26
|
de Ruiter DJ, Laird MF, Elliott M, Schmid P, Brophy J, Hawks J, Berger LR. Homo naledi cranial remains from the Lesedi chamber of the rising star cave system, South Africa. J Hum Evol 2019; 132:1-14. [PMID: 31203841 DOI: 10.1016/j.jhevol.2019.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/19/2019] [Accepted: 03/30/2019] [Indexed: 11/30/2022]
Abstract
Excavations in the Lesedi Chamber (U.W. 102) of the Rising Star cave system from 2013 to 2015 resulted in the recovery of 131 fossils representing at least three individuals attributed to Homo naledi. Hominin fossils were recovered from three collection areas within the Lesedi Chamber. A partial skull with near complete dentition (LES1) and an associated partial skeleton were recovered from Area 102a, while craniodental remains from two other individuals were recovered from Areas 102b and 102c. Here we present detailed anatomical descriptions and metrical comparisons of the Lesedi Chamber H. naledi craniodental remains that preserve diagnostic morphology. The LES1 skull is a presumed male that is slightly larger in size, and shows greater development of ectocranial structures compared to other H. naledi specimens from the Dinaledi Chamber of the Rising Star cave system. Otherwise the Lesedi fossils are notably similar to the Dinaledi fossils in shape and morphology. The Lesedi fossils also preserve the delicate nasal and lacrimal bones that are otherwise unrecorded in the Dinaledi sample. Limited morphological differences between the Dinaledi and Lesedi Chamber hominin samples provides support for the hypothesis that these two assemblages share a close phyletic relationship.
Collapse
|
27
|
Brophy JK, Irish J, Churchill SE, de Ruiter DJ, Hawks J, Berger LR. A comparison of hominin teeth from Lincoln Cave, Sterkfontein L/63, and the Dinaledi Chamber, South Africa. S AFR J SCI 2019. [DOI: 10.17159/sajs.2019/5739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Prior to the recovery of Homo naledi from the Dinaledi Chamber of the Rising Star Cave system, the Middle Pleistocene fossil record in Africa was particularly sparse. With the large sample size now available from Dinaledi, the opportunity exists to reassess taxonomically ambiguous teeth unearthed at the nearby site of Sterkfontein. Teeth recovered from Lincoln Cave South and area L/63 at Sterkfontein have been considered ‘most probably Homo ergaster’ and ‘perhaps Archaic Homo sapiens’, respectively. Given the similarities shared between Lincoln Cave, area L/63, and the Dinaledi Chamber with regard to climatic/geologic depositional context and age, two teeth from the former sites, StW 592 and StW 585 respectively, were compared with corresponding tooth types of H. naledi from the Dinaledi Chamber. The results of our study indicate that the Lincoln Cave and area L/63 teeth are morphologically inconsistent with the variation recognised in the H. naledi teeth.
Significance:
The similar age and climatic/geologic depositional and post-depositional circumstances at Lincoln Cave South, area L/63 at Sterkfontein and the Dinaledi Chamber, Rising Star raise the possibility that these fossils might represent the same species.
The teeth StW 592 and StW 585 are not consistent with the variation evident in the known naledi sample.
The results of the study do not add to the question of the existence of at least two species of the genus Homo living in close proximity to each other in South Africa at approximately the same time.
