26
|
Thorwarth A, Haase K, Röefzaad C, Pajtler KW, Schramm K, Hauptmann K, Behnke A, Vokuhl C, Elgeti T, Gratopp A, Schulte JH, Scheer M, Hernáiz Driever P, Nysom K, Eggert A, Henssen AG, Deubzer HE. Genomic Evolution and Personalized Therapy of an Infantile Fibrosarcoma Harboring an NTRK Oncogenic Fusion. JCO Precis Oncol 2022; 6:e2100283. [PMID: 35613412 PMCID: PMC9200398 DOI: 10.1200/po.21.00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Precision medicine for infantile fibrosarcoma by monitoring of spatial and temporal clonal evolution (requested from authors: Would you be so kind to let us know when the article is announced via Twitter?).![]()
Collapse
|
27
|
Cuntz F, Deubzer HE, Schulte JH, Nimtz-Talaska A, Eggert A, Holzhauer S. Hemostatic Management in an Infant With Neuroblastoma and Severe Hemophilia B With Extended Half-life Recombinant Factor IX Fusion Protein. J Pediatr Hematol Oncol 2022; 44:e246-e249. [PMID: 33661164 DOI: 10.1097/mph.0000000000002109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/08/2021] [Indexed: 11/25/2022]
Abstract
In the rare co-occurrence of childhood cancer and severe hemophilia, hemostatic management is of paramount therapeutic importance. We present the case of an 11-month-old boy with severe congenital hemophilia B, who was diagnosed with metastatic high-risk neuroblastoma. He consequently developed paraneoplastic coagulopathy with life-threatening tumor hemorrhage and intracranial hemorrhage, showing central nervous system relapse. Management consisted of factor IX replacement with extended half-life factor IX fusion protein, adjusted to bleeding risk. Additional interventions included factor XIII, fibrinogen, fresh frozen plasma, tranexamic acid, and platelet transfusions. The half-life of factor IX products was markedly reduced requiring close factor IX monitoring and adequate replacement. This intensified treatment allowed chemotherapy, autologous stem cell transplantation, and GD2 antibody immune therapy without bleeding or thrombosis.
Collapse
|
28
|
Schmelz K, Toedling J, Huska M, Cwikla MC, Kruetzfeldt LM, Proba J, Ambros PF, Ambros IM, Boral S, Lodrini M, Chen CY, Burkert M, Guergen D, Szymansky A, Astrahantseff K, Kuenkele A, Haase K, Fischer M, Deubzer HE, Hertwig F, Hundsdoerfer P, Henssen AG, Schwarz RF, Schulte JH, Eggert A. Spatial and temporal intratumour heterogeneity has potential consequences for single biopsy-based neuroblastoma treatment decisions. Nat Commun 2021; 12:6804. [PMID: 34815394 PMCID: PMC8611017 DOI: 10.1038/s41467-021-26870-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 10/18/2021] [Indexed: 01/12/2023] Open
Abstract
Intratumour heterogeneity is a major cause of treatment failure in cancer. We present in-depth analyses combining transcriptomic and genomic profiling with ultra-deep targeted sequencing of multiregional biopsies in 10 patients with neuroblastoma, a devastating childhood tumour. We observe high spatial and temporal heterogeneity in somatic mutations and somatic copy-number alterations which are reflected on the transcriptomic level. Mutations in some druggable target genes including ALK and FGFR1 are heterogeneous at diagnosis and/or relapse, raising the issue whether current target prioritization and molecular risk stratification procedures in single biopsies are sufficiently reliable for therapy decisions. The genetic heterogeneity in gene mutations and chromosome aberrations observed in deep analyses from patient courses suggest clonal evolution before treatment and under treatment pressure, and support early emergence of metastatic clones and ongoing chromosomal instability during disease evolution. We report continuous clonal evolution on mutational and copy number levels in neuroblastoma, and detail its implications for therapy selection, risk stratification and therapy resistance.
Collapse
|
29
|
Fischer M, Moreno L, Ziegler DS, Marshall LV, Zwaan CM, Irwin MS, Casanova M, Sabado C, Wulff B, Stegert M, Wang L, Hurtado FK, Branle F, Geoerger B, Schulte JH. Ceritinib in paediatric patients with anaplastic lymphoma kinase-positive malignancies: an open-label, multicentre, phase 1, dose-escalation and dose-expansion study. Lancet Oncol 2021; 22:1764-1776. [PMID: 34780709 DOI: 10.1016/s1470-2045(21)00536-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Several paediatric malignancies, including anaplastic large cell lymphoma (ALCL), inflammatory myofibroblastic tumour (IMT), neuroblastoma, and rhabdomyosarcoma, harbour activation of anaplastic lymphoma kinase (ALK) through different mechanisms. Here, we report the safety, pharmacokinetics, and efficacy of ceritinib in paediatric patients with ALK-positive malignancies. METHODS This multicentre, open-label, phase 1 trial was done at 23 academic hospitals in ten countries. Children (aged ≥12 months to <18 years) diagnosed with locally advanced or metastatic ALK-positive malignancies that had progressed despite standard therapy, or for which no effective standard therapy were available, were eligible. ALK-positive malignancies were defined as those with ALK rearrangement, amplification, point mutation, or in the case of rhabdomyosarcoma, expression in the absence of any genetic alteration. Eligible patients had evaluable or measurable disease as defined by either Response Evaluation Criteria in Solid Tumours, version 1.1 for patients with non-haematological malignancies, International Neuroblastoma Response Criteria scan for patients with neuroblastoma, or International Working Group criteria for patients with lymphoma. Other eligibility criteria were Karnofsky performance status score of at least 60% for patients older than 12 years or Lansky score of at least 50% for patients aged 12 years or younger. This study included a dose-escalation part, followed by a dose-expansion part, in which all patients received treatment at the recommended dose for expansion (RDE) established in the dose-escalation part. Both parts of the study were done in fasted and fed states. In the dose-escalation part, patients were treated with once-daily ceritinib orally, with dose adjusted for body-surface area, rounded to the nearest multiple of the 50 mg dose strength. The starting dose in the fasted state was 300 mg/m2 daily and for the fed state was 320 mg/m2 daily. The primary objective of this study was to establish the maximum tolerated dose (ie, RDE) of ceritinib in the fasted and fed states. The RDE was established on the basis of the incidence of dose-limiting toxicities in patients who completed a minimum of 21 days of treatment with safety assessments and at least 75% drug exposure, or who discontinued treatment earlier because of dose-limiting toxicity. Overall response rate (defined as the proportion of patients with a best overall response of complete response or partial response) was a secondary endpoint. Activity and safety analyses were done in all patients who received at least one dose of ceritinib. This trial is registered with ClinicalTrials.gov (NCT01742286) and is completed. FINDINGS Between Aug 28, 2013, and Oct 17, 2017, 83 children with ALK-positive malignancies were enrolled to the dose-escalation (n=40) and dose-expansion (n=43) groups. The RDE of ceritinib was established as 510 mg/m2 (fasted) and 500 mg/m2 (fed). 