26
|
El-Daly M, Pulakazhi Venu VK, Saifeddine M, Mihara K, Kang S, Fedak PW, Alston LA, Hirota SA, Ding H, Triggle CR, Hollenberg MD. Hyperglycaemic impairment of PAR2-mediated vasodilation: Prevention by inhibition of aortic endothelial sodium-glucose-co-Transporter-2 and minimizing oxidative stress. Vascul Pharmacol 2018; 109:56-71. [DOI: 10.1016/j.vph.2018.06.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/05/2018] [Accepted: 06/09/2018] [Indexed: 01/16/2023]
|
27
|
Pulakazhi Venu VK, Saifeddine M, Mihara K, El-Daly M, Belke D, Dean JLE, O'Brien ER, Hirota SA, Hollenberg MD. Heat shock protein-27 and sex-selective regulation of muscarinic and proteinase-activated receptor 2-mediated vasodilatation: differential sensitivity to endothelial NOS inhibition. Br J Pharmacol 2018. [PMID: 29532457 DOI: 10.1111/bph.14200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Previously, we demonstrated that exogenous heat shock protein 27 (HSP27/gene, HSPB1) treatment of human endothelial progenitor cells (EPCs) increases the synthesis and secretion of VEGF, improves EPC-migration/re-endothelialization and decreases neo-intima formation, suggesting a role for HSPB1 in regulating EPC function. We hypothesized that HSPB1 also affects mature endothelial cells (ECs) to alter EC-mediated vasoreactivity in vivo. Our work focused on endothelial NOS (eNOS)/NO-dependent relaxation induced by ACh and the coagulation pathway-activated receptor, proteinase-activated receptor 2 (PAR2). EXPERIMENTAL APPROACH Aorta rings from male and female wild-type, HSPB1-null and HSPB1 overexpressing (HSPB1o/e) mice were contracted with phenylephrine, and NOS-dependent relaxation responses to ACh and PAR2 agonist, 2-furoyl-LIGRLO-NH2 , were measured without and with L-NAME and ODQ, either alone or in combination to block NO synthesis/action. Tissues from female HSPB1-null mice were treated in vitro with recombinant HSP27 and then used for bioassay as above. Furthermore, oestrogen-specific effects were evaluated using a bioassay of aorta isolated from ovariectomized mice. KEY RESULTS Relative to males, HSPB1-null female mice exhibited an increased L-NAME-resistant relaxation induced by activation of either PAR2 or muscarinic ACh receptors that was blocked in the concurrent presence of both L-NAME and ODQ. mRNAs (qPCR) for eNOS and ODQ-sensitive guanylyl-cyclase were increased in females versus males. Treatment of isolated aorta tissue with HSPB1 improved tissue responsiveness in the presence of L-NAME. Ovariectomy did not affect NO sensitivity, supporting an oestrogen-independent role for HSPB1. CONCLUSIONS AND IMPLICATIONS HSPB1 can regulate intact vascular endothelial function to affect NO-mediated vascular relaxation, especially in females.
Collapse
|
28
|
Ungefroren H, Witte D, Mihara K, Rauch BH, Henklein P, Jöhren O, Bonni S, Settmacher U, Lehnert H, Hollenberg MD, Kaufmann R, Gieseler F. Transforming Growth Factor-β1/Activin Receptor-like Kinase 5-Mediated Cell Migration is Dependent on the Protein Proteinase-Activated Receptor 2 but not on Proteinase-Activated Receptor 2-Stimulated Gq-Calcium Signaling. Mol Pharmacol 2017; 92:519-532. [DOI: 10.1124/mol.117.109017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023] Open
|
29
|
Polley DJ, Mihara K, Ramachandran R, Vliagoftis H, Renaux B, Saifeddine M, Daines MO, Boitano S, Hollenberg MD. Cockroach allergen serine proteinases: Isolation, sequencing and signalling via proteinase-activated receptor-2. Clin Exp Allergy 2017; 47:946-960. [PMID: 28317204 DOI: 10.1111/cea.12921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Allergy to the German cockroach (Blattella germanica) is a significant asthma risk factor for inner-city communities. Cockroach, like other allergens, contains trypsin-like enzyme activity that contributes to allergenicity and airway inflammation by activating proteinase-activated receptors (PARs). To date, the enzymes responsible for the proteolytic activity of German cockroach allergen have not been characterized. OBJECTIVES We aimed to identify, isolate and characterize the trypsin-like proteinases in German cockroach allergen extracts used for clinical skin tests. For each enzyme, we sought to determine (1) its substrate and inhibitor enzyme kinetics (Km and IC50), (2) its amino acid sequence and (3) its ability to activate calcium signalling and/or ERK1/2 phosphorylation via PAR2. METHODS Using a trypsin-specific activity-based probe, we detected three distinct enzymes that were isolated using ion-exchange chromatography. Each enzyme was sequenced by mass spectometery (deconvoluted with an expressed sequence tag library), evaluated kinetically for its substrate/inhibitor profile and assessed for its ability to activate PAR2 signalling. FINDINGS Each of the three serine proteinase activity-based probe-labelled enzymes isolated was biochemically distinct, with different enzyme kinetic profiles and primary amino acid sequences. The three enzymes showed a 57%-71% sequence identity with a proteinase previously cloned from the American cockroach (Per a 10). Each enzyme was found to activate both Ca++ and MAPK signalling via PAR2. CONCLUSIONS AND RELEVANCE We have identified three different serine proteinases from the German cockroach that may, via PAR2 activation, play different roles for allergen sensitization in vivo and may represent attractive therapeutic targets for asthma.