Collapse
|
28
|
Berger LR, Hawks J. Australopithecus prometheus
is a
nomen nudum. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168:383-387. [DOI: 10.1002/ajpa.23743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/02/2018] [Accepted: 10/13/2018] [Indexed: 11/10/2022]
|
29
|
VanSickle C, Cofran Z, García-Martínez D, Williams SA, Churchill SE, Berger LR, Hawks J. Homo naledi pelvic remains from the Dinaledi Chamber, South Africa. J Hum Evol 2018; 125:122-136. [DOI: 10.1016/j.jhevol.2017.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 11/30/2022]
|
30
|
Maughan B, Hahn A, Hoffman J, Morton K, Gupta S, Batten J, Thorley J, Hawks J, Nachaegari G, Nussenzveig R, Boucher K, Agarwal N. Randomized phase II trial of radium-223 (RA) plus enzalutamide (EZ) vs. EZ alone in metastatic castration refractory prostate cancer (mCRPC). Ann Oncol 2018. [DOI: 10.1093/annonc/mdy284.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Bolter DR, Hawks J, Bogin B, Cameron N. Palaeodemographics of individuals in Dinaledi Chamber using dental remains. S AFR J SCI 2018. [DOI: 10.17159/sajs.2018/20170066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Hominin skeletal remains from the Dinaledi Chamber, South Africa, represent a minimum of 15 individuals of the extinct species Homo naledi. We examined the dental material from this sample in order to assess the life-history stages of individuals in the sample, in particular to determine the minimum number of individuals in the sample as a whole, and within each of six age classes. We found evidence of individuals within every age class: infant, early juvenile, late juvenile, subadult, young adult and old adult. The Dinaledi Chamber sample is notable in comparison to other samples of human, chimpanzee and fossil hominins in that it has a relatively high representation of juvenile remains, as compared to infants and adults. With 15 individuals, the sample size presented by the Dinaledi dental material is too small to test the hypothesis of attritional versus catastrophic accumulation. The data here provide a basis for further investigation of individual associations within this commingled assemblage, and provide an important comparative data set as a basis for the consideration of life history in H. naledi and other extinct hominin populations.
Collapse
|
32
|
de Ruiter DJ, Churchill S, Hawks J, Berger L. Late Australopiths and the Emergence of Homo. ANNUAL REVIEW OF ANTHROPOLOGY 2017. [DOI: 10.1146/annurev-anthro-102116-041734] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
New fossil discoveries and new analyses increasingly blur the lines between Australopithecus and Homo, changing scientific ideas about the transition between the two genera. The concept of the genus itself remains an unsettled issue, though recent fossil discoveries and theoretical advances, alongside developments in phylogenetic reconstruction and hypothesis testing, are helping us approach a resolution. A review of the latest discoveries and research reveals that (a) despite the recent recovery of key fossil specimens, the antiquity of the genus Homo remains uncertain; (b) although there exist several australopith candidate ancestors for the genus Homo, there is little consensus about which of these, if any, represents the actual ancestor; and (c) potential convergent evolution (homoplasy) in adaptively significant features in late australopiths and basal members of the Homo clade, combined with probable reticulate evolution, makes it currently impossible to identify the direct ancestor of Homo erectus.
Collapse
|
33
|
Garvin HM, Elliott MC, Delezene LK, Hawks J, Churchill SE, Berger LR, Holliday TW. Body size, brain size, and sexual dimorphism in Homo naledi from the Dinaledi Chamber. J Hum Evol 2017; 111:119-138. [DOI: 10.1016/j.jhevol.2017.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 01/07/2023]
|
34
|
Dirks PH, Roberts EM, Hilbert-Wolf H, Kramers JD, Hawks J, Dosseto A, Duval M, Elliott M, Evans M, Grün R, Hellstrom J, Herries AI, Joannes-Boyau R, Makhubela TV, Placzek CJ, Robbins J, Spandler C, Wiersma J, Woodhead J, Berger LR. The age of Homo naledi and associated sediments in the Rising Star Cave, South Africa. eLife 2017; 6. [PMID: 28483040 PMCID: PMC5423772 DOI: 10.7554/elife.24231] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/25/2017] [Indexed: 11/15/2022] Open
Abstract