55 patients (30 with neuroblastoma, ten with IMT, eight with ALCL, and seven with other tumour types) were treated with ceritinib at the RDE (13 patients at 510 mg/m2 fasted and 42 patients at 500 mg/m2 fed). The median follow-up was 33·3 months (IQR 24·8-39·3) for patients with neuroblastoma, 33·2 months (27·9-35·9) for those with IMT, 34·0 months (21·9-46·4) for those with ALCL, and 27·5 months (22·4-36·9) for patients with other tumour types. An overall response was recorded in six (20%; 95% CI 8-39) of 30 patients with neuroblastoma, seven (70%; 33-93) of ten patients with IMT, six (75%; 35-97) of eight patients with ALCL, and one (14%; <1-58) of seven patients with other tumours. The safety profile of ceritinib was consistent with that observed in adult patients. All patients had at least one adverse event. Grade 3 or 4 adverse events occurred in 67 (81%) of 83 patients and were mostly increases in aminotransferases (alanine aminotransferase increase in 38 [46%] patients and aspartate aminotransferase increase in 27 [33%] patients). At least one serious adverse event was reported in 40 (48%) of 83 patients and 31 (37%) of 83 patients had at least one grade 3 or 4 serious adverse event. 14 (17%) deaths occurred during the study, of which 12 were on-treatment deaths and two were after 30 days of the last dose. Of the 12 on-treatment deaths, ten were due to disease progression (neuroblastoma), one due to sepsis, and one due to intractable hypotension. INTERPRETATION Ceritinib 500 mg/m2 once daily with food is the recommended dose for paediatric patients with ALK-positive malignancies. Ceritinib showed promising preliminary antitumour activity in patients with ALK-positive refractory or recurrent IMT or ALCL, and in a subset of patients with relapsed or refractory neuroblastoma, with a manageable safety profile. Our data support the notion that ALK inhibitors should be considered in therapeutic strategies for paediatric patients with malignancies with genetic ALK alterations. FUNDING Novartis Pharmaceutical Corporation.
Collapse
|
30
|
Doz F, van Tilburg CM, Geoerger B, Nysom K, Øra I, Boni V, Chisholm J, Chung HC, DuBois SG, Melcón SG, Gerber NU, Goto H, Grilley-Olsen JE, Hansford JR, Hong DS, Italiano A, Kang HJ, Capra M, Schulte JH, Stefanowicz J, Tahara M, Ziegler DS, Gavrilovic IT, Norenberg R, Dima L, De La Cuesta E, Laetsch TW, Drilon A, Perreault S. CTNI-58. EFFICACY AND SAFETY OF LAROTRECTINIB IN ADULT AND PEDIATRIC PATIENTS WITH TROPOMYOSIN RECEPTOR KINASE (TRK) FUSION-POSITIVE PRIMARY CENTRAL NERVOUS SYSTEM (CNS) TUMORS. Neuro Oncol 2021. [DOI: 10.1093/neuonc/noab196.283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
BACKGROUND
NTRK gene fusions are oncogenic drivers in various CNS and non-CNS tumors. Larotrectinib is a first-in-class, highly selective TRK inhibitor approved for patients with TRK fusion cancer, with a 75% objective response rate (ORR) in 206 evaluable patients with various non-CNS cancers (Hong et al, ASCO 2021). We report data on patients with TRK fusion-positive primary CNS tumors.
METHODS
Patients with TRK fusion-positive primary CNS tumors in 2 clinical trials (NCT02637687, NCT02576431) were identified. Objective responses were investigator-assessed.
RESULTS
As of July 2020, 33 patients with TRK fusion-positive primary CNS tumors were identified (19 high-grade gliomas [HGG], 8 low-grade gliomas [LGG], 2 glioneuronal tumors, 2 neuroepithelial tumors, 1 CNS neuroblastoma, 1 small round blue cell tumor). Median age was 8.9 years (range 1.3-79.0). Patients were heavily pre-treated, with 45% having ≥ 2 prior systemic therapies. ORR was 30% (95% CI 16-49): 3 complete responses (all pediatric), 7 partial responses, 20 stable disease, and 3 progressive disease. ORR in patients with HGG and LGG were 26% (95% CI 9-51) and 38% (95% CI 9-76), respectively. Median time to response was 1.9 months. Responses were seen regardless of the number of prior systemic therapies. The 24-week disease control rate was 73% (95% CI 54-87). Median PFS was 18.3 months (95% CI 6.7-not estimable [NE]) and median overall survival (OS) was not reached (95% CI 16.9-NE) at a median follow-up of 16.5 months; 12-month OS rate was 85% (95% CI 71-99). Treatment duration ranged from 1.2 to 31.3+ months. Grade 3-4 treatment-related adverse events (TRAEs) occurred in 3 patients (9%). There were no treatment discontinuations due to TRAEs.
CONCLUSIONS
In patients with TRK fusion-positive CNS tumors, larotrectinib demonstrated rapid and durable responses, high disease control rate, and favorable safety regardless of age or number of prior systemic therapies.
Collapse
|
31
|
Dorel M, Klinger B, Mari T, Toedling J, Blanc E, Messerschmidt C, Nadler-Holly M, Ziehm M, Sieber A, Hertwig F, Beule D, Eggert A, Schulte JH, Selbach M, Blüthgen N. Neuroblastoma signalling models unveil combination therapies targeting feedback-mediated resistance. PLoS Comput Biol 2021; 17:e1009515. [PMID: 34735429 PMCID: PMC8604339 DOI: 10.1371/journal.pcbi.1009515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/19/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
Very high risk neuroblastoma is characterised by increased MAPK signalling, and targeting MAPK signalling is a promising therapeutic strategy. We used a deeply characterised panel of neuroblastoma cell lines and found that the sensitivity to MEK inhibitors varied drastically between these cell lines. By generating quantitative perturbation data and mathematical modelling, we determined potential resistance mechanisms. We found that negative feedbacks within MAPK signalling and via the IGF receptor mediate re-activation of MAPK signalling upon treatment in resistant cell lines. By using cell-line specific models, we predict that combinations of MEK inhibitors with RAF or IGFR inhibitors can overcome resistance, and tested these predictions experimentally. In addition, phospho-proteomic profiling confirmed the cell-specific feedback effects and synergy of MEK and IGFR targeted treatment. Our study shows that a quantitative understanding of signalling and feedback mechanisms facilitated by models can help to develop and optimise therapeutic strategies. Our findings should be considered for the planning of future clinical trials introducing MEKi in the treatment of neuroblastoma.
