26
|
Ohri R, Bhakta S, Fourie-O'Donohue A, Dela Cruz-Chuh J, Tsai SP, Cook R, Wei B, Ng C, Wong AW, Bos AB, Farahi F, Bhakta J, Pillow TH, Raab H, Vandlen R, Polakis P, Liu Y, Erickson H, Junutula JR, Kozak KR. High-Throughput Cysteine Scanning To Identify Stable Antibody Conjugation Sites for Maleimide- and Disulfide-Based Linkers. Bioconjug Chem 2018; 29:473-485. [PMID: 29425028 DOI: 10.1021/acs.bioconjchem.7b00791] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
THIOMAB antibody technology utilizes cysteine residues engineered onto an antibody to allow for site-specific conjugation. The technology has enabled the exploration of different attachment sites on the antibody in combination with small molecules, peptides, or proteins to yield antibody conjugates with unique properties. As reported previously ( Shen , B. Q. , et al. ( 2012 ) Nat. Biotechnol. 30 , 184 - 189 ; Pillow , T. H. , et al. ( 2017 ) Chem. Sci. 8 , 366 - 370 ), the specific location of the site of conjugation on an antibody can impact the stability of the linkage to the engineered cysteine for both thio-succinimide and disulfide bonds. High stability of the linkage is usually desired to maximize the delivery of the cargo to the intended target. In the current study, cysteines were individually substituted into every position of the anti-HER2 antibody (trastuzumab), and the stabilities of drug conjugations at those sites were evaluated. We screened a total of 648 THIOMAB antibody-drug conjugates, each generated from a trastuzamab prepared by sequentially mutating non-cysteine amino acids in the light and heavy chains to cysteine. Each THIOMAB antibody variant was conjugated to either maleimidocaproyl-valine-citrulline-p-aminobenzyloxycarbonyl-monomethyl auristatin E (MC-vc-PAB-MMAE) or pyridyl disulfide monomethyl auristatin E (PDS-MMAE) using a high-throughput, on-bead conjugation and purification method. Greater than 50% of the THIOMAB antibody variants were successfully conjugated to both MMAE derivatives with a drug to antibody ratio (DAR) of >0.5 and <50% aggregation. The relative in vitro plasma stabilities for approximately 750 conjugates were assessed using enzyme-linked immunosorbent assays, and stable sites were confirmed with affinity-capture LC/MS-based detection methods. Highly stable conjugation sites for the two types of MMAE derivatives were identified on both the heavy and light chains. Although the stabilities of maleimide conjugates were shown to be greater than those of the disulfide conjugates, many sites were identified that were stable for both. Furthermore, in vitro stabilities of selected stable sites translated across different cytotoxic payloads and different target antibodies as well as to in vivo stability.
Collapse
|
27
|
Zhang D, Le H, Cruz-Chuh JD, Bobba S, Guo J, Staben L, Zhang C, Ma Y, Kozak KR, Lewis Phillips GD, Vollmar BS, Sadowsky JD, Vandlen R, Wei B, Su D, Fan P, Dragovich PS, Khojasteh SC, Hop CECA, Pillow TH. Immolation of p-Aminobenzyl Ether Linker and Payload Potency and Stability Determine the Cell-Killing Activity of Antibody–Drug Conjugates with Phenol-Containing Payloads. Bioconjug Chem 2018; 29:267-274. [DOI: 10.1021/acs.bioconjchem.7b00576] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Zhang D, Yu SF, Khojasteh SC, Ma Y, Pillow TH, Sadowsky JD, Su D, Kozak KR, Xu K, Polson AG, Dragovich PS, Hop CE. Intratumoral Payload Concentration Correlates with the Activity of Antibody–Drug Conjugates. Mol Cancer Ther 2018; 17:677-685. [DOI: 10.1158/1535-7163.mct-17-0697] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/14/2017] [Accepted: 12/08/2017] [Indexed: 11/16/2022]
|
29
|
Bhakta S, Crocker LM, Chen Y, Hazen M, Schutten MM, Li D, Kuijl C, Ohri R, Zhong F, Poon KA, Go MAT, Cheng E, Piskol R, Firestein R, Fourie-O'Donohue A, Kozak KR, Raab H, Hongo JA, Sampath D, Dennis MS, Scheller RH, Polakis P, Junutula JR. An Anti-GDNF Family Receptor Alpha 1 (GFRA1) Antibody-Drug Conjugate for the Treatment of Hormone Receptor-Positive Breast Cancer. Mol Cancer Ther 2017; 17:638-649. [PMID: 29282299 DOI: 10.1158/1535-7163.mct-17-0813] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/17/2017] [Accepted: 12/18/2017] [Indexed: 11/16/2022]
Abstract
Luminal A (hormone receptor-positive) breast cancer constitutes 70% of total breast cancer patients. In an attempt to develop a targeted therapeutic for this cancer indication, we have identified and characterized Glial cell line-Derived Neurotrophic Factor (GDNF) Family Receptor Alpha 1 (GFRA1) antibody-drug conjugates (ADC) using a cleavable valine-citrulline-MMAE (vcMMAE) linker-payload. RNAseq and IHC analysis confirmed the abundant expression of GFRA1 in luminal A breast cancer tissues, whereas minimal or no expression was observed in most normal tissues. Anti-GFRA-vcMMAE ADC internalized to the lysosomes and exhibited target-dependent killing of GFRA1-expressing cells both in vitro and in vivo The ADCs using humanized anti-GFRA1 antibodies displayed robust therapeutic activity in clinically relevant cell line-derived (MCF7 and KPL-1) tumor xenograft models. The lead anti-GFRA1 ADC cross-reacts with rodent and cynomolgus monkey GFRA1 antigen and showed optimal pharmacokinetic properties in both species. These properties subsequently enabled a target-dependent toxicity study in rats. Anti-GFRA1 ADC is well tolerated in rats, as seen with other vcMMAE linker-payload based ADCs. Overall, these data suggest that anti-GFRA1-vcMMAE ADC may provide a targeted therapeutic opportunity for luminal A breast cancer patients. Mol Cancer Ther; 17(3); 638-49. ©2017 AACR.