New ages for flowstone, sediments and fossil bones from the Dinaledi Chamber are presented. We combined optically stimulated luminescence dating of sediments with U-Th and palaeomagnetic analyses of flowstones to establish that all sediments containing Homo naledi fossils can be allocated to a single stratigraphic entity (sub-unit 3b), interpreted to be deposited between 236 ka and 414 ka. This result has been confirmed independently by dating three H. naledi teeth with combined U-series and electron spin resonance (US-ESR) dating. Two dating scenarios for the fossils were tested by varying the assumed levels of 222Rn loss in the encasing sediments: a maximum age scenario provides an average age for the two least altered fossil teeth of 253 +82/–70 ka, whilst a minimum age scenario yields an average age of 200 +70/–61 ka. We consider the maximum age scenario to more closely reflect conditions in the cave, and therefore, the true age of the fossils. By combining the US-ESR maximum age estimate obtained from the teeth, with the U-Th age for the oldest flowstone overlying Homo naledi fossils, we have constrained the depositional age of Homo naledi to a period between 236 ka and 335 ka. These age results demonstrate that a morphologically primitive hominin, Homo naledi, survived into the later parts of the Pleistocene in Africa, and indicate a much younger age for the Homo naledi fossils than have previously been hypothesized based on their morphology. DOI:http://dx.doi.org/10.7554/eLife.24231.001 Species of ancient humans and the extinct relatives of our ancestors are typically described from a limited number of fossils. However, this was not the case with Homo naledi. More than 1500 fossils representing at least 15 individuals of this species were unearthed from the Rising Star cave system in South Africa between 2013 and 2014. Found deep underground in the Dinaledi Chamber, the H. naledi fossils are the largest collection of a single species of an ancient human-relative discovered in Africa. After the discovery was reported, a number of questions still remained. Not least among these questions was: how old were the fossils? The material was undated, and predictions ranged from anywhere between 2 million years old and 100,000 years old. H. naledi shared several traits with the most primitive of our ancient relatives, including its small brain. As a result, many scientists guessed that H. naledi was an old species in our family tree, and possibly one of the earliest species to evolve in the genus Homo. Now, Dirks et al. – who include many of the researchers who were involved in the discovery of H. naledi – report that the fossils are most likely between 236,000 and 335,000 years old. These dates are based on measuring the concentration of radioactive elements, and the damage caused by these elements (which accumulates over time), in three fossilized teeth, plus surrounding rock and sediments from the cave chamber. Importantly, the most crucial tests were carried out at independent laboratories around the world, and the scientists conducted the tests without knowing the results of the other laboratories. Dirks et al. took these extra steps to make sure that the results obtained were reproducible and unbiased. The estimated dates are much more recent than many had predicted, and mean that H. naledi was alive at the same time as the earliest members of our own species – which most likely evolved between 300,000 and 200,000 years ago. These new findings demonstrate why it can be unwise to try to predict the age of a fossil based only on its appearance, and emphasize the importance of dating specimens via independent tests. Finally in two related reports, Berger et al. suggest how a primitive-looking species like H. naledi survived more recently than many would have predicted, while Hawks et al. describe the discovery of more H. naledi fossils from a separate chamber in the same cave system. DOI:http://dx.doi.org/10.7554/eLife.24231.002
Collapse
|
35
|
Hawks J, Elliott M, Schmid P, Churchill SE, Ruiter DJD, Roberts EM, Hilbert-Wolf H, Garvin HM, Williams SA, Delezene LK, Feuerriegel EM, Randolph-Quinney P, Kivell TL, Laird MF, Tawane G, DeSilva JM, Bailey SE, Brophy JK, Meyer MR, Skinner MM, Tocheri MW, VanSickle C, Walker CS, Campbell TL, Kuhn B, Kruger A, Tucker S, Gurtov A, Hlophe N, Hunter R, Morris H, Peixotto B, Ramalepa M, Rooyen DV, Tsikoane M, Boshoff P, Dirks PH, Berger LR. New fossil remains of Homo naledi from the Lesedi Chamber, South Africa. eLife 2017; 6. [PMID: 28483039 PMCID: PMC5423776 DOI: 10.7554/elife.24232] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/18/2017] [Indexed: 01/06/2023] Open
Abstract
The Rising Star cave system has produced abundant fossil hominin remains within the Dinaledi Chamber, representing a minimum of 15 individuals attributed to Homo naledi. Further exploration led to the discovery of hominin material, now comprising 131 hominin specimens, within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context for hominin remains. In each of three collection areas within the Lesedi Chamber, diagnostic skeletal material allows a clear attribution to H. naledi. Both adult and immature material is present. The hominin remains represent at least three individuals based upon duplication of elements, but more individuals are likely present based upon the spatial context. The most significant specimen is the near-complete cranium of a large individual, designated LES1, with an endocranial volume of approximately 610 ml and associated postcranial remains. The Lesedi Chamber skeletal sample extends our knowledge of the morphology and variation of H. naledi, and evidence of H. naledi from both recovery localities shows a consistent pattern of differentiation from other hominin species.