Collapse
|
32
|
Sulejmani O, Grunewald L, Andersch L, Schwiebert S, Klaus A, Winkler A, Astrahantseff K, Eggert A, Henssen AG, Schulte JH, Anders K, Künkele A. Inhibiting Lysine Demethylase 1A Improves L1CAM-Specific CAR T Cell Therapy by Unleashing Antigen-Independent Killing via the FAS-FASL Axis. Cancers (Basel) 2021; 13:cancers13215489. [PMID: 34771652 PMCID: PMC8583435 DOI: 10.3390/cancers13215489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Solid tumor cells can lose or heterogeneously express antigens to become resistant to chimeric antigen receptor (CAR) T cell therapy. Here, we explore whether epigenetic manipulation to unleash antigen-independent killing mechanisms can overcome this hurdle. KDM1A is overexpressed in many cancers and removes lysine methylation on histones that keeps the DNA firmly packed to selectively activate or repress gene activity, depending on the specific lysine target. KDM1A also regulates the expression of nonhistone proteins. We inhibited KDM1A in the childhood tumor, neuroblastoma, to increase FAS expression on tumor cells. The FAS receptor can be triggered to induce cell death when bound by the FAS ligand on CAR and other activated T cells present in the tumor environment, even if the tumor cells lack the target antigen. FAS upregulation via KDM1A inhibition sensitized neuroblastoma cells to FAS-FASL-mediated killing and augmented CAR T cell therapy against antigen-poor or even antigen-negative neuroblastoma. Abstract Chimeric antigen receptor (CAR) T cell therapy has emerged as a promising treatment strategy, however, therapeutic success against solid tumors such as neuroblastoma remains modest. Recurrence of antigen-poor tumor variants often ultimately results in treatment failure. Using antigen-independent killing mechanisms such as the FAS receptor (FAS)-FAS ligand (FASL) axis through epigenetic manipulation may be a way to counteract the escape achieved by antigen downregulation. Analysis of public RNA-sequencing data from primary neuroblastomas revealed that a particular epigenetic modifier, the histone lysine demethylase 1A (KDM1A), correlated negatively with FAS expression. KDM1A is known to interact with TP53 to repress TP53-mediated transcriptional activation of genes, including FAS. We showed that pharmacologically blocking KDM1A activity in neuroblastoma cells with the small molecule inhibitor, SP-2509, increased FAS cell-surface expression in a strictly TP53-dependent manner. FAS upregulation sensitized neuroblastoma cells to FAS-FASL-dependent killing and augmented L1CAM-directed CAR T cell therapy against antigen-poor or even antigen-negative tumor cells in vitro. The improved therapeutic response was abrogated when the FAS-FASL interaction was abolished with an antagonistic FAS antibody. Our results show that KDM1A inhibition unleashes an antigen-independent killing mechanism via the FAS-FASL axis to make tumor cell variants that partially or totally suppress antigen expression susceptible to CAR T cell therapy.
Collapse
|
33
|
Ehlert K, Schulte JH, Kühl JS, Lang P, Eggert A, Voigt S. Efficacy of Brincidofovir in Pediatric Stem Cell Transplant Recipients With Adenovirus Infections. J Pediatric Infect Dis Soc 2021:piab072. [PMID: 34379779 DOI: 10.1093/jpids/piab072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/20/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND Adenovirus (AdV) infections are of particular concern in pediatric hematopoietic stem cell transplantation (HSCT) recipients as therapeutic options are limited. Brincidofovir (BCV) is the lipid-conjugated pro-drug of cidofovir (CDV) with oral bioavailability and higher intracellular concentrations of the active drug. METHODS In this retrospective, single-center analysis, we included allogeneic pediatric HSCT recipients with refractory AdV infections because of contraindications or insufficient response to CDV. Common posttransplant viruses were monitored at least weekly by PCR in blood, stool, and urine. RESULTS Each of the 8 patients received 6 to 12 doses of BCV. BCV treatment was initiated between days +5 and +77. AdV DNAemia and intestinal AdV infection disappeared completely in 6/8 patients. Early AdV DNAemia before day +21 did not result in increased mortality. One patient with a systemic, acyclovir-resistant HSV-1 infection responded rapidly to BCV. Four patients did not survive. AdV infection-related death in 2 patients was accompanied by >1 × 109/mL AdV copy numbers in the blood. Two more patients died of graft-vs-host disease and acute respiratory distress syndrome, respectively, both not related to AdV. CONCLUSIONS AdV DNAemia and intestinal infection subsided completely in 75% of pediatric HSCT recipients treated with BCV. AdV DNAemia exceeding 1 × 109/mL and a poor lymphocyte recovery of <250/µL were associated with high mortality. Early AdV DNAemia before day +21, however, did not result in a worse outcome. Although access to BCV is currently suspended, further clinical trials are needed to clarify the role of BCV in HSCT recipients with AdV infections and its potential benefit in preventing AdV DNAemia in immunocompromised patients.
Collapse
|
34
|
Zirngibl F, Ivasko SM, Grunewald L, Klaus A, Schwiebert S, Ruf P, Lindhofer H, Astrahantseff K, Andersch L, Schulte JH, Lode HN, Eggert A, Anders K, Hundsdoerfer P, Künkele A. GD2-directed bispecific trifunctional antibody outperforms dinutuximab beta in a murine model for aggressive metastasized neuroblastoma. J Immunother Cancer 2021; 9:jitc-2021-002923. [PMID: 34285106 PMCID: PMC8292814 DOI: 10.1136/jitc-2021-002923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background Neuroblastoma is the most common extracranial solid tumor of childhood. Patients with high-risk disease undergo extremely aggressive therapy and nonetheless have cure rates below 50%. Treatment with the ch14.18 monoclonal antibody (dinutuximab beta), directed against the GD2 disialoganglioside, improved 5-year event-free survival in high-risk patients when administered in postconsolidation therapy and was recently implemented in standard therapy. Relapse still occurred in 57% of these patients, necessitating new therapeutic options. Bispecific trifunctional antibodies (trAbs) are IgG-like molecules directed against T cells and cancer surface antigens, redirecting T cells (via their CD3 specificity) and accessory immune cells (via their functioning Fc-fragment) toward tumor cells. We sought proof-of-concept for GD2/CD3-directed trAb efficacy against neuroblastoma. Methods We used two GD2-specific trAbs differing only in their CD3-binding specificity: EKTOMUN (GD2/human CD3) and SUREK (GD2/mouse Cd3). This allowed trAb evaluation in human and murine experimental settings. Tumor-blind trAb and the ch14.18 antibody were used as controls. A coculture model of human peripheral blood mononuclear cells (PBMCs) and neuroblastoma cell lines was established to evaluate trAb antitumor efficacy by assessing expression of T-cell surface markers for activation, proinflammatory cytokine release and cytotoxicity assays. Characteristics of tumor-infiltrating T cells and response of neuroblastoma metastases to SUREK treatment were investigated in a syngeneic immunocompetent neuroblastoma mouse model mimicking minimal residual disease. Results We show that EKTOMUN treatment caused effector cell activation and release of proinflammatory cytokines in coculture with neuroblastoma cell lines. Furthermore, EKTOMUN mediated GD2-dependent cytotoxic effects in human neuroblastoma cell lines in coculture with PBMCs, irrespective of the level of target antigen expression. This effect was dependent on the presence of accessory immune cells. Treatment with SUREK reduced the intratumor Cd4/Cd8 ratio and activated tumor infiltrating T cells in vivo. In a minimal residual disease model for neuroblastoma, we demonstrated that single-agent treatment with SUREK strongly reduced or eliminated neuroblastoma metastases in vivo. SUREK as well as EKTOMUN demonstrated superior tumor control compared with the anti-GD2 antibody, ch14.18. Conclusions Here we provide proof-of-concept for EKTOMUN preclinical efficacy against neuroblastoma, presenting this bispecific trAb as a promising new agent to fight neuroblastoma.