Collapse
|
30
|
Wei B, Gunzner-Toste J, Yao H, Wang T, Wang J, Xu Z, Chen J, Wai J, Nonomiya J, Tsai SP, Chuh J, Kozak KR, Liu Y, Yu SF, Lau J, Li G, Phillips GD, Leipold D, Kamath A, Su D, Xu K, Eigenbrot C, Steinbacher S, Ohri R, Raab H, Staben LR, Zhao G, Flygare JA, Pillow TH, Verma V, Masterson LA, Howard PW, Safina B. Discovery of Peptidomimetic Antibody-Drug Conjugate Linkers with Enhanced Protease Specificity. J Med Chem 2017; 61:989-1000. [PMID: 29227683 DOI: 10.1021/acs.jmedchem.7b01430] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibody-drug conjugates (ADCs) have become an important therapeutic modality for oncology, with three approved by the FDA and over 60 others in clinical trials. Despite the progress, improvements in ADC therapeutic index are desired. Peptide-based ADC linkers that are cleaved by lysosomal proteases have shown sufficient stability in serum and effective payload-release in targeted cells. If the linker can be preferentially hydrolyzed by tumor-specific proteases, safety margin may improve. However, the use of peptide-based linkers limits our ability to modulate protease specificity. Here we report the structure-guided discovery of novel, nonpeptidic ADC linkers. We show that a cyclobutane-1,1-dicarboxamide-containing linker is hydrolyzed predominantly by cathepsin B while the valine-citrulline dipeptide linker is not. ADCs bearing the nonpeptidic linker are as efficacious and stable in vivo as those with the dipeptide linker. Our results strongly support the application of the peptidomimetic linker and present new opportunities for improving the selectivity of ADCs.
Collapse
|
31
|
Gregson SJ, Masterson LA, Wei B, Pillow TH, Spencer SD, Kang GD, Yu SF, Raab H, Lau J, Li G, Lewis Phillips GD, Gunzner-Toste J, Safina BS, Ohri R, Darwish M, Kozak KR, Dela Cruz-Chuh J, Polson A, Flygare JA, Howard PW. Pyrrolobenzodiazepine Dimer Antibody-Drug Conjugates: Synthesis and Evaluation of Noncleavable Drug-Linkers. J Med Chem 2017; 60:9490-9507. [PMID: 29112410 DOI: 10.1021/acs.jmedchem.7b00736] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Three rationally designed pyrrolobenzodiazepine (PBD) drug-linkers have been synthesized via intermediate 19 for use in antibody-drug conjugates (ADCs). They lack a cleavable trigger in the linker and consist of a maleimide for cysteine antibody conjugation, a hydrophilic spacer, and either an alkyne (6), triazole (7), or piperazine (8) link to the PBD. In vitro IC50 values were 11-48 ng/mL in HER2 3+ SK-BR-3 and KPL-4 (7 inactive) for the anti-HER2 ADCs (HER2 0 MCF7, all inactive) and 0.10-1.73 μg/mL (7 inactive) in CD22 3+ BJAB and WSU-DLCL2 for anti-CD22 ADCs (CD22 0 Jurkat, all inactive at low doses). In vivo antitumor efficacy for the anti-HER2 ADCs in Founder 5 was observed with tumor stasis at 0.5-1 mg/kg, 1 mg/kg, and 3-6 mg/kg for 6, 8, and 7, respectively. Tumor stasis at 2 mg/kg was observed for anti-CD22 6 in WSU-DLCL2. In summary, noncleavable PBD-ADCs exhibit potent activity, particularly in HER2 models.
Collapse
|
32
|
Caculitan NG, dela Cruz Chuh J, Ma Y, Zhang D, Kozak KR, Liu Y, Pillow TH, Sadowsky J, Cheung TK, Phung Q, Haley B, Lee BC, Akita RW, Sliwkowski MX, Polson AG. Cathepsin B Is Dispensable for Cellular Processing of Cathepsin B-Cleavable Antibody–Drug Conjugates. Cancer Res 2017; 77:7027-7037. [DOI: 10.1158/0008-5472.can-17-2391] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/18/2017] [Accepted: 10/13/2017] [Indexed: 11/16/2022]
|
33
|
Staben LR, Yu SF, Chen J, Yan G, Xu Z, Del Rosario G, Lau JT, Liu L, Guo J, Zheng B, dela Cruz-Chuh J, Lee BC, Ohri R, Cai W, Zhou H, Kozak KR, Xu K, Lewis Phillips GD, Lu J, Wai J, Polson AG, Pillow TH. Stabilizing a Tubulysin Antibody-Drug Conjugate To Enable Activity Against Multidrug-Resistant Tumors. ACS Med Chem Lett 2017; 8:1037-1041. [PMID: 29057047 DOI: 10.1021/acsmedchemlett.7b00243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022] Open
Abstract
The tubulysins are promising anticancer cytotoxic agents due to the clinical validation of their mechanism of action (microtubule inhibition) and their particular activity against multidrug-resistant tumor cells. Yet their high potency and subsequent systemic toxicity make them prime candidates for targeted therapy, particularly in the form of antibody-drug conjugates (ADCs). Here we report a strategy to prepare stable and bioreversible conjugates of tubulysins to antibodies without loss of activity. A peptide trigger along with a quaternary ammonium salt linker connection to the tertiary amine of tubulysin provided ADCs that were potent in vitro. However, we observed metabolism of a critical acetate ester of the drug in vivo, resulting in diminished conjugate activity. We were able to circumvent this metabolic liability with the judicious choice of a propyl ether replacement. This modified tubulysin ADC was stable and effective against multidrug-resistant lymphoma cell lines and tumors.
