26
|
Gachet S, El-Chaar T, Avran D, Genesca E, Catez F, Quentin S, Delord M, Thérizols G, Briot D, Meunier G, Hernandez L, Pla M, Smits WK, Buijs-Gladdines JG, Van Loocke W, Menschaert G, André-Schmutz I, Taghon T, Van Vlierberghe P, Meijerink JP, Baruchel A, Dombret H, Clappier E, Diaz JJ, Gazin C, de Thé H, Sigaux F, Soulier J. Deletion 6q Drives T-cell Leukemia Progression by Ribosome Modulation. Cancer Discov 2018; 8:1614-1631. [PMID: 30266814 DOI: 10.1158/2159-8290.cd-17-0831] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 02/12/2018] [Accepted: 09/25/2018] [Indexed: 11/16/2022]
Abstract
Deletion of chromosome 6q is a well-recognized abnormality found in poor-prognosis T-cell acute lymphoblastic leukemia (T-ALL). Using integrated genomic approaches, we identified two candidate haploinsufficient genes contiguous at 6q14, SYNCRIP (encoding hnRNP-Q) and SNHG5 (that hosts snoRNAs), both involved in regulating RNA maturation and translation. Combined silencing of both genes, but not of either gene alone, accelerated leukemogeneis in a Tal1/Lmo1/Notch1-driven mouse model, demonstrating the tumor-suppressive nature of the two-gene region. Proteomic and translational profiling of cells in which we engineered a short 6q deletion by CRISPR/Cas9 genome editing indicated decreased ribosome and mitochondrial activities, suggesting that the resulting metabolic changes may regulate tumor progression. Indeed, xenograft experiments showed an increased leukemia-initiating cell activity of primary human leukemic cells upon coextinction of SYNCRIP and SNHG5. Our findings not only elucidate the nature of 6q deletion but also highlight the role of ribosomes and mitochondria in T-ALL tumor progression. SIGNIFICANCE: The oncogenic role of 6q deletion in T-ALL has remained elusive since this chromosomal abnormality was first identified more than 40 years ago. We combined genomic analysis and functional models to show that the codeletion of two contiguous genes at 6q14 enhances malignancy through deregulation of a ribosome-mitochondria axis, suggesting the potential for therapeutic intervention.This article is highlighted in the In This Issue feature, p. 1494.
Collapse
|
27
|
Braun T, Coudé MM, Berrou J, Djamai H, Dupont M, Kaci A, Delord M, Itzykson R, Raffoux E, Berthier C, Thé HD, Baruchel A, Gardin C, Dombret H. Abstract 803: Bromodomain and extra-terminal BET inhibitors induce TP53 independent apoptosis, maturation and oncoprotein degradation in NPM1 mutated acute myeloid leukemia. Cancer Res 2018. [DOI: 10.1158/1538-7445.am2018-803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Background: Differentiation based therapy by all trans retinoic acid (ATRA) and arsenic trioxide (ATO) results in cure of >90% of patients with acute promyelocytic leukemia (APL). ATRA+ATO is highly biologically active in NPM1c AML, accounting for 30-40% of AML patients. ATO/ATRA induces proteasomal degradation of NPM1c, differentiation, growth arrest and TP53 dependent apoptosis in NPM1c cells. Furthermore, ATRA/ATO exposure restores nuclear localization of NPM1wt and significantly reduces blasts in NPMc AML patients. It was shown that the BET inhibitors OTX015/MK-8628 and JQ1 yield antileukemic activity and here we demonstrate their effects in NPM1c leukemia cells compared to ATRA/ATO. Methods : NPMc OCI-AML3 cell line or patient bone marrow (BM) blast cells obtained after informed consent were exposed to ATRA/ATO or OTX015/MK-8628 and JQ1. Apoptosis was assessed by annexin V/PI and caspase 3/PARP cleavage by WB. TP53 expression was detected by WB. Knock down of TP53 was performed with siRNA. Differentiation of OCI-AML3 cells was studied by CD11b surface expression