Collapse
|
35
|
Grunewald L, Lam T, Andersch L, Klaus A, Schwiebert S, Winkler A, Gauert A, Heeren-Hagemann AI, Astrahantseff K, Klironomos F, Thomas A, Deubzer HE, Henssen AG, Eggert A, Schulte JH, Anders K, Kloke L, Künkele A. A Reproducible Bioprinted 3D Tumor Model Serves as a Preselection Tool for CAR T Cell Therapy Optimization. Front Immunol 2021; 12:689697. [PMID: 34267756 PMCID: PMC8276678 DOI: 10.3389/fimmu.2021.689697] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/02/2021] [Indexed: 01/01/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell performance against solid tumors in mouse models and clinical trials is often less effective than predicted by CAR construct selection in two-dimensional (2D) cocultures. Three-dimensional (3D) solid tumor architecture is likely to be crucial for CAR T cell efficacy. We used a three-dimensional (3D) bioprinting approach for large-scale generation of highly reproducible 3D human tumor models for the test case, neuroblastoma, and compared these to 2D cocultures for evaluation of CAR T cells targeting the L1 cell adhesion molecule, L1CAM. CAR T cells infiltrated the model, and both CAR T and tumor cells were viable for long-term experiments and could be isolated as single-cell suspensions for whole-cell assays quantifying CAR T cell activation, effector function and tumor cell cytotoxicity. L1CAM-specific CAR T cell activation by neuroblastoma cells was stronger in the 3D model than in 2D cocultures, but neuroblastoma cell lysis was lower. The bioprinted 3D neuroblastoma model is highly reproducible and allows detection and quantification of CAR T cell tumor infiltration, representing a superior in vitro analysis tool for preclinical CAR T cell characterization likely to better select CAR T cells for in vivo performance than 2D cocultures.
Collapse
|
36
|
Perreault S, Doz F, Geoerger B, Nysom K, Øra I, Boni V, Chisholm J, DuBois SG, Gerber NU, Goto H, Grilley-Olson JE, Hansford JR, Kang HJ, Capra M, Schulte JH, Stefanowicz J, Tahara M, Ziegler DS, Norenberg R, Dima L, De La Cuesta E, Laetsch TW, van Tilburg CM. RARE-07. EFFICACY AND SAFETY OF LAROTRECTINIB IN PEDIATRIC PATIENTS WITH TROPOMYOSIN RECEPTOR KINASE (TRK) FUSION-POSITIVE PRIMARY CENTRAL NERVOUS SYSTEM (CNS) TUMORS. Neuro Oncol 2021. [PMCID: PMC8168097 DOI: 10.1093/neuonc/noab090.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background NTRK gene fusions are oncogenic drivers in various CNS and non-CNS tumors. Larotrectinib is a highly selective TRK inhibitor approved to treat patients with TRK fusion cancer, with an objective response rate (ORR) of 78% across multiple non-CNS cancers (McDermott et al, ESMO 2020). We report updated data on pediatric patients with TRK fusion-positive primary CNS tumors. Methods Patients aged <18 years with primary CNS tumors harboring an NTRK gene fusion enrolled in two clinical trials (NCT02637687, NCT02576431) were identified. Larotrectinib was administered until disease progression, withdrawal, or unacceptable toxicity. Response was investigator assessed. Results By July 2020, 26 pediatric patients with TRK fusion-positive CNS tumors were treated. Tumor histologic subtypes included high-grade glioma (n=13), low-grade glioma (n=7), glioneuronal tumor (n=2), neuroepithelial tumor (n=2), CNS neuroblastoma (n=1), and small round blue cell tumor (n=1). Median age was 7.0 years (range 1.3–16.7). The ORR was 38% (95% CI 20–59%): 3 complete responses, 7 partial responses (including 2 pending confirmation), 14 stable disease, and 2 progressive disease. The ORR in patients with high-grade glioma was 38% (95% CI 14–68%). Nineteen of 21 patients (90%) with measurable disease had tumor shrinkage. The 24-week disease control rate was 77% (95% CI 56–91%). Median duration of response (DoR), PFS and overall survival (OS) were not reached. The 12-month rates for DoR, PFS and OS were 75%, 65%, and 86%, respectively. Duration of treatment ranged from 1.2 to 31.3+ months. Treatment-related adverse events were reported for 15 patients (58%) and were Grade 3–4 in 3 patients (12%), with no discontinuations related to larotrectinib. Conclusions In pediatric patients with TRK fusion-positive CNS tumors, larotrectinib demonstrated durable responses, high disease control rate, and good tolerability. These results support testing for NTRK gene fusions in pediatric patients with CNS tumors.
Collapse
|
37
|
Misiak D, Hagemann S, Bell JL, Busch B, Lederer M, Bley N, Schulte JH, Hüttelmaier S. The MicroRNA Landscape of MYCN-Amplified Neuroblastoma. Front Oncol 2021; 11:647737. [PMID: 34026620 PMCID: PMC8138323 DOI: 10.3389/fonc.2021.647737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/15/2021] [Indexed: 02/01/2023] Open
Abstract
MYCN gene amplification and upregulated expression are major hallmarks in the progression of high-risk neuroblastoma. MYCN expression and function in modulating gene synthesis in neuroblastoma is controlled at virtually every level, including poorly understood regulation at the post-transcriptional level. MYCN modulates the expression of various microRNAs including the miR-17-92 cluster. MYCN mRNA expression itself is subjected to the control by miRNAs, most prominently the miR-17-92 cluster that balances MYCN expression by feed-back regulation. This homeostasis seems disturbed in neuroblastoma where MYCN upregulation coincides with severely increased expression of the miR-17-92 cluster. In the presented study, we applied high-throughput next generation sequencing to unravel the miRNome in a cohort of 97 neuroblastomas, representing all clinical stages. Aiming to reveal the MYCN-dependent miRNome, we evaluate miRNA expression in MYCN-amplified as well as none amplified tumor samples. In correlation with survival data analysis of differentially expressed miRNAs, we present various putative oncogenic as well as tumor suppressive miRNAs in neuroblastoma. Using microRNA trapping by RNA affinity purification, we provide a comprehensive view of MYCN-regulatory miRNAs in neuroblastoma-derived cells, confirming a pivotal role of the miR-17-92 cluster and moderate association by the let-7 miRNA family. Attempting to decipher how MYCN expression escapes elevated expression of inhibitory miRNAs, we present evidence that RNA-binding proteins like the IGF2 mRNA binding protein 1 reduce miRNA-directed downregulation of MYCN in neuroblastoma. Our findings emphasize the potency of post-transcriptional regulation of MYCN in neuroblastoma and unravel new avenues to pursue inhibition of this potent oncogene.