Collapse
|
34
|
Vollmar BS, Wei B, Ohri R, Zhou J, He J, Yu SF, Leipold D, Cosino E, Yee S, Fourie-O'Donohue A, Li G, Phillips GL, Kozak KR, Kamath A, Xu K, Lee G, Lazar GA, Erickson HK. Attachment Site Cysteine Thiol pK a Is a Key Driver for Site-Dependent Stability of THIOMAB Antibody-Drug Conjugates. Bioconjug Chem 2017; 28:2538-2548. [PMID: 28885827 DOI: 10.1021/acs.bioconjchem.7b00365] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The incorporation of cysteines into antibodies by mutagenesis allows for the direct conjugation of small molecules to specific sites on the antibody via disulfide bonds. The stability of the disulfide bond linkage between the small molecule and the antibody is highly dependent on the location of the engineered cysteine in either the heavy chain (HC) or the light chain (LC) of the antibody. Here, we explore the basis for this site-dependent stability. We evaluated the in vivo efficacy and pharmacokinetics of five different cysteine mutants of trastuzumab conjugated to a pyrrolobenzodiazepine (PBD) via disulfide bonds. A significant correlation was observed between disulfide stability and efficacy for the conjugates. We hypothesized that the observed site-dependent stability of the disulfide-linked conjugates could be due to differences in the attachment site cysteine thiol pKa. We measured the cysteine thiol pKa using isothermal titration calorimetry (ITC) and found that the variants with the highest thiol pKa (LC K149C and HC A140C) were found to yield the conjugates with the greatest in vivo stability. Guided by homology modeling, we identified several mutations adjacent to LC K149C that reduced the cysteine thiol pKa and, thus, decreased the in vivo stability of the disulfide-linked PBD conjugated to LC K149C. We also present results suggesting that the high thiol pKa of LC K149C is responsible for the sustained circulation stability of LC K149C TDCs utilizing a maleimide-based linker. Taken together, our results provide evidence that the site-dependent stability of cys-engineered antibody-drug conjugates may be explained by interactions between the engineered cysteine and the local protein environment that serves to modulate the side-chain thiol pKa. The influence of cysteine thiol pKa on stability and efficacy offers a new parameter for the optimization of ADCs that utilize cysteine engineering.
Collapse
|
35
|
Sadowsky JD, Pillow TH, Chen J, Fan F, He C, Wang Y, Yan G, Yao H, Xu Z, Martin S, Zhang D, Chu P, dela Cruz-Chuh J, O’Donohue A, Li G, Del Rosario G, He J, Liu L, Ng C, Su D, Lewis Phillips GD, Kozak KR, Yu SF, Xu K, Leipold D, Wai J. Development of Efficient Chemistry to Generate Site-Specific Disulfide-Linked Protein– and Peptide–Payload Conjugates: Application to THIOMAB Antibody–Drug Conjugates. Bioconjug Chem 2017. [DOI: 10.1021/acs.bioconjchem.7b00258] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Pillow TH, Sadowsky JD, Zhang D, Yu SF, Del Rosario G, Xu K, He J, Bhakta S, Ohri R, Kozak KR, Ha E, Junutula JR, Flygare JA. Decoupling stability and release in disulfide bonds with antibody-small molecule conjugates. Chem Sci 2017; 8:366-370. [PMID: 28451181 PMCID: PMC5365059 DOI: 10.1039/c6sc01831a] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/10/2016] [Indexed: 01/09/2023] Open
Abstract
Disulfide bonds provide a bioactivatable connection with applications in imaging and therapy. The circulation stability and intracellular release of disulfides are problematically coupled in that increasing stability causes a corresponding decrease in cleavage and payload release. However, an antibody offers the potential for a reversible stabilization. We examined this by attaching a small molecule directly to engineered cysteines in an antibody. At certain sites this unhindered disulfide was stable in circulation yet cellular internalization and antibody catabolism generated a disulfide catabolite that was rapidly reduced. We demonstrated that this stable connection and facile release is applicable to a variety of payloads. The ability to reversibly stabilize a labile functional group with an antibody may offer a way to improve targeted probes and therapeutics.
Collapse
|
37
|
Zhang D, Pillow TH, Ma Y, Cruz-Chuh JD, Kozak KR, Sadowsky JD, Lewis Phillips GD, Guo J, Darwish M, Fan P, Chen J, He C, Wang T, Yao H, Xu Z, Chen J, Wai J, Pei Z, Hop CECA, Khojasteh SC, Dragovich PS. Linker Immolation Determines Cell Killing Activity of Disulfide-Linked Pyrrolobenzodiazepine Antibody-Drug Conjugates. ACS Med Chem Lett 2016; 7:988-993. [PMID: 27882196 DOI: 10.1021/acsmedchemlett.6b00233] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/22/2016] [Indexed: 11/29/2022] Open
Abstract
Disulfide bonds could be valuable linkers for a variety of therapeutic applications requiring tunable cleavage between two parts of a molecule (e.g., antibody-drug conjugates). The in vitro linker immolation of β-mercaptoethyl-carbamate disulfides and DNA alkylation properties of associated payloads were investigated to understand the determinant of cell killing potency of anti-CD22 linked pyrrolobenzodiazepine (PBD-dimer) conjugates. Efficient immolation and release of a PBD-dimer with strong DNA alkylation properties were observed following disulfide cleavage of methyl- and cyclobutyl-substituted disulfide linkers. However, the analogous cyclopropyl-containing linker did not immolate, and the associated thiol-containing product was a poor DNA alkylator. As predicted from these in vitro assessments, the related anti-CD22 ADCs showed different target-dependent cell killing activities in WSU-DLCL2 and BJAB cell lines. These results demonstrate how the in vitro immolation models can be used to help design efficacious ADCs.