Collapse
|
36
|
Berger LR, Hawks J, Dirks PHGM, Elliott M, Roberts EM. Homo naledi and Pleistocene hominin evolution in subequatorial Africa. eLife 2017; 6:e24234. [PMID: 28483041 PMCID: PMC5423770 DOI: 10.7554/elife.24234] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/19/2017] [Indexed: 01/22/2023] Open
Abstract
New discoveries and dating of fossil remains from the Rising Star cave system, Cradle of Humankind, South Africa, have strong implications for our understanding of Pleistocene human evolution in Africa. Direct dating of Homo naledi fossils from the Dinaledi Chamber (Berger et al., 2015) shows that they were deposited between about 236 ka and 335 ka (Dirks et al., 2017), placing H. naledi in the later Middle Pleistocene. Hawks and colleagues (Hawks et al., 2017) report the discovery of a second chamber within the Rising Star system (Dirks et al., 2015) that contains H. naledi remains. Previously, only large-brained modern humans or their close relatives had been demonstrated to exist at this late time in Africa, but the fossil evidence for any hominins in subequatorial Africa was very sparse. It is now evident that a diversity of hominin lineages existed in this region, with some divergent lineages contributing DNA to living humans and at least H. naledi representing a survivor from the earliest stages of diversification within Homo. The existence of a diverse array of hominins in subequatorial comports with our present knowledge of diversity across other savanna-adapted species, as well as with palaeoclimate and paleoenvironmental data. H. naledi casts the fossil and archaeological records into a new light, as we cannot exclude that this lineage was responsible for the production of Acheulean or Middle Stone Age tool industries.
Collapse
|
37
|
Laird MF, Schroeder L, Garvin HM, Scott JE, Dembo M, Radovčić D, Musiba CM, Ackermann RR, Schmid P, Hawks J, Berger LR, de Ruiter DJ. The skull of Homo naledi. J Hum Evol 2017; 104:100-123. [DOI: 10.1016/j.jhevol.2016.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 01/05/2023]
|
38
|
Feuerriegel EM, Green DJ, Walker CS, Schmid P, Hawks J, Berger LR, Churchill SE. The upper limb of Homo naledi. J Hum Evol 2017; 104:155-173. [DOI: 10.1016/j.jhevol.2016.09.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 10/20/2022]
|
39
|
Williams SA, García-Martínez D, Bastir M, Meyer MR, Nalla S, Hawks J, Schmid P, Churchill SE, Berger LR. The vertebrae and ribs of Homo naledi. J Hum Evol 2017; 104:136-154. [DOI: 10.1016/j.jhevol.2016.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
|
40
|
Randolph-Quinney PS, Backwell LR, Berger LR, Hawks J, Dirks PH, Roberts EM, Nhauro G, Kramers J. Response to Thackeray (2016) – The possibility of lichen growth on bones of Homo naledi: Were they exposed to light? S AFR J SCI 2016. [DOI: 10.17159/sajs.2016/a0177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
41
|
Hawks J. Still evolving. New Sci 2016. [DOI: 10.1016/s0262-4079(16)31319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Eller E, Hawks J, Relethford JH. Local extinction and recolonization, species effective population size, and modern human origins. 2004. Hum Biol 2016; 81:805-24. [PMID: 20504198 DOI: 10.3378/027.081.0623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Hawks J, Berger LR. The impact of a date for understanding the importance ofHomo naledi. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/0035919x.2016.1178186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Hawks J. The Latest on Homo naledi. AMERICAN SCIENTIST 2016. [DOI: 10.1511/2016.121.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Sams A, Hawks J. Celiac disease as a model for the evolution of multifactorial disease in humans. Hum Biol 2015; 86:19-36. [PMID: 25401984 DOI: 10.3378/027.086.0102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 11/05/2022]
Abstract
Celiac disease (CD) is a multifactorial chronic inflammatory condition that results in injury of the mucosal lining of the small intestine upon ingestion of wheat gluten and related proteins from barley and rye. Although the exact mechanisms leading to CD are not fully understood, the genetic basis of CD has been relatively well characterized. In this review we briefly review the history of discovery, clinical presentation, pathophysiology, and current understanding of the genetics underlying CD risk. Then, we discuss what is known about the current distribution and evolutionary history of genes underlying CD risk in light of other evolutionary models of disease. Specifically, we conclude that the set of loci underlying CD risk did not cohesively evolve as a response to a single past selection event such as the development of agriculture. Rather, deterministic and stochastic evolutionary processes have both contributed to the present distribution of variation in CD risk loci. Selection has shaped some components of this network, but this selection appears to have occurred at different points in the past. Other parts of the CD risk network have likely arisen due to stochastic processes such as genetic drift.