Collapse
|
38
|
Schulte JH, Eggert A. ALK Inhibitors in Neuroblastoma: A Sprint from Bench to Bedside. Clin Cancer Res 2021; 27:3507-3509. [PMID: 33947691 DOI: 10.1158/1078-0432.ccr-21-0627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022]
Abstract
Activating mutations of the anaplastic lymphoma kinase (ALK) gene were identified in the pediatric tumor neuroblastoma, in 2008. Rapid translation of this finding into targeted neuroblastoma therapy was facilitated by the availability of ALK inhibitors developed for adult malignancies and an efficient preclinical and clinical research program.See related article by Foster et al., p. 3543.
Collapse
|
39
|
Reschke M, Biewald E, Bronstein L, Brecht IB, Dittner-Moormann S, Driever F, Ebinger M, Fleischhack G, Grabow D, Geismar D, Göricke S, Guberina M, Le Guin CHD, Kiefer T, Kratz CP, Metz K, Müller B, Ryl T, Schlamann M, Schlüter S, Schönberger S, Schulte JH, Sirin S, Süsskind D, Timmermann B, Ting S, Wackernagel W, Wieland R, Zenker M, Zeschnigk M, Reinhardt D, Eggert A, Ritter-Sovinz P, Lohmann DR, Bornfeld N, Bechrakis N, Ketteler P. Eye Tumors in Childhood as First Sign of Tumor Predisposition Syndromes: Insights from an Observational Study Conducted in Germany and Austria. Cancers (Basel) 2021; 13:cancers13081876. [PMID: 33919815 PMCID: PMC8070790 DOI: 10.3390/cancers13081876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Eye tumors in children are very rare. In Europe, these eye tumors are nearly always diagnosed early and cure rates are high. However, eye tumors in childhood often occur as the first sign of a genetic tumor predisposition syndrome. This study collected data of children with malignant eye tumors diagnosed in five years in Germany and Austria to learn about the association of eye tumors in childhood with tumor predisposition syndrome. The study recruited 300 children with malignant eye tumors in childhood. In the here-presented cohort, more than 40% of eye tumors were associated with rare tumor predisposition syndromes. For this reason, all children with eye tumors and their families should receive genetic counseling for a tumor predisposition syndrome. Children with a genetic predisposition to cancer should receive a tailored surveillance, including detailed history, physical examination and, if indicated, imaging to screen for other cancers later in life. Abstract Retinoblastoma and other eye tumors in childhood are rare diseases. Many eye tumors are the first signs of a genetic tumor predisposition syndrome and the affected children carry a higher risk of developing other cancers later in life. Clinical and genetic data of all children with eye tumors diagnosed between 2013–2018 in Germany and Austria were collected in a multicenter prospective observational study. In five years, 300 children were recruited into the study: 287 with retinoblastoma, 7 uveal melanoma, 3 ciliary body medulloepithelioma, 2 retinal astrocytoma, 1 meningioma of the optic nerve extending into the eye. Heritable retinoblastoma was diagnosed in 44% of children with retinoblastoma. One child with meningioma of the optic nerve extending into the eye was diagnosed with neurofibromatosis 2. No pathogenic constitutional variant in DICER1 was detected in a child with medulloepithelioma while two children did not receive genetic analysis. Because of the known association with tumor predisposition syndromes, genetic counseling should be offered to all children with eye tumors. Children with a genetic predisposition to cancer should receive a tailored surveillance including detailed history, physical examinations and, if indicated, imaging to screen for other cancer. Early detection of cancers may reduce mortality.
Collapse
|
40
|
Kogel F, Hakimeh D, Sodani P, Lang P, Kühl JS, Hundsdoerfer P, Künkele A, Eggert A, Oevermann L, Schulte JH. Allogeneic hematopoietic stem cell transplantation from sibling and unrelated donors in pediatric patients with sickle cell disease-A single center experience. Pediatr Transplant 2021; 25:e13892. [PMID: 33098344 DOI: 10.1111/petr.13892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 11/27/2022]
Abstract
HSCT is curative in SCD. Patients with HLA-identical sibling donor have an excellent outcome ranging from 90%-100% overall and event-free survival. However, due to the lack of matched sibling donors this option is out of reach for 70% of patients with SCD. The pool of potential donors needs to be extended. Transplantations from HLA-matched unrelated donors were reported to be less successful with shorter event-free survival and higher incidences of complications including graft-vs-host disease, especially in patients with advanced stage SCD. Here we report transplantation outcomes for 25 children with SCD transplanted using HLA-matched grafts from related or unrelated donors. Overall survival was 100% with no severe (grade III-IV) graft-vs-host disease and a 12% rejection rate. Mixed donor chimerisms only occurred in transplantations from siblings, while transplantations from unrelated donors resulted in either complete donor chimerism or rejection. Despite the small patient number, overall and disease-free survival for unrelated donor transplantations is excellent in this cohort. The advanced disease state, higher alloreactive effect and stronger immunosuppression in unrelated donor transplantations raises patient risk, for which possible solutions could be found in optimization of transplant preparation, graft manipulation or haploidentical transplantation using T cell receptor α/β-depleted grafts.