Collapse
|
38
|
Sukumaran S, Gadkar K, Zhang C, Bhakta S, Liu L, Xu K, Raab H, Yu SF, Mai E, Fourie-O'Donohue A, Kozak KR, Ramanujan S, Junutula JR, Lin K. Mechanism-Based Pharmacokinetic/Pharmacodynamic Model for THIOMAB™ Drug Conjugates. Pharm Res 2014; 32:1884-93. [PMID: 25446772 DOI: 10.1007/s11095-014-1582-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/14/2014] [Indexed: 01/05/2023]
Abstract
PURPOSE THIOMAB™ drug conjugates (TDCs) with engineered cysteine residues allow site-specific drug conjugation and defined Drug-to-Antibody Ratios (DAR). In order to help elucidate the impact of drug-loading, conjugation site, and subsequent deconjugation on pharmacokinetics and efficacy, we have developed an integrated mathematical model to mechanistically characterize pharmacokinetic behavior and preclinical efficacy of MMAE conjugated TDCs with different DARs. General applicability of the model structure was evaluated with two different TDCs. METHOD Pharmacokinetics studies were conducted for unconjugated antibody and purified TDCs with DAR-1, 2 and 4 for trastuzumab TDC and Anti-STEAP1 TDC in mice. Total antibody concentrations and individual DAR fractions were measured. Efficacy studies were performed in tumor-bearing mice. RESULTS An integrated model consisting of distinct DAR species (DAR0-4), each described by a two-compartment model was able to capture the experimental data well. Time series measurements of each Individual DAR species allowed for the incorporation of site-specific drug loss through deconjugation and the results suggest a higher deconjugation rate from heavy chain site HC-A114C than the light chain site LC-V205C. Total antibody concentrations showed multi-exponential decline, with a higher clearance associated with higher DAR species. The experimentally observed effects of TDC on tumor growth kinetics were successfully described by linking pharmacokinetic profiles to DAR-dependent killing of tumor cells. CONCLUSION Results from the integrated model evaluated with two different TDCs highlight the impact of DAR and site of conjugation on pharmacokinetics and efficacy. The model can be used to guide future drug optimization and in-vivo studies.
Collapse
|
39
|
Scales SJ, Gupta N, Pacheco G, Firestein R, French DM, Chuh J, Zhang Y, Berry L, Bostrom J, Luis E, O'Donohue AF, Kozak KR, Ross S, Dennis MS, Tibbitts J, Spencer SD. Abstract 4494: A clinical candidate anti-mesothelin-MMAE antibody-drug conjugate (ADC) for therapy of mesothelin-expressing cancers. Cancer Res 2014. [DOI: 10.1158/1538-7445.am2014-4494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Mesothelin (MSLN) is a cell surface glycoprotein widely expressed in a variety of cancers, with prevalence levels by IHC of 85% in ovarian, 75% in pancreatic and 45% in mesothelioma, and normal expression limited to the mesothelia, suggesting it could be an ideal target for antibody-drug conjugate therapy of these cancers. We have generated a high affinity (subnanomolar), humanized antibody to MSLN and conjugated it to auristatin anti-mitotic drugs (monomethylauristatin E and F, Seattle Genetics) via an uncleavable linker (anti-MSLN-mc-MMAF) or a cathepsin-cleavable valine-citrulline linker (anti-MSLN-mc-vc-PAB-MMAE/F) for comparison. The in vivo efficacy obtained in an ovarian transplant model was superior with the anti-MSLN-MMAE ADC. Anti-MSLN-MMAE was specifically internalized by MSLN-expressing cells in vitro, resulting in cell death compared to control ADCs. Pancreatic, ovarian and mesothelioma tumor cell lines endogenously expressing physiological levels of MSLN were identified and established as xenografts in mice. A single dose of anti-MSLN ADC was sufficient to inhibit or shrink tumor growth in models of each of the three indications in vivo, as well as inducing complete regressions in primary human pancreatic models, even those expressing low levels of MSLN typical of most human pancreatic tumors. Additionally, anti-MSLN-MMAE (at suboptimal doses) appeared to synergize with gemcitabine at clinically relevant doses in an HPAC xenograft model. Furthermore, anti-MSLN-MMAE was well tolerated in non-clinical toxicity studies (see accompanying abstract by Gupta et al.). Our data suggest that anti-MSLN-vc-MMAE is a promising clinical candidate for the treatment of several types of mesothelin-positive cancers.