and morphologic studies after MGG stain. Gene expression profiling was performed with GeneChip Array (Affymetrix®). NPMc expression was assessed by WB (+/- bortezomib) and cellular localization of NPMc/NPMwt was studied by immunofluorescence. Results : Exposure of OCI-AML3 cells to OTX015/MK-8628 and JQ1 was more potent to induce apoptosis as compared to ATRA/ATO. All treatments lead to caspase 3 and PARP cleavage. In OCI-AML3 cells, ATO-ATRA induced strong upregulation of genes of the TP53 dependent pathway (BAX/GADD45) while the anti apoptotic gene BCL2 was downregulated. In contrast, treatment with BET inhibitors lead to strong down regulation of the TP53 dependent pathway. In line, ATRA/ATO induced TP53 protein expression and TP53 knock down by siRNA decreased significantly ATRA/ATO induced apoptosis suggesting that apoptosis induced by BET inhibitors is TP53 independent. As compared to ATRA/ATO, OTX015/MK-8628 and JQ1 were more potent to induce differentiation as detected by CD11b surface expression and by morphologic analysis of OCI-AML3 cells. Interestingly, gene expression profiling of human leukocyte differentiation pathways in OCI-AML3 cells revealed different expression profiles for exposure to BET inhibitors compared to ATRA/ATO. Treatment of OCI-AML3 cells either by OTX015/MK8628, JQ1 or ATRA/ATO lead to proteosomal degradation of the NPMc protein. Exposure of OCI-AML3 cells and primary BM blasts of patients either by OTX015/MK8628, JQ1 or ATRA/ATO led to nuclear relocalization of NPMwt protein to the nucleus. Conclusion : BET inhibitors induce TP53 independent apoptosis, differentiation, proteasomal degradation and NPMwt relocalization in NPMc cells. Thus, clinical testing of bromodomain inhibitors in NPMc AML is indicated.
Citation Format: Thorsten Braun, Marie-Magdelaine Coudé, Jeannig Berrou, Hanene Djamai, Mélanie Dupont, Anna Kaci, Marc Delord, Raphael Itzykson, Emmanuel Raffoux, Caroline Berthier, Hugues de Thé, André Baruchel, Claude Gardin, Hervé Dombret. Bromodomain and extra-terminal BET inhibitors induce TP53 independent apoptosis, maturation and oncoprotein degradation in NPM1 mutated acute myeloid leukemia [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 803.
Collapse
|
28
|
Wang P, Benhenda S, Wu H, Lallemand-Breitenbach V, Zhen T, Jollivet F, Peres L, Li Y, Chen SJ, Chen Z, de Thé H, Meng G. Publisher Correction: RING tetramerization is required for nuclear body biogenesis and PML sumoylation. Nat Commun 2018; 9:1841. [PMID: 29728567 PMCID: PMC5935667 DOI: 10.1038/s41467-018-04347-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
29
|
Lallemand-Breitenbach V, de Thé H. PML nuclear bodies: from architecture to function. Curr Opin Cell Biol 2018; 52:154-161. [PMID: 29723661 DOI: 10.1016/j.ceb.2018.03.011] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/06/2018] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
PML nuclear bodies are nucleated by the PML protein, which polymerizes into spherical shells where it concentrates many unrelated partner proteins. Emerging data has connected PML bodies to post-translational control, notably conjugation by SUMOs. High concentrations of SUMO-bound proteins were proposed to condense into liquid-like droplets and such phase transition may occur within NBs. Many stress pathways modulate NB formation and recent findings have directly implicated PML in oxidative stress response in vivo. PML may also undergo SUMO-dependent ubiquitination/degradation. We highlight recent advances linking PML to partner degradation and other adaptative post-translational modifications in the context of chromatin remodeling, telomere biology, senescence or viral infections.