Collapse
|
41
|
Arlt B, Zasada C, Baum K, Wuenschel J, Mastrobuoni G, Lodrini M, Astrahantseff K, Winkler A, Schulte JH, Finkler S, Forbes M, Hundsdoerfer P, Guergen D, Hoffmann J, Wolf J, Eggert A, Kempa S, Deubzer HE. Inhibiting phosphoglycerate dehydrogenase counteracts chemotherapeutic efficacy against MYCN-amplified neuroblastoma. Int J Cancer 2020; 148:1219-1232. [PMID: 33284994 DOI: 10.1002/ijc.33423] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 01/12/2023]
Abstract
Here we sought metabolic alterations specifically associated with MYCN amplification as nodes to indirectly target the MYCN oncogene. Liquid chromatography-mass spectrometry-based proteomics identified seven proteins consistently correlated with MYCN in proteomes from 49 neuroblastoma biopsies and 13 cell lines. Among these was phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in de novo serine synthesis. MYCN associated with two regions in the PHGDH promoter, supporting transcriptional PHGDH regulation by MYCN. Pulsed stable isotope-resolved metabolomics utilizing 13 C-glucose labeling demonstrated higher de novo serine synthesis in MYCN-amplified cells compared to cells with diploid MYCN. An independence of MYCN-amplified cells from exogenous serine and glycine was demonstrated by serine and glycine starvation, which attenuated nucleotide pools and proliferation only in cells with diploid MYCN but did not diminish these endpoints in MYCN-amplified cells. Proliferation was attenuated in MYCN-amplified cells by CRISPR/Cas9-mediated PHGDH knockout or treatment with PHGDH small molecule inhibitors without affecting cell viability. PHGDH inhibitors administered as single-agent therapy to NOG mice harboring patient-derived MYCN-amplified neuroblastoma xenografts slowed tumor growth. However, combining a PHGDH inhibitor with the standard-of-care chemotherapy drug, cisplatin, revealed antagonism of chemotherapy efficacy in vivo. Emergence of chemotherapy resistance was confirmed in the genetic PHGDH knockout model in vitro. Altogether, PHGDH knockout or inhibition by small molecules consistently slows proliferation, but stops short of killing the cells, which then establish resistance to classical chemotherapy. Although PHGDH inhibition with small molecules has produced encouraging results in other preclinical cancer models, this approach has limited attractiveness for patients with neuroblastoma.
Collapse
|
42
|
Schlegel P, Jung G, Lang AM, Döring M, Schulte JH, Ebinger M, Holzer U, Heubach F, Seitz C, Lang B, Hundsdörfer P, Eggert A, Eichholz T, Kreyenberg H, Lang P, Handgretinger R. ADCC can improve graft vs leukemia effect after T- and B-cell depleted haploidentical stem cell transplantation in pediatric B-lineage ALL. Bone Marrow Transplant 2020; 54:689-693. [PMID: 31431707 DOI: 10.1038/s41409-019-0606-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Posttransplant relapsed B-cell precursor ALL can be cured by 2nd hematopoietic stem cell transplantation (HSCT) in 20% of patients. The major cause of death after second HSCT is leukemic relapse. One reliable predictor for survival after 2nd-HSCT are posttransplant MRD levels. Patients with detectable or increase of MRD are likely to relapse. Patients in complete molecular remission show the best leukemia-free survival and lowest cumulative incidence (CI) of relapse. As patients who undergo second or subsequent HSCT are high-risk patients, we evaluated the prophylactic use of the chimeric Fc-optimized CD19-4G7SDIE-mAb. Posttransplant relapsed CD19+ BCP-ALL patients, who underwent a second or subsequent haplo-HSCT from a T- and B-cell depleted graft received posttransplant prophylactic CD19-4G7SDIE-mAb treatment on compassionate use in complete molecular remission, to increase the antileukemic activity of the new reconstituting immune system by recruiting Fc-expressing effector cells. NK cells recovered early and robust. The 3 year overall survival in 15 evaluable patients was 56%, the 3 year event-free survival was 55% and the CI of relapse 38%. Compared to a historical control group, the CI of relapse was markedly lower and consecutively the EFS higher. Posttransplant-targeted therapy may overcome the need for unspecific GvL effect of undesired GvHD, that can cause severe morbidity and mortality. Due to a low adverse event profile the CD19-4G7SDIE-mAb may be suitable for broad administration to consolidate posttransplant MRD negativity.
Collapse
|
43
|
Kim H, Nguyen NP, Turner K, Wu S, Gujar AD, Luebeck J, Liu J, Deshpande V, Rajkumar U, Namburi S, Amin SB, Yi E, Menghi F, Schulte JH, Henssen AG, Chang HY, Beck CR, Mischel PS, Bafna V, Verhaak RGW. Extrachromosomal DNA is associated with oncogene amplification and poor outcome across multiple cancers. Nat Genet 2020; 52:891-897. [PMID: 32807987 PMCID: PMC7484012 DOI: 10.1038/s41588-020-0678-2] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/15/2020] [Indexed: 12/27/2022]
Abstract
Extrachromosomal DNA (ecDNA) amplification promotes intratumoral genetic heterogeneity and accelerated tumor evolution1-3; however, its frequency and clinical impact are unclear. Using computational analysis of whole-genome sequencing data from 3,212 cancer patients, we show that ecDNA amplification frequently occurs in most cancer types but not in blood or normal tissue. Oncogenes were highly enriched on amplified ecDNA, and the most common recurrent oncogene amplifications arose on ecDNA. EcDNA amplifications resulted in higher levels of oncogene transcription compared to copy number-matched linear DNA, coupled with enhanced chromatin accessibility, and more frequently resulted in transcript fusions. Patients whose cancers carried ecDNA had significantly shorter survival, even when controlled for tissue type, than patients whose cancers were not driven by ecDNA-based oncogene amplification. The results presented here demonstrate that ecDNA-based oncogene amplification is common in cancer, is different from chromosomal amplification and drives poor outcome for patients across many cancer types.
Collapse
|
44
|
Peitz C, Sprüssel A, Linke RB, Astrahantseff K, Grimaldi M, Schmelz K, Toedling J, Schulte JH, Fischer M, Messerschmidt C, Beule D, Keilholz U, Eggert A, Deubzer HE, Lodrini M. Multiplexed Quantification of Four Neuroblastoma DNA Targets in a Single Droplet Digital PCR Reaction. J Mol Diagn 2020; 22:1309-1323. [PMID: 32858250 DOI: 10.1016/j.jmoldx.2020.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
The detection and characterization of cell-free DNA (cfDNA) in peripheral blood from neuroblastoma patients may serve as a minimally invasive approach to liquid biopsy. Major challenges in the analysis of cfDNA purified from blood samples are small sample volumes and low cfDNA concentrations. Droplet digital PCR (ddPCR) is a technology suitable for analyzing low levels of cfDNA. Reported here are two quadruplexed ddPCR assay protocols that reliably quantify MYCN and ALK copy numbers in a single reaction together with the two reference genes, NAGK and AFF3, and accurately estimate ALKF1174L (exon 23 position 3522, C>A) and ALKR1275Q (exon 25 position 3824, G>A) mutant allele fractions using cfDNA as input. The separation of positive and negative droplets was optimized for detecting two targets in each ddPCR fluorescence channel by the adjustment of the probe and primer concentrations of each target molecule. The quadruplexed assays were validated using a panel of 10 neuroblastoma cell lines and paired blood plasma and primary neuroblastoma samples from nine patients. Accuracy and sensitivity thresholds in quadruplexed assays corresponded well with those from the respective duplexed assays. Presented are two robust quadruplexed ddPCR protocols applicable in the routine clinical setting and that require only minimal plasma volumes for the assessment of MYCN and ALK oncogene status.