Citation Format: Suzie J. Scales, Nidhi Gupta, Glenn Pacheco, Ron Firestein, Dorothy M. French, Josefa Chuh, Yin Zhang, Leanne Berry, Jenny Bostrom, Elizabeth Luis, Aimee Fourie O'Donohue, Katherine R. Kozak, Sarajane Ross, Mark S. Dennis, Jay Tibbitts, Susan D. Spencer. A clinical candidate anti-mesothelin-MMAE antibody-drug conjugate (ADC) for therapy of mesothelin-expressing cancers. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 4494. doi:10.1158/1538-7445.AM2014-4494
Collapse
|
40
|
Gupta N, Solis WA, Fuji RN, Oldendorp A, Pacheco G, Luis E, Chuh J, French DM, Drake E, Dennis MS, Kozak KR, Ross S, Tibbitts J, Spencer SD, Scales SJ. Abstract 4502: Nonclinical characterization and tolerability of a surrogate anti-mesothelin-MMAE antibody-drug conjugate. Cancer Res 2014. [DOI: 10.1158/1538-7445.am2014-4502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Mesothelin (MSLN) is a cell surface glycoprotein widely expressed in several cancers with normal expression limited to the serosal mesothelia, features of an ideal target for antibody-based therapy. SS1P, a (dsFv)-PE38 immunotoxin to MSLN that kills cells by inhibition of protein synthesis, exhibits minor clinical responses as monotherapy, but was dose-limited by pleuritis, likely an antigen-dependent toxicity (Hassan et al., (2007) Clin Cancer Res 13 p3144). As mesothelial cells divide infrequently, we evaluated whether an anti-mitotic antibody-drug conjugate (ADC) directed to MSLN would be better tolerated. Our humanized lead anti-MSLN-MMAE (mc-vc-PAB-monomethylauristatin E) conjugate shows excellent preclinical activity (see accompanying abstract by Scales et al), but is specific to human MSLN, so a surrogate ADC that cross-reacts with cynomolgus monkey and rat MSLN was generated for non-clinical toxicity studies.
While both the lead and the surrogate antibodies recognize human MSLN, they bound to different epitopes and the surrogate binding was sensitive to glycosylation, only recognizing a subset of cell lines expressing human MSLN with high affinity. The affinity of the surrogate antibody for cynomolgus monkey MSLN is 5 to 22-fold lower than that of the lead antibody for human MSLN, depending on its glycosylation pattern in the human parental cell line to which it was compared. Nonetheless, the surrogate antibody detects endogenous MSLN in monkey pleura and the surrogate ADC exhibits robust cytotoxic activity against monkey MSLN-expressing cells in vitro. Importantly, the surrogate ADC demonstrated comparable in vivo efficacy to the lead ADC against BJAB xenografts expressing monkey or human MSLN respectively, thus validating its use in safety studies. We thus conducted a repeat-dose monkey toxicity study with a clinically relevant (q3w x5) dosing schedule, which yielded similar results for both surrogate and lead ADCs (the primary finding being reversible myelotoxicity, an antigen-independent toxicity similar to those of other IgG1-MMAE ADCs (Li et al., (2013), Mol Can Thera 12 p1255)). Unlike SS1P, there was no evidence of target-dependent pleuritis, nor any other serositis. Our data suggest that anti-MSLN-MMAE ADCs may be safer than SS1P and helped define the Phase I starting dose.
Citation Format: Nidhi Gupta, Willy A. Solis, Reina N. Fuji, Amy Oldendorp, Glenn Pacheco, Elizabeth Luis, Josefa Chuh, Dorothy M. French, Elizabeth Drake, Mark S. Dennis, Katherine R. Kozak, Sarajane Ross, Jay Tibbitts, Susan D. Spencer, Suzie J. Scales. Nonclinical characterization and tolerability of a surrogate anti-mesothelin-MMAE antibody-drug conjugate. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 4502. doi:10.1158/1538-7445.AM2014-4502
Collapse
|
41
|
Scales SJ, Gupta N, Pacheco G, Firestein R, French DM, Koeppen H, Rangell L, Barry-Hamilton V, Luis E, Chuh J, Zhang Y, Ingle GS, Fourie-O'Donohue A, Kozak KR, Ross S, Dennis MS, Spencer SD. An antimesothelin-monomethyl auristatin e conjugate with potent antitumor activity in ovarian, pancreatic, and mesothelioma models. Mol Cancer Ther 2014; 13:2630-40. [PMID: 25249555 DOI: 10.1158/1535-7163.mct-14-0487-t] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mesothelin (MSLN) is an attractive target for antibody-drug conjugate therapy because it is highly expressed in various epithelial cancers, with normal expression limited to nondividing mesothelia. We generated novel antimesothelin antibodies and conjugated an internalizing one (7D9) to the microtubule-disrupting drugs monomethyl auristatin E (MMAE) and MMAF, finding the most effective to be MMAE with a lysosomal protease-cleavable valine-citrulline linker. The humanized (h7D9.v3) version, αMSLN-MMAE, specifically targeted mesothelin-expressing cells and inhibited their proliferation with an IC50 of 0.3 nmol/L. Because the antitumor activity of an antimesothelin immunotoxin (SS1P) in transfected mesothelin models did not translate to the clinic, we carefully selected in vivo efficacy models endogenously expressing clinically relevant levels of mesothelin, after scoring mesothelin levels in ovarian, pancreatic, and mesothelioma tumors by immunohistochemistry. We found that endogenous mesothelin in cancer cells is upregulated in vivo and identified two suitable xenograft models for each of these three indications. A single dose of αMSLN-MMAE profoundly inhibited or regressed tumor growth in a dose-dependent manner in all six models, including two patient-derived tumor xenografts. The robust and durable efficacy of αMSLN-MMAE in preclinical models of ovarian, mesothelioma, and pancreatic cancers justifies the ongoing phase I clinical trial.