Collapse
|
30
|
Wang P, Benhenda S, Wu H, Lallemand-Breitenbach V, Zhen T, Jollivet F, Peres L, Li Y, Chen SJ, Chen Z, de Thé H, Meng G. RING tetramerization is required for nuclear body biogenesis and PML sumoylation. Nat Commun 2018; 9:1277. [PMID: 29599493 PMCID: PMC5876331 DOI: 10.1038/s41467-018-03498-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/20/2018] [Indexed: 12/02/2022] Open
Abstract
ProMyelocyticLeukemia nuclear bodies (PML NBs) are stress-regulated domains directly implicated in acute promyelocytic leukemia eradication. Most TRIM family members bind ubiquitin E2s and many acquire ligase activity upon RING dimerization. In contrast, PML binds UBC9, the SUMO E2 enzyme. Here, using X-ray crystallography and SAXS characterization, we demonstrate that PML RING tetramerizes through highly conserved PML-specific sequences, which are required for NB assembly and PML sumoylation. Conserved residues implicated in RING dimerization of other TRIMs also contribute to PML tetramer stability. Wild-type PML rescues the ability of some RING mutants to form NBs as well as their sumoylation. Impaired RING tetramerization abolishes PML/RARA-driven leukemogenesis in vivo and arsenic-induced differentiation ex vivo. Our studies thus identify RING tetramerization as a key step in the NB macro-molecular scaffolding. They suggest that higher order RING interactions allow efficient UBC9 recruitment and thus change the biochemical nature of TRIM-facilitated post-translational modifications. Promyelocytic leukemia protein (PML) is a scaffolding protein that organizes PML nuclear bodies. Here the authors present the tetrameric crystal structure of the PML RING domain and show that RING tetramerization is functionally important for nuclear body formation and PML sumoylation.
Collapse
|
31
|
Di Costanzo A, Del Gaudio N, Conte L, Dell'Aversana C, Vermeulen M, de Thé H, Migliaccio A, Nebbioso A, Altucci L. The HDAC inhibitor SAHA regulates CBX2 stability via a SUMO-triggered ubiquitin-mediated pathway in leukemia. Oncogene 2018; 37:2559-2572. [PMID: 29467492 PMCID: PMC5945585 DOI: 10.1038/s41388-018-0143-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/15/2017] [Accepted: 12/24/2017] [Indexed: 12/31/2022]
Abstract
Polycomb group (PcG) proteins regulate transcription, playing a key role in stemness and differentiation. Deregulation of PcG members is known to be involved in cancer pathogenesis. Emerging evidence suggests that CBX2, a member of the PcG protein family, is overexpressed in several human tumors, correlating with lower overall survival. Unraveling the mechanisms regulating CBX2 expression may thus provide a promising new target for anticancer strategies. Here we show that the HDAC inhibitor SAHA regulates CBX2 stability via a SUMO-triggered ubiquitin-mediated pathway in leukemia. We identify CBX4 and RNF4 as the E3 SUMO and E3 ubiquitin ligase, respectively, and describe the specific molecular mechanism regulating CBX2 protein stability. Finally, we show that CBX2-depleted leukemic cells display impaired proliferation, underscoring its critical role in regulating leukemia cell tumorogenicity. Our results show that SAHA affects CBX2 stability, revealing a potential SAHA-mediated anti-leukemic activity though SUMO2/3 pathway.
Collapse
|
32
|
Abstract
The concept of differentiation therapy emerged from the fact that hormones or cytokines may promote differentiation ex vivo, thereby irreversibly changing the phenotype of cancer cells. Its hallmark success has been the treatment of acute promyelocytic leukaemia (APL), a condition that is now highly curable by the combination of retinoic acid (RA) and arsenic. Recently, drugs that trigger differentiation in a variety of primary tumour cells have been identified, suggesting that they are clinically useful. This Opinion article analyses the basis for the clinical successes of RA or arsenic in APL by assessing the respective roles of terminal maturation and loss of self-renewal. By reviewing other successful examples of drug-induced tumour cell differentiation, novel approaches to transform differentiating drugs into more efficient therapies are proposed.