Collapse
|
30
|
Ramachandran R, Mihara K, Thibeault P, Vanderboor CM, Petri B, Saifeddine M, Bouvier M, Hollenberg MD. Targeting a Proteinase-Activated Receptor 4 (PAR4) Carboxyl Terminal Motif to Regulate Platelet Function. Mol Pharmacol 2017; 91:287-295. [PMID: 28126849 DOI: 10.1124/mol.116.106526] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
Thrombin initiates human platelet aggregation by coordinately activating proteinase-activated receptors (PARs) 1 and 4. However, targeting PAR1 with an orthosteric-tethered ligand binding-site antagonist results in bleeding, possibly owing to the important role of PAR1 activation on cells other than platelets. Because of its more restricted tissue expression profile, we have therefore turned to PAR4 as an antiplatelet target. We have identified an intracellular PAR4 C-terminal motif that regulates calcium signaling and β-arrestin interactions. By disrupting this PAR4 calcium/β-arrestin signaling process with a novel cell-penetrating peptide, we were able to inhibit both thrombin-triggered platelet aggregation in vitro and clot consolidation in vivo. We suggest that targeting PAR4 represents an attractive alternative to blocking PAR1 for antiplatelet therapy in humans.
Collapse
|
31
|
Mihara K, Ramachandran R, Saifeddine M, Hansen KK, Renaux B, Polley D, Gibson S, Vanderboor C, Hollenberg MD. Thrombin-Mediated Direct Activation of Proteinase-Activated Receptor-2: Another Target for Thrombin Signaling. Mol Pharmacol 2016; 89:606-14. [PMID: 26957205 DOI: 10.1124/mol.115.102723] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 03/03/2016] [Indexed: 01/30/2023] Open
Abstract
Thrombin is known to signal to cells by cleaving/activating a G-protein-coupled family of proteinase-activated receptors (PARs). The signaling mechanism involves the proteolytic unmasking of an N-terminal receptor sequence that acts as a tethered receptor-activating ligand. To date, the recognized targets of thrombin cleavage and activation for signaling are PAR1 and PAR4, in which thrombin cleaves at a conserved target arginine to reveal a tethered ligand. PAR2, which like PAR1 is also cleaved at an N-terminal arginine to unmask its tethered ligand, is generally regarded as a target for trypsin but not for thrombin signaling. We now show that thrombin, at concentrations that can be achieved at sites of acute injury or in a tumor microenvironment, can directly activate PAR2 vasorelaxation and signaling, stimulating calcium and mitogen-activated protein kinase responses along with triggeringβ-arrestin recruitment. Thus, PAR2 can be added alongside PAR1 and PAR4 to the targets, whereby thrombin can affect tissue function.