Collapse
|
45
|
Gürgen D, Rolff J, Schulte JH, Deubzer HE, Schmelz K, Henssen AG, Hundsdörfer P, Seifert G, Eggert A, Walther W, Hoffmann J. Abstract A02: Patient-derived xenograft models of neuroblastoma as improvement for the prediction of targeted therapies for childhood cancer. Cancer Res 2020. [DOI: 10.1158/1538-7445.camodels2020-a02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Introduction: Highly variable clinical outcomes including immediate fatal progression to spontaneous regression are characteristically observed for neuroblastoma (NB), a pediatric cancer arising from progenitors of the sympathetic nervous system. Pronounced rates of relapse and fast-evolving resistance against standard-of-care (SOC) treatments, together with a high degree of mutational mobility and heterogeneity, indicate the need for more precise and molecular targeted strategies.
Aim: Patient-derived xenograft (PDX) models closely resemble human tumor biology from primary tissue and could be utilized for predictive preclinical testing. For this aim we established a cohort of 10 NB PDX models from 33 primary human tissue samples obtained from the Charité University Clinic. Specimen originated from proliferating areas while possible necrotic lesions had been removed prior to subcutaneous transplantation to immunodeficient NOG mice. After documenting stable growth over 3-4 initial passages, NB PDX models were screened for sensitivity to SOC drugs including actinomycin D, dacarbazine, docetaxel, doxorubicin, etoposide, ifosfamide, gemcitabine, and vincristine.
Results: Characteristic NB pathology of all PDX was verified using HE and IHC staining of FFPE tumor sections comparing individual passages. Post-transplant lymphoproliferative disorder (PTLD) was excluded analyzing hCD45 specific marker. Depending on traceable somatic mutations, NB PDX doubling times dramatically varied between 4 days in aggressive, 8 days in intermediate, and up to 18 days in slowly growing tumors. Not surprisingly, high-risk NB tumors with confirmed MYCN amplification and ALK mutation exhibited the fastest growth in our cohort. In contrast, doubling rates of tumors with single ALK mutation or TERT rearrangement were not significantly different compared to the slowest PDX models without driver mutations. Most effective treatment response was observed for vincristine, leading to stable disease or partial regression in 5 out of 8 models (63%) achieving a tumor growth inhibition (TGI) of 70%, whereas all models were insensitive against dacarbazine treatment with a TGI of 33%, respectively.
Conclusion: Currently, whole-exome sequencing of all models is performed. Molecular analysis will enable prediction of more precise therapeutic strategies. We will use our NB PDX to validate targeted treatment effects of recent pipeline drugs. As part of the European Innovative Therapies for Children with Cancer-Paediatric Preclinical Proof of Concept Platform (ITCC-P4) consortium, these findings will be correlated with predictions of the NB PDX molecular profile to achieve valuable benefit for pediatric patients.
Citation Format: Dennis Gürgen, Jana Rolff, Johannes H. Schulte, Hedwig E. Deubzer, Karin Schmelz, Anton G. Henssen, Patrick Hundsdörfer, Georg Seifert, Angelika Eggert, Wolfgang Walther, Jens Hoffmann. Patient-derived xenograft models of neuroblastoma as improvement for the prediction of targeted therapies for childhood cancer [abstract]. In: Proceedings of the AACR Special Conference on the Evolving Landscape of Cancer Modeling; 2020 Mar 2-5; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2020;80(11 Suppl):Abstract nr A02.
Collapse
|
46
|
Schulte JH, Moreno L, Ziegler DS, Marshall LV, Zwaan CM, Irwin M, Casanova M, Sabado C, Wulff B, Stegert M, Wang L, Hurtado FK, Branle F, Fischer M, Geoerger B. Final analysis of phase I study of ceritinib in pediatric patients with malignancies harboring activated anaplastic lymphoma kinase (ALK). J Clin Oncol 2020. [DOI: 10.1200/jco.2020.38.15_suppl.10505] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
10505 Background: Activation of anaplastic lymphoma kinase has been detected in several pediatric malignancies, including anaplastic large-cell lymphoma (ALCL), inflammatory myofibroblastic tumor (IMT), neuroblastoma and others. Preliminary findings from this phase 1, multicenter, dose-escalation study (NCT01742286) indicated a Maximum Tolerated Dose (MTD)/Recommended Dose for Expansion (RDE) of the potent oral ALK inhibitor ceritinib to be 510 mg/m2 (fasted) and 500 mg/m2 (fed) in pediatric patients (pts). Here, we report final safety, pharmacokinetics (PK) and efficacy results. Methods: Children aged ≥1 to <18 years with advanced, mostly pretreated, ALK-aberrant malignancies were enrolled in this study. Dose escalation was conducted to determine the MTD/RDE of ceritinib (primary objective), in both fasted and fed states, following which pts entered an expansion phase to evaluate safety, tolerability, and efficacy at the MTD/RDE. Secondary objectives were evaluation of safety, PK, and efficacy (overall response rate [ORR], duration of response [DOR] and progression-free survival [PFS]). Results: A total of 83 pts (median age, 8 years) with ALK-aberrant malignancies were enrolled into dose-escalation (n = 40) and expansion (n = 43) study periods. Of these, 55 pts (neuroblastoma, n = 30; IMT, n = 10; ALCL, n = 8; others, n = 7) were treated with ceritinib at MTD/RDE (510 mg/m2 [fasted], n = 13; 500 mg/m2 [fed], n = 42). Systemic exposure of ceritinib between the two doses was comparable, so data were pooled for efficacy assessment. The ORRs (95% CI) were 75% (34.9-96.8) for pts with ALCL, 70% (34.8-93.3) for IMT and 20% (7.7-38.6) for neuroblastoma. The median DOR was 15 months (95% CI: 5.8, 22.2) for the 6/30 pts with neuroblastoma who had confirmed CR or PR treated at fasted/fed MTD/RDE. Median DOR was not reached for those with ALCL and IMT. Most common adverse events (AEs) (N = 83; all-grades, all-causality, ≥50% of pts): vomiting (86.7%), diarrhea (78.3%), increased ALT (65.1%), increased AST (59.0%), nausea (56.6%), and abdominal pain (50.6%). Grade 3/4 AEs were observed in 80.7% of pts (mostly transaminase elevations) and were manageable. Six pts (7.2%) were discontinued from ceritinib due to a grade 3/4 AE (mostly transaminase elevation). Conclusions: Substantial activity was observed with ceritinib at the RDE in pts with IMT, ALCL and heavily pretreated neuroblastoma. The toxicity profile of ceritinib in children was manageable and similar to that previously reported in adults. Clinical trial information: NCT01742286.