Collapse
|
33
|
de Thé H, Pandolfi PP, Chen Z. Acute Promyelocytic Leukemia: A Paradigm for Oncoprotein-Targeted Cure. Cancer Cell 2017; 32:552-560. [PMID: 29136503 DOI: 10.1016/j.ccell.2017.10.002] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/01/2017] [Accepted: 09/29/2017] [Indexed: 12/14/2022]
Abstract
Recent clinical trials have demonstrated that the immense majority of acute promyelocytic leukemia (APL) patients can be definitively cured by the combination of two targeted therapies: retinoic acid (RA) and arsenic. Mouse models have provided unexpected insights into the mechanisms involved. Restoration of PML nuclear bodies upon RA- and/or arsenic-initiated PML/RARA degradation is essential, while RA-triggered transcriptional activation is dispensable for APL eradication. Mutations of the arsenic-binding site of PML/RARA, but also PML, have been detected in therapy-resistant patients, demonstrating the key role of PML in APL cure. PML nuclear bodies are druggable and could be harnessed in other conditions.
Collapse
|
34
|
Niwa-Kawakita M, Ferhi O, Soilihi H, Le Bras M, Lallemand-Breitenbach V, de Thé H. PML is a ROS sensor activating p53 upon oxidative stress. J Exp Med 2017; 214:3197-3206. [PMID: 28931625 PMCID: PMC5679165 DOI: 10.1084/jem.20160301] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/21/2017] [Accepted: 08/09/2017] [Indexed: 12/30/2022] Open
Abstract
Promyelocytic leukemia (PML) nuclear bodies modulate several processes, including senescence or apoptosis. Niwa-Kawakita et al. demonstrate that PML regulates reactive oxygen species (ROS) homeostasis in vivo by coupling ROS to p53 signaling to enforce basal ROS protection and mediate their acute toxicity. Promyelocytic leukemia (PML) nuclear bodies (NBs) recruit partner proteins, including p53 and its regulators, thereby controlling their abundance or function. Investigating arsenic sensitivity of acute promyelocytic leukemia, we proposed that PML oxidation promotes NB biogenesis. However, physiological links between PML and oxidative stress response in vivo remain unexplored. Here, we identify PML as a reactive oxygen species (ROS) sensor. Pml−/− cells accumulate ROS, whereas PML expression decreases ROS levels. Unexpectedly, Pml−/− embryos survive acute glutathione depletion. Moreover, Pml−/− animals are resistant to acetaminophen hepatotoxicity or fasting-induced steatosis. Molecularly, Pml−/− animals fail to properly activate oxidative stress–responsive p53 targets, whereas the NRF2 response is amplified and accelerated. Finally, in an oxidative stress–prone background, Pml−/− animals display a longevity phenotype, likely reflecting decreased basal p53 activation. Thus, similar to p53, PML exerts basal antioxidant properties but also drives oxidative stress–induced changes in cell survival/proliferation or metabolism in vivo. Through NB biogenesis, PML therefore couples ROS sensing to p53 responses, shedding a new light on the role of PML in senescence or stem cell biology.