Collapse
|
32
|
Aoki T, Shimada K, Suzuki R, Izutsu K, Tomita A, Maeda Y, Takizawa J, Mitani K, Igarashi T, Sakai K, Miyazaki K, Mihara K, Ohmachi K, Nakamura N, Takasaki H, Kiyoi H, Nakamura S, Kinoshita T, Ogura M. High-dose chemotherapy followed by autologous stem cell transplantation for relapsed/refractory primary mediastinal large B-cell lymphoma. Blood Cancer J 2015; 5:e372. [PMID: 26636287 PMCID: PMC4735068 DOI: 10.1038/bcj.2015.101] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
HOLLENBERG M, Mihara K, Liu Y, Ramachandran R. Identification of a Prostate Cancer Cell Proteinase Activated Receptor/MMP Signaling Axis. FASEB J 2015. [DOI: 10.1096/fasebj.29.1_supplement.629.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Saifeddine M, El-Daly M, Mihara K, Bunnett NW, McIntyre P, Altier C, Hollenberg MD, Ramachandran R. GPCR-mediated EGF receptor transactivation regulates TRPV4 action in the vasculature. Br J Pharmacol 2015; 172:2493-506. [PMID: 25572823 DOI: 10.1111/bph.13072] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/18/2014] [Accepted: 12/28/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential vanilloid-4 (TRPV4) is a calcium-permeant ion channel that is known to affect vascular function. The ability of TRPV4 to cause a vasoconstriction in blood vessels has not yet been mechanistically examined. Further in neuronal cells, TRPV4 signalling can be potentiated by GPCR activation. Thus, we studied the mechanisms underlying the vascular contractile action of TRPV4 and the GPCR-mediated potentiation of such vasoconstriction, both of which are as yet unappreciated aspects of TRPV4 function. EXPERIMENTAL APPROACH The mechanisms of TRPV4-dependent regulation of vascular tone in isolated mouse aortae were studied using wire myography. TRPV4-dependent calcium signalling and prostanoid production was studied in cultured human umbilical vein endothelial cells (HUVECs). KEY RESULTS In addition to the well-documented vasorelaxation response triggered by TRPV4 activation, we report here a TRPV4-triggered vasoconstriction in the mouse aorta that involves a COX-generated Tx receptor (TP) agonist that acts in a MAPK and Src kinase signalling dependent manner. This constriction is potentiated by activation of the GPCRs for angiotensin (AT1 receptors) or proteinases (PAR1 and PAR2) via transactivation of the EGF receptor and a process involving PKC. TRPV4-dependent vascular contraction can be blocked by COX inhibitors or with TP antagonists. Further, TRPV4 activation in HUVECs stimulated Tx release as detected by an elisa. CONCLUSION AND IMPLICATIONS We conclude that the GPCR potentiation of TRPV4 action and TRPV4-dependent Tx receptor activation are important regulators of vascular function and could be therapeutically targeted in vascular diseases.
Collapse
|
35
|
El-Daly M, Saifeddine M, Mihara K, Ramachandran R, Triggle CR, Hollenberg MD. Proteinase-activated receptors 1 and 2 and the regulation of porcine coronary artery contractility: a role for distinct tyrosine kinase pathways. Br J Pharmacol 2014; 171:2413-25. [PMID: 24506284 DOI: 10.1111/bph.12593] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 12/23/2013] [Accepted: 01/17/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Because angiotensin-II-mediated porcine coronary artery (PCA) vasoconstriction is blocked by protein tyrosine kinase (PYK) inhibitors, we hypothesized that proteinase-activated receptors (PARs), known to regulate vascular tension, like angiotensin-II, would also cause PCA contractions via PYK-dependent signalling pathways. EXPERIMENTAL APPROACH Contractions of intact and endothelium-free isolated PCA rings, stimulated by PAR1 /PAR2 -activating peptides, angiotensin-II, PGF2α , EGF, PDGF and KCl, were monitored with/without multiple signalling pathway inhibitors, including AG-tyrphostins AG18 (non-specific PYKs), AG1478 (EGF-receptor kinase), AG1296 (PDGF receptor kinase), PP1 (Src kinase), U0126 and PD98059 (MEK/MAPKinase kinase), indomethacin/SC-560/NS-398 (COX-1/2) and L-NAME (NOS). KEY RESULTS AG18 inhibited the contractions induced by all the agonists except KCl, whereas U0126 attenuated contractions induced by PAR1 /PAR2 agonists, EGF and angiotensin-II, but not by PGF2α , the COX-produced metabolites of arachidonate and KCl. PP1 only affected the responses to PAR1 /PAR2 -activating peptides and angiotensin-II. The EGF-kinase inhibitor, AG1478, attenuated contractions initiated by the PARs (PAR2 >> PAR1 ) and EGF itself, but not by angiotensin-II, PGF2α or KCl. COX-1/2 inhibitors blocked the contractions induced by all the agonists, except KCl and PGF2α . CONCLUSION AND IMPLICATIONS PAR1/2 -mediated contractions of the PCA are dependent on Src and MAPKinase and, in part, involve EGF-receptor-kinase transactivation and the generation of a COX-derived contractile agonist. However, the PYK signalling pathways used by PARs are distinct from each other and from those triggered by angiotensin-II and EGF. These signalling pathways may be therapeutic targets for managing coagulation-proteinase-induced coronary vasospasm.