Collapse
|
46
|
Traynor S, Gurtov AN, Hutton Senjem J, Hawks J. Letter to the Editor: Reply to Dunbar et al. (2015). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 159:361. [DOI: 10.1002/ajpa.22880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 11/10/2022]
|
47
|
Kivell TL, Deane AS, Tocheri MW, Orr CM, Schmid P, Hawks J, Berger LR, Churchill SE. The hand of Homo naledi. Nat Commun 2015; 6:8431. [PMID: 26441219 PMCID: PMC4597335 DOI: 10.1038/ncomms9431] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/20/2015] [Indexed: 11/09/2022] Open
Abstract
A nearly complete right hand of an adult hominin was recovered from the Rising Star cave system, South Africa. Based on associated hominin material, the bones of this hand are attributed to Homo naledi. This hand reveals a long, robust thumb and derived wrist morphology that is shared with Neandertals and modern humans, and considered adaptive for intensified manual manipulation. However, the finger bones are longer and more curved than in most australopiths, indicating frequent use of the hand during life for strong grasping during locomotor climbing and suspension. These markedly curved digits in combination with an otherwise human-like wrist and palm indicate a significant degree of climbing, despite the derived nature of many aspects of the hand and other regions of the postcranial skeleton in H. naledi. It is unclear to what extent early hominins were adapted to arboreal climbing. Here, the authors show that the nearly complete hand of H. naledi from South Africa has markedly curved digits and otherwise human-like wrist and palm, which indicates the retention of a significant degree of climbing.
Collapse
|
48
|
Dirks PHGM, Berger LR, Roberts EM, Kramers JD, Hawks J, Randolph-Quinney PS, Elliott M, Musiba CM, Churchill SE, de Ruiter DJ, Schmid P, Backwell LR, Belyanin GA, Boshoff P, Hunter KL, Feuerriegel EM, Gurtov A, Harrison JDG, Hunter R, Kruger A, Morris H, Makhubela TV, Peixotto B, Tucker S. Geological and taphonomic context for the new hominin species Homo naledi from the Dinaledi Chamber, South Africa. eLife 2015; 4. [PMID: 26354289 PMCID: PMC4559842 DOI: 10.7554/elife.09561] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/10/2015] [Indexed: 11/13/2022] Open
Abstract
We describe the physical context of the Dinaledi Chamber within the Rising Star cave, South Africa, which contains the fossils of Homo naledi. Approximately 1550 specimens of hominin remains have been recovered from at least 15 individuals, representing a small portion of the total fossil content. Macro-vertebrate fossils are exclusively H. naledi, and occur within clay-rich sediments derived from in situ weathering, and exogenous clay and silt, which entered the chamber through fractures that prevented passage of coarser-grained material. The chamber was always in the dark zone, and not accessible to non-hominins. Bone taphonomy indicates that hominin individuals reached the chamber complete, with disarticulation occurring during/after deposition. Hominins accumulated over time as older laminated mudstone units and sediment along the cave floor were eroded. Preliminary evidence is consistent with deliberate body disposal in a single location, by a hominin species other than Homo sapiens, at an as-yet unknown date. DOI:http://dx.doi.org/10.7554/eLife.09561.001 Modern humans, or Homo sapiens, are now the only living species in their genus. But as recently as 20,000 years ago there were other species that belonged to the genus Homo. Together with modern humans, these extinct human species, our immediate ancestors and their close relatives are collectively referred to as ‘hominins’. Now, Dirks et al. describe an