Collapse
|
35
|
Tessier S, Martin-Martin N, de Thé H, Carracedo A, Lallemand-Breitenbach V. Promyelocytic Leukemia Protein, a Protein at the Crossroad of Oxidative Stress and Metabolism. Antioxid Redox Signal 2017; 26:432-444. [PMID: 27758112 DOI: 10.1089/ars.2016.6898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Cellular metabolic activity impacts the production of reactive oxygen species (ROS), both positively through mitochondrial oxidative processes and negatively by promoting the production of reducing agents (including NADPH and reduced glutathione). A defined metabolic state in cancer cells is critical for cell growth and long-term self-renewal, and such state is intrinsically associated with redox balance. Promyelocytic leukemia protein (PML) regulates several biological processes, at least in part, through its ability to control the assembly of PML nuclear bodies (PML NBs). Recent Advances: PML is oxidation-prone, and oxidative stress promotes NB biogenesis. These nuclear subdomains recruit many nuclear proteins and regulate their SUMOylation and other post-translational modifications. Some of these cargos-such as p53, SIRT1, AKT, and mammalian target of rapamycin (mTOR)-are key regulators of cell fate. PML was also recently shown to regulate oxidation. CRITICAL ISSUES While it was long considered primarily as a tumor suppressor protein, PML-regulated metabolic switch uncovered that this protein could promote survival and/or stemness of some normal or cancer cells. In this study, we review the recent findings on this multifunctional protein. FUTURE DIRECTIONS Studying PML scaffolding functions as well as its fine role in the activation of p53 or fatty acid oxidation will bring new insights in how PML could bridge oxidative stress, senescence, cell death, and metabolism. Antioxid. Redox Signal. 26, 432-444.
Collapse
|
36
|
Ferhi O, Pérès L, Tessier S, de Thé H, Lallemand-Breitenbach V. Comment on "SUMO deconjugation is required for arsenic-triggered ubiquitylation of PML". Sci Signal 2016; 9:tc1. [PMID: 27507651 DOI: 10.1126/stke.9.440.tc1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Fasci et al proposed that a SENP1-mediated switch from SUMO2 to SUMO1 conjugation on Lys(65) in promyelocytic leukemia protein (PML) is required for arsenic-induced PML degradation, the basis for the antileukemic activity of arsenic. We found that PML or PML/RARA (retinoic acid receptor α) mutants that cannot be SUMO-conjugated on this specific site nevertheless underwent immediate arsenic-triggered SUMO modification. Moreover, these mutants were efficiently degraded in cells and even in vivo, demonstrating that SUMOylation of Lys(65) was dispensable for arsenic response. The existence and putative role of a SUMO switch on PML should thus be reassessed.
Collapse
|
37
|
Sahin U, Jollivet F, Berthier C, de Thé H, Lallemand-Breitenbach V. Detection of Protein SUMOylation In Situ by Proximity Ligation Assays. Methods Mol Biol 2016; 1475:139-50. [PMID: 27631803 DOI: 10.1007/978-1-4939-6358-4_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Sumoylation is a posttranslational process essential for life and concerns a growing number of crucial proteins. Understanding the influence of this phenomenon on individual proteins or on cellular pathways in which they function has become an intense area of research. A critical step in studying protein sumoylation is to detect sumoylated forms of a particular protein. This has proven to be a challenging task for a number of reasons, especially in the case of endogenous proteins and in vivo studies or when studying rare cells such as stem cells. Proximity ligation assays that allow detection of closely interacting protein partners can be adapted for initial detection of endogenous sumoylation or ubiquitination in a rapid, ultrasensitive, and cheap manner. In addition, modified forms of a given protein can be detected in situ in various cellular compartments. Finally, the flexibility of this technique may allow rapid screening of drugs and stress signals that may modulate protein sumoylation.
Collapse
|
38
|
Ablain J, Poirot B, Esnault C, Lehmann-Che J, de Thé H. p53 as an Effector or Inhibitor of Therapy Response. Cold Spring Harb Perspect Med 2015; 6:a026260. [PMID: 26637438 DOI: 10.1101/cshperspect.a026260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although integrity of the p53 signaling pathway in a given tumor was expected to be a critical determinant of response to therapies, most clinical studies failed to link p53 status and treatment outcome. Here, we present two opposite situations: one in which p53 is an essential effector of cure by targeted leukemia therapies and another one in advanced breast cancers in which p53 inactivation is required for the clinical efficacy of dose-dense chemotherapy. If p53 promotes or blocks therapy response, therapies must be tailored on its status in individual tumors.