Collapse
|
42
|
Pillow TH, Tien J, Parsons-Reponte KL, Bhakta S, Li H, Staben LR, Li G, Chuh J, Fourie-O'Donohue A, Darwish M, Yip V, Liu L, Leipold DD, Su D, Wu E, Spencer SD, Shen BQ, Xu K, Kozak KR, Raab H, Vandlen R, Lewis Phillips GD, Scheller RH, Polakis P, Sliwkowski MX, Flygare JA, Junutula JR. Site-specific trastuzumab maytansinoid antibody-drug conjugates with improved therapeutic activity through linker and antibody engineering. J Med Chem 2014; 57:7890-9. [PMID: 25191794 DOI: 10.1021/jm500552c] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antibody-drug conjugates (ADCs) have a significant impact toward the treatment of cancer, as evidenced by the clinical activity of the recently approved ADCs, brentuximab vedotin for Hodgkin lymphoma and ado-trastuzumab emtansine (trastuzumab-MCC-DM1) for metastatic HER2+ breast cancer. DM1 is an analog of the natural product maytansine, a microtubule inhibitor that by itself has limited clinical activity and high systemic toxicity. However, by conjugation of DM1 to trastuzumab, the safety was improved and clinical activity was demonstrated. Here, we report that through chemical modification of the linker-drug and antibody engineering, the therapeutic activity of trastuzumab maytansinoid ADCs can be further improved. These improvements include eliminating DM1 release in the plasma and increasing the drug load by engineering four cysteine residues into the antibody. The chemical synthesis of highly stable linker-drugs and the modification of cysteine residues of engineered site-specific antibodies resulted in a homogeneous ADC with increased therapeutic activity compared to the clinically approved ADC, trastuzumab-MCC-DM1.
Collapse
|
43
|
Boswell CA, Mundo EE, Firestein R, Zhang C, Mao W, Gill H, Young C, Ljumanovic N, Stainton S, Ulufatu S, Fourie A, Kozak KR, Fuji R, Polakis P, Khawli LA, Lin K. An integrated approach to identify normal tissue expression of targets for antibody-drug conjugates: case study of TENB2. Br J Pharmacol 2013; 168:445-57. [PMID: 22889168 DOI: 10.1111/j.1476-5381.2012.02138.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 07/26/2012] [Accepted: 08/08/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The success of antibody-drug conjugates (ADCs) depends on the therapeutic window rendered by the differential expression between normal and pathological tissues. The ability to identify and visualize target expression in normal tissues could reveal causes for target-mediated clearance observed in pharmacokinetic characterization. TENB2 is a prostate cancer target associated with the progression of poorly differentiated and androgen-independent tumour types, and ADCs specific for TENB2 are candidate therapeutics. The objective of this study was to locate antigen expression of TENB2 in normal tissues, thereby elucidating the underlying causes of target-mediated clearance. EXPERIMENTAL APPROACH A series of pharmacokinetics, tissue distribution and mass balance studies were conducted in mice using a radiolabelled anti-TENB2 ADC. These data were complemented by non-invasive single photon emission computed tomography - X-ray computed tomography imaging and immunohistochemistry. KEY RESULTS The intestines were identified as a saturable and specific antigen sink that contributes, at least in part, to the rapid target-mediated clearance of the anti-TENB2 antibody and its drug conjugate in rodents. As a proof of concept, we also demonstrated the selective disposition of the ADC in a tumoural environment in vivo using the LuCaP 77 transplant mouse model. High tumour uptake was observed despite the presence of the antigen sink, and antigen specificity was confirmed by antigen blockade. CONCLUSIONS AND IMPLICATIONS Our findings provide the anatomical location and biological interpretation of target-mediated clearance of anti-TENB2 antibodies and corresponding drug conjugates. Further investigations may be beneficial in addressing the relative contributions to ADC disposition from antigen expression in both normal and pathological tissues.
Collapse
|
44
|
Li D, Poon KA, Yu SF, Dere R, Go M, Lau J, Zheng B, Elkins K, Danilenko D, Kozak KR, Chan P, Chuh J, Shi X, Nazzal D, Fuh F, McBride J, Ramakrishnan V, de Tute R, Rawstron A, Jack AS, Deng R, Chu YW, Dornan D, Williams M, Ho W, Ebens A, Prabhu S, Polson AG. DCDT2980S, an anti-CD22-monomethyl auristatin E antibody-drug conjugate, is a potential treatment for non-Hodgkin lymphoma. Mol Cancer Ther 2013; 12:1255-65. [PMID: 23598530 DOI: 10.1158/1535-7163.mct-12-1173] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antibody-drug conjugates (ADC), potent cytotoxic drugs linked to antibodies via chemical linkers, allow specific targeting of drugs to neoplastic cells. We have used this technology to develop the ADC DCDT2980S that targets CD22, an antigen with expression limited to B cells and the vast majority of non-Hodgkin lymphomas (NHL). DCDT2980S consists of a humanized anti-CD22 monoclonal IgG1 antibody with a potent microtubule-disrupting agent, monomethyl auristatin E (MMAE), linked to the reduced cysteines of the antibody via a protease cleavable linker, maleimidocaproyl-valine-citrulline-p-aminobenzoyloxycarbonyl (MC-vc-PAB). We describe the efficacy, safety, and pharmacokinetics of DCDT2980S in animal models to assess its potential as a therapeutic for the treatment of B-cell malignancies. We did not find a strong correlation between in vitro or in vivo efficacy and CD22 surface expression, nor a correlation of sensitivity to free drug and in vitro potency. We show that DCDT2980S was capable of inducing complete tumor regression in xenograft mouse models of NHL and can be more effective than rituximab plus combination chemotherapy at drug exposures that were well tolerated in cynomolgus monkeys. These results suggest that DCDT2980S has an efficacy, safety, and pharmacokinetics profile that support potential treatment of NHL.