unusual collection of hominin fossils that were found within the Dinaledi Chamber in the Rising Star cave system in South Africa. The fossils all belong to a newly discovered hominin species called Homo naledi, which is described in a related study by Berger et al. The unearthed fossils are the largest collection of hominin fossils from a single species ever to be discovered in Africa, and include the remains of at least 15 individuals and multiple examples of most of the bones in the skeleton. Dirks et al. explain that the assemblage from the Dinaledi Chamber is unusual because of the large number of fossils discovered so close together in a single chamber deep within the cave system. It is also unusual that no other large animal remains were found in the chamber, and that the bodies had not been damaged by scavengers or predators. The fossils were excavated from soft clay-rich sediments that had accumulated in the chamber over time; it also appears that the bodies were intact when they arrived in the chamber, and then started to decompose. Dirks et al. discuss a number of explanations as to how the remains came to rest in the Dinaledi Chamber, which range from whether Homo naledi lived in the caves to whether they were brought in by predators. Most of the evidence obtained so far is largely consistent with these bodies being deliberately disposed of in this single location by the same extinct hominin species. However, a number of other explanations cannot be completely ruled out and further investigation is now needed to uncover the series of events that resulted in this unique collection of hominin fossils. DOI:http://dx.doi.org/10.7554/eLife.09561.002
Collapse
|
49
|
Berger LR, Hawks J, de Ruiter DJ, Churchill SE, Schmid P, Delezene LK, Kivell TL, Garvin HM, Williams SA, DeSilva JM, Skinner MM, Musiba CM, Cameron N, Holliday TW, Harcourt-Smith W, Ackermann RR, Bastir M, Bogin B, Bolter D, Brophy J, Cofran ZD, Congdon KA, Deane AS, Dembo M, Drapeau M, Elliott MC, Feuerriegel EM, Garcia-Martinez D, Green DJ, Gurtov A, Irish JD, Kruger A, Laird MF, Marchi D, Meyer MR, Nalla S, Negash EW, Orr CM, Radovcic D, Schroeder L, Scott JE, Throckmorton Z, Tocheri MW, VanSickle C, Walker CS, Wei P, Zipfel B. Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa. eLife 2015; 4:e09560. [PMID: 26354291 PMCID: PMC4559886 DOI: 10.7554/elife.09560] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/04/2015] [Indexed: 11/13/2022] Open
Abstract
Homo naledi is a previously-unknown species of extinct hominin discovered within the Dinaledi Chamber of the Rising Star cave system, Cradle of Humankind, South Africa. This species is characterized by body mass and stature similar to small-bodied human populations but a small endocranial volume similar to australopiths. Cranial morphology of H. naledi is unique, but most similar to early Homo species including Homo erectus, Homo habilis or Homo rudolfensis. While primitive, the dentition is generally small and simple in occlusal morphology. H. naledi has humanlike manipulatory adaptations of the hand and wrist. It also exhibits a humanlike foot and lower limb. These humanlike aspects are contrasted in the postcrania with a more primitive or australopith-like trunk, shoulder, pelvis and proximal femur. Representing at least 15 individuals with most skeletal elements repeated multiple times, this is the largest assemblage of a single species of hominins yet discovered in Africa.
Collapse
|
50
|
Hawks J, de Ruiter DJ, Berger LR. Comment on “Early
Homo
at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia”. Science 2015; 348:1326. [PMID: 26089505 DOI: 10.1126/science.aab0591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|