Collapse
|
39
|
de Thé H, Gessain A. Obituary for Guy de Thé. Retrovirology 2015; 12:7. [PMID: 25636333 PMCID: PMC4335422 DOI: 10.1186/s12977-014-0128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 11/20/2022] Open
|
40
|
Sahin U, de Thé H, Lallemand-Breitenbach V. PML nuclear bodies: assembly and oxidative stress-sensitive sumoylation. Nucleus 2015; 5:499-507. [PMID: 25482067 DOI: 10.4161/19491034.2014.970104] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PML Nuclear Bodies (NBs) have fascinated cell biologists due to their exquisitely dynamic nature and their involvement in human diseases, notably acute promyelocytic leukemia. NBs, as well as their master organizer--the PML protein--exhibit multiple connections with stress responses. Initially viewed as a tumor suppressor, PML recently re-emerged as a multifaceted protein, capable of controlling numerous aspects of cellular homeostasis. NBs recruit many functionally diverse proteins and function as stress-regulated sumoylation factories. SUMO-initiated partner retention can subsequently facilitate a variety of other post-translational modifications, as well as partner degradation. With this newly elucidated central role of stress-enhanced sumoylation, it should now be possible to build a working model for the different NB-regulated cellular activities. Moreover, pharmacological manipulation of NB formation by interferons or oxidants holds the promise of clearing many undesirable proteins for clinical management of malignant, viral or neurodegenerative diseases.
Collapse
|
41
|
|
42
|
Bally C, Renneville A, Preudhomme C, Legrand M, Adès L, de Thé H, Fenaux P, Lehmann-Che J. Comparison of TP53 mutations screening by functional assay of separated allele in yeast and next-generation sequencing in myelodysplastic syndromes. Leuk Res 2015; 39:S0145-2126(15)30344-1. [PMID: 26271412 DOI: 10.1016/j.leukres.2015.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/03/2015] [Accepted: 07/02/2015] [Indexed: 11/15/2022]
Abstract
TP53 mutations are major prognostic factors in many hematological malignancies including acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). Next-generation sequencing (NGS) has improved the detection of such mutations by identifying small mutated clones but functional method like FASAY (functional assay of separated allele in yeast) may prove interesting. We compared the detection of TP53 mutations by FASAY and NGS in 91 patients with AML or MDS. By FASAY, 91% of assays were evaluable and 47 patients (57%) had a functional and 36 (43%) a non-functional p53 protein. FASAY could not conclude in 8 cases (9%), mainly because of poor RNA quality. No TP53 mutation was found using NGS in 50 cases (55%), and at least one mutation was detected in 41 cases (45%). The p53 status was concordant between FASAY and NGS in 95% (79/83) of cases. The four discordances included mutations detected by FASAY only in two cases, and by NGS only in two cases. Mutations not detected by NGS consisted of insertions in intronic regions, which were not analyzed by this assay. Mutations not detected by FASAY were mutations for which the percentage of mutated allele was less than 10%, including one mutation reported as non-deleterious in the IARC database. Overall, our data suggest that FASAY is an effective and reliable method to detect TP53 mutations in AML and MDS, which allows the assessment of the protein functionality, contrary to a sequencing approach.