Collapse
|
47
|
Toews K, Grunewald L, Schwiebert S, Klaus A, Winkler A, Ali S, Zirngibl F, Astrahantseff K, Wagner DL, Henssen AG, Deubzer HE, Schulte JH, Ochsenreither S, Eggert A, Künkele A. Central memory phenotype drives success of checkpoint inhibition in combination with CAR T cells. Mol Carcinog 2020; 59:724-735. [PMID: 32333465 DOI: 10.1002/mc.23202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
Abstract
The immunosuppressive microenvironment in solid tumors is thought to form a barrier to the entry and efficacy of cell-based therapies such as chimeric antigen receptor (CAR) T cells. Combining CAR T cell therapy with checkpoint inhibitors has been demonstrated to oppose immune escape mechanisms in solid tumors and augment antitumor efficacy. We evaluated PD-1/PD-L1 signaling capacity and the impact of an inhibitor of this checkpoint axis in an in vitro system for cancer cell challenge, the coculture of L1CAM-specific CAR T cells with neuroblastoma cell lines. Fluorescence-activated cell sorting-based analyses and luciferase reporter assays were used to assess PD-1/PD-L1 expression on CAR T and tumor cells as well as CAR T cell ability to kill neuroblastoma cells. Coculturing neuroblastoma cell lines with L1CAM-CAR T cells upregulated PD-L1 expression on neuroblastoma cells, confirming adaptive immune resistance. Exposure to neuroblastoma cells also upregulated the expression of the PD-1/PD-L1 axis in CAR T cells. The checkpoint inhibitor, nivolumab, enhanced L1CAM-CAR T cell-directed killing. However, nivolumab-enhanced L1CAM-CAR T cell killing did not strictly correlate with PD-L1 expression on neuroblastoma cells. In fact, checkpoint inhibitor success relied on strong PD-1/PD-L1 axis expression in the CAR T cells, which in turn depended on costimulatory domains within the CAR construct, and more importantly, on the subset of T cells selected for CAR T cell generation. Thus, T cell subset selection for CAR T cell generation and CAR T cell prescreening for PD-1/PD-L1 expression could help determine when combination therapy with checkpoint inhibitors could improve treatment efficacy.
Collapse
|
48
|
Gualandi M, Iorio M, Engeler O, Serra-Roma A, Gasparre G, Schulte JH, Hohl D, Shakhova O. Oncogenic ALK F1174L drives tumorigenesis in cutaneous squamous cell carcinoma. Life Sci Alliance 2020; 3:3/6/e201900601. [PMID: 32312912 PMCID: PMC7184028 DOI: 10.26508/lsa.201900601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
Here, we show for the first time that anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase of the insulin receptor superfamily, plays a pivotal role in the pathogenesis of cSCC. Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer characterized by increased mortality. Here, we show for the first time that anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase of the insulin receptor superfamily, plays a pivotal role in the pathogenesis of cSCC. Our data demonstrate that the overexpression of the constitutively active, mutated ALK, ALKF1174L, is sufficient to initiate the development of cSCC and is 100% penetrant. Moreover, we show that cSCC development upon ALKF1174L overexpression is independent of the cell-of-origin. Molecularly, our data demonstrate that ALKF1174L cooperates with oncogenic KrasG12D and loss of p53, well-established events in the biology of cSCC. This cooperation results in a more aggressive cSCC type associated with a higher grade histological morphology. Finally, we demonstrate that Stat3 is a key downstream effector of ALKF1174L and likely plays a role in ALKF1174L-driven cSCC tumorigenesis. In sum, these findings reveal that ALK can exert its tumorigenic potential via cooperation with multiple pathways crucial in the pathogenesis of cSCC. Finally, we show that human cSCCs contain mutations in the ALK gene. Taken together, our data identify ALK as a new key player in the pathogenesis of cSCC, and this knowledge suggests that oncogenic ALK signaling can be a target for future clinical trials.
Collapse
|
49
|
Ali S, Toews K, Schwiebert S, Klaus A, Winkler A, Grunewald L, Oevermann L, Deubzer HE, Tüns A, Jensen MC, Henssen AG, Eggert A, Schulte JH, Schwich E, Rebmann V, Schramm A, Künkele A. Tumor-Derived Extracellular Vesicles Impair CD171-Specific CD4 + CAR T Cell Efficacy. Front Immunol 2020; 11:531. [PMID: 32296437 PMCID: PMC7137471 DOI: 10.3389/fimmu.2020.00531] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell efficacy against solid tumors is currently limited by several immune escape mechanisms, which may include tumor-derived extracellular vesicles. Advanced neuroblastoma is an aggressive childhood tumor without curative treatment options for most relapsed patients today. We here evaluated the role of tumor-derived extracellular vesicles on the efficacy of CAR T cells targeting the neuroblastoma-specific antigen, CD171. For this purpose, CAR T cell activation, cytokine production, exhaustion, and tumor cell-directed cytotoxicity upon co-culture was evaluated. Tumor-derived extracellular vesicles isolated from SH-SY5Y neuroblastoma cells neither affected CAR T cell activation nor expression of inhibitory markers. Importantly, exposure of CD4+ CD171-specific CAR T cells to tumor-derived extracellular vesicles significantly impaired tumor cytotoxicity of CAR T cells. This effect was independent of neurotrophic receptor tyrosine kinases 1 or 2 (NTRK1, NTRK2) expression, which is known to impact immune responses against neuroblastoma. Our results demonstrate for the first time the impact of tumor-derived extracellular vesicles and non-cell-mediated tumor-suppressive effects on CD4+ CAR T cell efficacy in a preclinical setting. We conclude that these factors should be considered for any CAR T cell-based therapy to make CAR T cell therapy successful against solid tumors.
Collapse
|
50
|
Stenger W, Künkele A, Niemann M, Todorova K, Pruß A, Schulte JH, Eggert A, Oevermann L. Donor selection in a pediatric stem cell transplantation cohort using PIRCHE and HLA-DPB1 typing. Pediatr Blood Cancer 2020; 67:e28127. [PMID: 31850671 DOI: 10.1002/pbc.28127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND New strategies to optimize donor selection for hematopoietic stem cell transplantation (HSCT) have mainly been evaluated in adults, but the disease spectrum requiring HSCT differs significantly in children and has consequences for the risk of complications, such as graft-versus-host disease (GvHD). PROCEDURES Here we evaluated whether HLA-DPB1 and Predicted Indirectly ReCognizable HLA-Epitope (PIRCHE) matching can improve donor selection and minimize risks specific for a pediatric cohort undergoing HSCT in Berlin between 2014 and 2016. RESULTS The percentage of HLA-DPB1-mismatched HSCT in the pediatric cohort was in line with the general distribution among matched unrelated donor HSCT. Nonpermissive HLA-DPB1 mismatches were not associated with a higher incidence of GvHD, but the incidence of relapse was higher in patients undergoing HSCT from HLA-DPB1-matched transplantations. High PIRCHE-I scores were associated with a significantly higher risk for developing GvHD in patients undergoing HSCT from nine of ten matched unrelated donors. This finding persisted after including HLA-DPB1 into the PIRCHE analysis. CONCLUSIONS Implementing PIRCHE typing in the donor selection process for HSCT in children could particularly benefit children with nonmalignant diseases and support further validation of PIRCHE-based donor selection in a larger number of children treated at different sites.
Collapse
|