Collapse
|
45
|
Kozak KR, Tsai SP, Fourie-O'Donohue A, dela Cruz Chuh J, Roth L, Cook R, Chan E, Chan P, Darwish M, Ohri R, Raab H, Zhang C, Lin K, Wong WLT. Total antibody quantification for MMAE-conjugated antibody-drug conjugates: impact of assay format and reagents. Bioconjug Chem 2013; 24:772-9. [PMID: 23578050 DOI: 10.1021/bc300491k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antibody-drug conjugates (ADCs) are target-specific anticancer agents consisting of cytotoxic drugs covalently linked to a monoclonal antibody. The number of ADCs in the clinic is growing, and therefore thorough characterization of the quantitative assays used to measure ADC concentrations in support of pharmacokinetic, efficacy, and safety studies is of increasing importance. Cytotoxic drugs such as the tubulin polymerization inhibiting auristatin, monomethyl auristatin E, have been conjugated to antibodies via cleavable linkers (MC-vc-PAB) through internal cysteines. This results in a heterogeneous mixture of antibody species with drug-to-antibody ratios (DAR) ranging from 0 to 8. In order to characterize the assays used to quantitate total MC-vc-PAB-MMAE ADCs (conjugated and unconjugated antibody), we used purified fractions with defined DARs from 6 therapeutic antibodies to evaluate different assay formats and reagents. Our investigations revealed that for quantitation of total antibody, including all unconjugated and conjugated antibody species, sandwich ELISA formats did not always allow for recovery of all purified DAR fractions (DAR 0-8) to within ±20% of the expected values at the reagent concentrations tested. In evaluating alternative approaches, we found that the recovery of DAR fractions with semihomogeneous assay (SHA) formats, in which sample, capture, and detection reagents are preincubated in solution, were less affected by the antibody's MMAE drug load as compared to traditional stepwise sandwich ELISAs. Thus, choosing the optimal assay format and reagents for total antibody assays is valuable for developing accurate quantitative assays.
Collapse
|
46
|
Kozak KR, Wang J, Lye M, Chuh JDC, Takkar R, Kim N, Lee H, Jeon NL, Lin K, Zhang C, Wong WLT, DeForge LE. Micro-volume wall-less immunoassays using patterned planar plates. LAB ON A CHIP 2013; 13:1342-1350. [PMID: 23380873 DOI: 10.1039/c3lc40973b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Miniaturization of immunoassays has numerous potential advantages over traditional ELISAs. Here we present a novel approach using patterned planar plates (PPPs). These 'wall-less' plates consist of a 16 × 24 array of 2 mm diameter hydrophilic regions surrounded by a hydrophobic polytetrafluoroethylene (PTFE) coating. Assays are performed by adding 2 μL droplets to the hydrophilic areas. These droplets are overlaid with an immiscible mixture of perfluorocarbon liquid (PFCL) that essentially eliminates evaporation. During wash steps, a thin film of PFCL covers the hydrophobic coating and prevents its wetting by wash buffer; as a result, the hydrophilic wells remain intact and inter-well cross-contamination is prevented. We compared the performance of three immunoassays using PPPs versus traditional 384-well ELISA plates. These included assays for soluble FcRH5 in human serum, SDF-1 in mouse serum, and human IgG in mouse plasma. The results show that the PPP assays were closely comparable to the ELISAs in terms of sensitivity, linearity of dilution, and sample quantitation. Moreover, the PPP assays were rapid to perform, easily adapted from ELISA protocols, and used 10- to 50-fold less sample and reagent volume as compared to 384- or 96-well plate ELISAs. As an additional advantage, PPPs conform to established microplate dimensional standards making them compatible with pre-existing equipment and workflows. PPPs therefore represent an attractive and broadly applicable approach to flexible miniaturization of plate-based immunochemical assays.
Collapse
|
47
|
Boswell CA, Mundo EE, Zhang C, Stainton SL, Yu SF, Lacap JA, Mao W, Kozak KR, Fourie A, Polakis P, Khawli LA, Lin K. Differential effects of predosing on tumor and tissue uptake of an 111In-labeled anti-TENB2 antibody-drug conjugate. J Nucl Med 2012; 53:1454-61. [PMID: 22872740 DOI: 10.2967/jnumed.112.103168] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED TENB2, also known as tomoregulin or transmembrane protein with epidermal growth factor-like and 2 follistatin-like domains, is a transmembrane proteoglycan overexpressed in human prostate tumors. This protein is a promising target for antimitotic monomethyl auristatin E (MMAE)-based antibody-drug conjugate (ADC) therapy. Nonlinear pharmacokinetics in normal mice suggested that antigen expression in normal tissues may contribute to targeted mediated disposition. We evaluated a predosing strategy with unconjugated antibody to block ADC uptake in target-expressing tissues in a mouse model while striving to preserve tumor uptake and efficacy. METHODS Unconjugated, unlabeled antibody was preadministered to mice bearing the TENB2-expressing human prostate explant model, LuCaP 77, followed by a single administration of (111)In-labeled anti-TENB2-MMAE for biodistribution and SPECT/CT studies. A tumor-growth-inhibition study was conducted to determine the pharmacodynamic consequences of predosing. RESULTS Preadministration of anti-TENB2 at 1 mg/kg significantly increased blood exposure of the radiolabeled ADC and reduced intestinal, hepatic, and splenic uptake while not affecting tumor accretion. Similar tumor-to-heart ratios were measured by SPECT/CT at 24 h with and without the predose. Consistent with this, the preadministration of 0.75 mg/kg did not interfere with efficacy in a tumor-growth study dosed at 0.75 mg or 2.5 mg of ADC per kilogram. CONCLUSION Overall, the potential to mask peripheral, nontumor antigen uptake while preserving tumor uptake and efficacy could ameliorate toxicity and may significantly affect future dosing strategies for ADCs.
