costimulatory pathway could greatly increase the potential utility of AdV-mediated gene transfer as a therapeutic modality for genetic diseases such as Duchenne muscular dystrophy that will require long-term transgene expression and repeated vector delivery.
Collapse
|
47
|
Acsadi G, O'Hagan D, Lochmüller H, Prescott S, Larochelle N, Nalbantoglu J, Jani A, Karpati G. Interferons impair early transgene expression by adenovirus-mediated gene transfer in muscle cells. J Mol Med (Berl) 1998; 76:442-50. [PMID: 9625301 DOI: 10.1007/s001090050236] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recombinant adenovirus (AVR) promises to be an efficient vector in gene therapy for neuromuscular diseases, but in preclinical experiments the expression of therapeutic genes is shorter lived in immunocompetent animals than in immunocompromised hosts. Interferons (IFN), which are known to have a role both in early antiviral activity and in late cytotoxic immunoreaction against the virus or transduced cells, may influence the efficiency of gene transfer. In this study we investigated the role of IFNs in determining the efficiency of gene transfer by AVR. AVRs expressing beta-galactosidase (beta-gal) from either a cytomegalovirus (CMV) or a troponin-I promoter were used. Muscle cells were infected by AVR after exposure to various IFNs. The alphaIFN treatment significantly reduced (up to fivefold) the CMV promoter-driven gene expression in muscle cells in vitro and in immature muscles in vivo, while the least effective inhibitor was betaIFN. The decrease in gene expression by IFNs was more pronounced with the CMV-driven transgene than troponin-I promoter-driven one and was due to a decrease in transcript level. Intrinsic IFNs that are triggered by AVR administration can decrease the efficiency of gene transfer in muscle cells. Therefore the use of muscle specific promoters in AVR and/or IFN inhibitory agents will likely improve the prospects of effective gene therapy by AVR.
Collapse
|
48
|
Horvath R, Fu K, Johns T, Genge A, Karpati G, Shoubridge EA. Characterization of the mitochondrial DNA abnormalities in the skeletal muscle of patients with inclusion body myositis. J Neuropathol Exp Neurol 1998; 57:396-403. [PMID: 9596410 DOI: 10.1097/00005072-199805000-00003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inclusion body myositis (IBM) is a late-onset inflammatory myopathy with distinctive clinical and histopathological features. The molecular basis for the disease remains unknown, but abnormal nuclear morphology and the accumulation of a protein that binds single-stranded DNA in a sequence-independent fashion suggest a nuclear defect. Evidence of mitochondrial respiratory chain dysfunction (ragged-red fibers, multiple mtDNA deletions) has been reported in IBM muscle. Here we have investigated the relationship of the mtDNA abnormalities in sporadic and familial IBM patients to the pathogenesis of the disease. In situ hybridization analysis with mtDNA probes revealed several different mtDNA abnormalities in cytochrome c oxidase-negative muscle fibers including large-scale mtDNA deletions and mtDNA depletion, but no evidence for nonspecific DNA binding. Contrary to previous reports, we did not observe mtDNA deletions on Southern blot analysis, consistent with the presence of multiple different deleted mtDNA species demonstrated by single fiber PCR. There was no consistent correlation between the mitochondrial abnormalities and markers of muscle regeneration, inflammation, or microscopically detectable pathological alterations of myonuclei in the same fibers. Thus, early molecular abnormalities in IBM may simply accelerate the accumulation of mtDNA abnormalities that occurs with natural aging.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Blotting, Southern
- DNA, Mitochondrial/metabolism
- Female
- Humans
- Immunohistochemistry
- In Situ Hybridization
- Male
- Middle Aged
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Myositis, Inclusion Body/enzymology
- Myositis, Inclusion Body/metabolism
- Myositis, Inclusion Body/pathology
- Phenotype
- Polymerase Chain Reaction
- Succinate Dehydrogenase/metabolism
Collapse
|
49
|
Taivassalo T, De Stefano N, Argov Z, Matthews PM, Chen J, Genge A, Karpati G, Arnold DL. Effects of aerobic training in patients with mitochondrial myopathies. Neurology 1998; 50:1055-60. [PMID: 9566394 DOI: 10.1212/wnl.50.4.1055] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We studied the physiologic adaptation of patients with mitochondrial myopathies to aerobic training. Ten patients underwent individually supervised, moderate-intensity aerobic training on a treadmill for 8 weeks. Biochemical and functional measures improved with training. Estimated aerobic capacity increased by 30%. Blood lactate concentrations at rest and after exercise decreased by 30%. Muscle phosphorus magnetic resonance spectroscopy measurements of adenosine diphosphate recovery after exercise improved by more than 60%. Fatigue and tolerance to daily activities also improved. Although the improvement in exercise tolerance may be due in part to reversal of the effects of secondary deconditioning, this uncontrolled clinical trial suggests that aerobic training can benefit patients with mitochondrial myopathies.
Collapse
|
50
|
Howell JM, Lochmüller H, O'Hara A, Fletcher S, Kakulas BA, Massie B, Nalbantoglu J, Karpati G. High-level dystrophin expression after adenovirus-mediated dystrophin minigene transfer to skeletal muscle of dystrophic dogs: prolongation of expression with immunosuppression. Hum Gene Ther 1998; 9:629-34. [PMID: 9551611 DOI: 10.1089/hum.1998.9.5-629] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Replication-deficient adenovirus vectors (AdV) have been successfully used to transfer a truncated human dystrophin cDNA to skeletal muscle of dystrophin-deficient mdx mice. A dystrophin-deficient golden retriever dog model (GRMD) has been identified, which, unlike the mouse model, leads to a clinicopathological phenotype similar to that of Duchenne muscular dystrophy (DMD). We show for the first time that high-level dystrophin expression in skeletal muscle of GRMD dogs can be achieved by AdV-mediated gene transfer. However, a humoral and cellular immune response of the host against antigens of viral and transgene origin (similar to that occurring in mdx mice after AdV-mediated dystrophin gene transfer) leads to a decline of dystrophin expression over a 2-month period. Immunosuppression by cyclosporin significantly prolonged transgene expression. The GRMD model may help to solve the open questions pertaining to dystrophin gene transfer such as systemic delivery and improvement of muscle function before human trials for gene replacement therapy in DMD may be considered.
Collapse
|