Collapse
|
43
|
Gaillard C, Tokuyasu TA, Rosen G, Sotzen J, Vitaliano-Prunier A, Roy R, Passegué E, de Thé H, Figueroa ME, Kogan SC. Transcription and methylation analyses of preleukemic promyelocytes indicate a dual role for PML/RARA in leukemia initiation. Haematologica 2015; 100:1064-75. [PMID: 26088929 DOI: 10.3324/haematol.2014.123018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/06/2015] [Indexed: 12/15/2022] Open
Abstract
Acute promyelocytic leukemia is an aggressive malignancy characterized by the accumulation of promyelocytes in the bone marrow. PML/RARA is the primary abnormality implicated in this pathology, but the mechanisms by which this chimeric fusion protein initiates disease are incompletely understood. Identifying PML/RARA targets in vivo is critical for comprehending the road to pathogenesis. Utilizing a novel sorting strategy, we isolated highly purified promyelocyte populations from normal and young preleukemic animals, carried out microarray and methylation profiling analyses, and compared the results from the two groups of animals. Surprisingly, in the absence of secondary lesions, PML/RARA had an overall limited impact on both the transcriptome and methylome. Of interest, we did identify down-regulation of secondary and tertiary granule genes as the first step engaging the myeloid maturation block. Although initially not sufficient to arrest terminal granulopoiesis in vivo, such alterations set the stage for the later, complete differentiation block seen in leukemia. Further, gene set enrichment analysis revealed that PML/RARA promyelocytes exhibit a subtle increase in expression of cell cycle genes, and we show that this leads to both increased proliferation of these cells and expansion of the promyelocyte compartment. Importantly, this proliferation signature was absent from the poorly leukemogenic p50/RARA fusion model, implying a critical role for PML in the altered cell-cycle kinetics and ability to initiate leukemia. Thus, our findings challenge the predominant model in the field and we propose that PML/RARA initiates leukemia by subtly shifting cell fate decisions within the promyelocyte compartment.
Collapse
|
44
|
Lu D, Arulmozhiraja S, Coote ML, Rae AD, Salem G, Willis AC, Wild SB, Benhenda S, Breitenbach VL, de Thé H, Zhai X, Hogg PJ, Dilda PJ. Sulfur Derivatives of the Natural Polyarsenical Arsenicin A: Biologically Active, Organometallic Arsenic–Sulfur Cages Related to the Minerals Realgar and Uzonite. Organometallics 2015. [DOI: 10.1021/om500829y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
de Cremoux P, Dalvai M, N'Doye O, Moutahir F, Rolland G, Chouchane-Mlik O, Assayag F, Lehmann-Che J, Kraus-Berthie L, Nicolas A, Lockhart BP, Marangoni E, de Thé H, Depil S, Bystricky K, Decaudin D. HDAC inhibition does not induce estrogen receptor in human triple-negative breast cancer cell lines and patient-derived xenografts. Breast Cancer Res Treat 2014; 149:81-9. [PMID: 25503779 DOI: 10.1007/s10549-014-3233-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/03/2014] [Indexed: 01/01/2023]
Abstract
Several publications have suggested that histone deacetylase inhibitors (HDACis) could reverse the repression of estrogen receptor alpha (ERα) in triple-negative breast cancer (TNBC) cell lines, leading to the induction of a functional protein. Using different HDACis, vorinostat, panobinostat, and abexinostat, we therefore investigated this hypothesis in various human TNBC cell lines and patient-derived xenografts (PDXs). We used three human TNBC cell lines and three PDXs. We analyzed the in vitro toxicity of the compounds, their effects on the hormone receptors and hormone-related genes and protein expression both in vitro and in vivo models. We then explored intra-tumor histone H3 acetylation under abexinostat in xenograft models. Despite major cytotoxicity of all tested HDAC inhibitors and repression of deactylation-dependent CCND1 gene, neither ERα nor ERβ, ESR1 or ESR2 genes respectively, were re-expressed in vitro. In vivo, after administration of abexinostat for three consecutive days, we did not observe any induction of ESR1 or ESR1-related genes and ERα protein expression by RT-qPCR and immunohistochemical methods in PDXs. This observation was concomitant to the fact that in vivo administration of abexinostat increased intra-tumor histone H3 acetylation. These observations do not allow us to confirm previous studies which suggested that HDACis are able to convert ER-negative (ER-) tumors to ER-positive (ER+) tumors, and that a combination of HDAC inhibitors and hormone therapy could be proposed in the management of TNBC patients.