Collapse
|
48
|
Pastuskovas CV, Mundo EE, Williams SP, Nayak TK, Ho J, Ulufatu S, Clark S, Ross S, Cheng E, Parsons-Reponte K, Cain G, Van Hoy M, Majidy N, Bheddah S, dela Cruz Chuh J, Kozak KR, Lewin-Koh N, Nauka P, Bumbaca D, Sliwkowski M, Tibbitts J, Theil FP, Fielder PJ, Khawli LA, Boswell CA. Effects of anti-VEGF on pharmacokinetics, biodistribution, and tumor penetration of trastuzumab in a preclinical breast cancer model. Mol Cancer Ther 2012; 11:752-62. [PMID: 22222630 DOI: 10.1158/1535-7163.mct-11-0742-t] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Both human epidermal growth factor receptor 2 (HER-2/neu) and VEGF overexpression correlate with aggressive phenotypes and decreased survival among breast cancer patients. Concordantly, the combination of trastuzumab (anti-HER2) with bevacizumab (anti-VEGF) has shown promising results in preclinical xenograft studies and in clinical trials. However, despite the known antiangiogenic mechanism of anti-VEGF antibodies, relatively little is known about their effects on the pharmacokinetics and tissue distribution of other antibodies. This study aimed to measure the disposition properties, with a particular emphasis on tumor uptake, of trastuzumab in the presence or absence of anti-VEGF. Radiolabeled trastuzumab was administered alone or in combination with an anti-VEGF antibody to mice bearing HER2-expressing KPL-4 breast cancer xenografts. Biodistribution, autoradiography, and single-photon emission computed tomography-X-ray computed tomography imaging all showed that anti-VEGF administration reduced accumulation of trastuzumab in tumors despite comparable blood exposures and similar distributions in most other tissues. A similar trend was also observed for an isotype-matched IgG with no affinity for HER2, showing reduced vascular permeability to macromolecules. Reduced tumor blood flow (P < 0.05) was observed following anti-VEGF treatment, with no significant differences in the other physiologic parameters measured despite immunohistochemical evidence of reduced vascular density. In conclusion, anti-VEGF preadministration decreased tumor uptake of trastuzumab, and this phenomenon was mechanistically attributed to reduced vascular permeability and blood perfusion. These findings may ultimately help inform dosing strategies to achieve improved clinical outcomes.
Collapse
|
49
|
Boswell CA, Mundo EE, Zhang C, Bumbaca D, Valle NR, Kozak KR, Fourie A, Chuh J, Koppada N, Saad O, Gill H, Shen BQ, Rubinfeld B, Tibbitts J, Kaur S, Theil FP, Fielder PJ, Khawli LA, Lin K. Impact of drug conjugation on pharmacokinetics and tissue distribution of anti-STEAP1 antibody-drug conjugates in rats. Bioconjug Chem 2011; 22:1994-2004. [PMID: 21913715 DOI: 10.1021/bc200212a] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibody-drug conjugates (ADCs) are designed to combine the exquisite specificity of antibodies to target tumor antigens with the cytotoxic potency of chemotherapeutic drugs. In addition to the general chemical stability of the linker, a thorough understanding of the relationship between ADC composition and biological disposition is necessary to ensure that the therapeutic window is not compromised by altered pharmacokinetics (PK), tissue distribution, and/or potential organ toxicity. The six-transmembrane epithelial antigen of prostate 1 (STEAP1) is being pursued as a tumor antigen target. To assess the role of ADC composition in PK, we evaluated plasma and tissue PK profiles in rats, following a single dose, of a humanized anti-STEAP1 IgG1 antibody, a thio-anti-STEAP1 (ThioMab) variant, and two corresponding thioether-linked monomethylauristatin E (MMAE) drug conjugates modified through interchain disulfide cysteine residues (ADC) and engineered cysteines (TDC), respectively. Plasma PK of total antibody measured by enzyme-linked immunosorbent assay (ELISA) revealed ∼45% faster clearance for the ADC relative to the parent antibody, but no apparent difference in clearance between the TDC and unconjugated parent ThioMab. Total antibody clearances of the two unconjugated antibodies were similar, suggesting minimal effects on PK from cysteine mutation. An ELISA specific for MMAE-conjugated antibody indicated that the ADC cleared more rapidly than the TDC, but total antibody ELISA showed comparable clearance for the two drug conjugates. Furthermore, consistent with relative drug load, the ADC had a greater magnitude of drug deconjugation than the TDC in terms of free plasma MMAE levels. Antibody conjugation had a noticeable, albeit minor, impact on tissue distribution with a general trend toward increased hepatic uptake and reduced levels in other highly vascularized organs. Liver uptakes of ADC and TDC at 5 days postinjection were 2-fold and 1.3-fold higher, respectively, relative to the unmodified antibodies. Taken together, these results indicate that the degree of overall structural modification in anti-STEAP1-MMAE conjugates has a corresponding level of impact on both PK and tissue distribution.
Collapse
|
50
|
Zheng B, Fuji RN, Elkins K, Yu SF, Fuh FK, Chuh J, Tan C, Hongo JA, Raab H, Kozak KR, Williams M, McDorman E, Eaton D, Ebens A, Polson AG. In vivo effects of targeting CD79b with antibodies and antibody-drug conjugates. Mol Cancer Ther 2009; 8:2937-46. [DOI: 10.1158/1535-7163.mct-09-0369] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|