Collapse
|
46
|
Sahin U, Lallemand-Breitenbach V, de Thé H. PML nuclear bodies: regulation, function and therapeutic perspectives. J Pathol 2014; 234:289-91. [PMID: 25138686 DOI: 10.1002/path.4426] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/11/2022]
Abstract
PML nuclear bodies (NBs) were first described by electron microscopy and rediscovered through their treatment-reversible disruption in a rare leukaemia. They recruit multiple partner proteins and now emerge as interferon- and oxidative stress-responsive sumoylation factories. NBs mediate interferon-induced viral restriction, enhance proteolysis, finely tune metabolism and enforce stress-induced senescence. Apart from being markers of cellular stress, PML NBs could be harnessed pharmacologically in a number of conditions, including cancer, viral infection or neurodegenerative diseases.
Collapse
|
47
|
|
48
|
Ablain J, de Thé H. Retinoic acid signaling in cancer: The parable of acute promyelocytic leukemia. Int J Cancer 2014; 135:2262-72. [PMID: 25130873 DOI: 10.1002/ijc.29081] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/04/2014] [Accepted: 05/09/2014] [Indexed: 12/22/2022]
Abstract
Inevitably fatal some 40 years, acute promyelocytic leukemia (APL) can now be cured in more than 95% of cases. This clinical success story is tightly linked to tremendous progress in our understanding of retinoic acid (RA) signaling. The discovery of retinoic acid receptor alpha (RARA) was followed by the cloning of the chromosomal translocations driving APL, all of which involve RARA. Since then, new findings on the biology of nuclear receptors have progressively enlightened the basis for the clinical efficacy of RA in APL. Reciprocally, the disease offered a range of angles to approach the cellular and molecular mechanisms of RA action. This virtuous circle contributed to make APL one of the best-understood cancers from both clinical and biological standpoints. Yet, some important questions remain unanswered including how lessons learnt from RA-triggered APL cure can help design new therapies for other malignancies.
Collapse
|
49
|
Sahin U, Ferhi O, Carnec X, Zamborlini A, Peres L, Jollivet F, Vitaliano-Prunier A, de Thé H, Lallemand-Breitenbach V. Interferon controls SUMO availability via the Lin28 and let-7 axis to impede virus replication. Nat Commun 2014; 5:4187. [PMID: 24942926 DOI: 10.1038/ncomms5187] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 05/22/2014] [Indexed: 01/12/2023] Open
Abstract
Small ubiquitin-related modifier (SUMO) protein conjugation onto target proteins regulates multiple cellular functions, including defence against pathogens, stemness and senescence. SUMO1 peptides are limiting in quantity and are thus mainly conjugated to high-affinity targets. Conjugation of SUMO2/3 paralogues is primarily stress inducible and may initiate target degradation. Here we demonstrate that the expression of SUMO1/2/3 is dramatically enhanced by interferons through an miRNA-based mechanism involving the Lin28/let-7 axis, a master regulator of stemness. Normal haematopoietic progenitors indeed display much higher SUMO contents than their differentiated progeny. Critically, SUMOs contribute to the antiviral effects of interferons against HSV1 or HIV. Promyelocytic leukemia (PML) nuclear bodies are interferon-induced domains, which facilitate sumoylation of a subset of targets. Our findings thus identify an integrated interferon-responsive PML/SUMO pathway that impedes viral replication by enhancing SUMO conjugation and possibly also modifying the repertoire of targets. Interferon-enhanced post-translational modifications may be essential for senescence or stem cell self-renewal, and initiate SUMO-dependent proteolysis.
Collapse
|
50
|
Sahin U, Ferhi O, Jeanne M, Benhenda S, Berthier C, Jollivet F, Niwa-Kawakita M, Faklaris O, Setterblad N, de Thé H, Lallemand-Breitenbach V. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. ACTA ACUST UNITED AC 2014; 204:931-45. [PMID: 24637324 PMCID: PMC3998805 DOI: 10.1083/jcb.201305148] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PML multimerization into nuclear bodies following its oxidation promotes sumoylation and sequestration of partner proteins in these structures. The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO–SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss.
Collapse
|