Collapse
|
36
|
Hollenberg MD, Mihara K, Polley D, Suen JY, Han A, Fairlie DP, Ramachandran R. Biased signalling and proteinase-activated receptors (PARs): targeting inflammatory disease. Br J Pharmacol 2014; 171:1180-94. [PMID: 24354792 DOI: 10.1111/bph.12544] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 11/13/2013] [Accepted: 11/26/2013] [Indexed: 12/13/2022] Open
Abstract
Although it has been known since the 1960s that trypsin and chymotrypsin can mimic hormone action in tissues, it took until the 1990s to discover that serine proteinases can regulate cells by cleaving and activating a unique four-member family of GPCRs known as proteinase-activated receptors (PARs). PAR activation involves the proteolytic exposure of its N-terminal receptor sequence that folds back to function as a 'tethered' receptor-activating ligand (TL). A key N-terminal arginine in each of PARs 1 to 4 has been singled out as a target for cleavage by thrombin (PARs 1, 3 and 4), trypsin (PARs 2 and 4) or other proteases to unmask the TL that activates signalling via Gq , Gi or G12 /13 . Similarly, synthetic receptor-activating peptides, corresponding to the exposed 'TL sequences' (e.g. SFLLRN-, for PAR1 or SLIGRL- for PAR2) can, like proteinase activation, also drive signalling via Gq , Gi and G12 /13 , without requiring receptor cleavage. Recent data show, however, that distinct proteinase-revealed 'non-canonical' PAR tethered-ligand sequences and PAR-activating agonist and antagonist peptide analogues can induce 'biased' PAR signalling, for example, via G12 /13 -MAPKinase instead of Gq -calcium. This overview summarizes implications of this 'biased' signalling by PAR agonists and antagonists for the recognized roles the PARs play in inflammatory settings.
Collapse
|
37
|
Iablokov V, Hirota CL, Peplowski MA, Ramachandran R, Mihara K, Hollenberg MD, MacNaughton WK. Proteinase-activated receptor 2 (PAR2) decreases apoptosis in colonic epithelial cells. J Biol Chem 2014; 289:34366-77. [PMID: 25331954 DOI: 10.1074/jbc.m114.610485] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mucosal biopsies from inflamed colon of inflammatory bowel disease patients exhibit elevated epithelial apoptosis compared with those from healthy individuals, disrupting mucosal homeostasis and perpetuating disease. Therapies that decrease intestinal epithelial apoptosis may, therefore, ameliorate inflammatory bowel disease, but treatments that specifically target apoptotic pathways are lacking. Proteinase-activated receptor-2 (PAR2), a G protein-coupled receptor activated by trypsin-like serine proteinases, is expressed on intestinal epithelial cells and stimulates mitogenic pathways upon activation. We sought to determine whether PAR2 activation and signaling could rescue colonic epithelial (HT-29) cells from apoptosis induced by proapoptotic cytokines that are increased during inflammatory bowel disease. The PAR2 agonists 2-furoyl-LIGRLO (2f-LI), SLIGKV and trypsin all significantly reduced cleavage of caspase-3, -8, and -9, poly(ADP-ribose) polymerase, and the externalization of phosphatidylserine after treatment of cells with IFN-γ and TNF-α. Knockdown of PAR2 with siRNA eliminated the anti-apoptotic effect of 2f-LI and increased the sensitivity of HT-29 cells to cytokine-induced apoptosis. Concurrent inhibition of both MEK1/2 and PI3K was necessary to inhibit PAR2-induced survival. 2f-LI was found to increase phosphorylation and inactivation of pro-apoptotic BAD at Ser(112) and Ser(136) by MEK1/2 and PI3K-dependent signaling, respectively. PAR2 activation also increased the expression of anti-apoptotic MCL-1. Simultaneous knockdown of both BAD and MCL-1 had minimal effects on PAR2-induced survival, whereas single knockdown had no effect. We conclude that PAR2 activation reduces cytokine-induced epithelial apoptosis via concurrent stimulation of MEK1/2 and PI3K but little involvement of MCL-1 and BAD. Our findings represent a novel mechanism whereby serine proteinases facilitate epithelial cell survival and may be important in the context of colonic healing.
Collapse
|
38
|
Nemoto K, Mihara K, Nakamura A, Nagai G, Kagawa S, Suzuki T, Kondo T. Effects of escitalopram on plasma concentrations of aripiprazole and its active metabolite, dehydroaripiprazole, in Japanese patients. PHARMACOPSYCHIATRY 2014; 47:101-4. [PMID: 24764200 DOI: 10.1055/s-0034-1372644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
INTRODUCTION The effects of escitalopram (10 mg/d) coadministration on plasma concentrations of aripiprazole and its active metabolite, dehydroaripiprazole, were studied in 13 Japanese psychiatric patients and compared with those of paroxetine (10 mg/d) coadministration. METHODS The patients had received 6-24 mg/d of aripiprazole for at least 2 weeks. Patients were randomly allocated to one of 2 treatment sequences: paroxetine-escitalopram (n=6) or escitalopram-paroxetine (n=7). Each sequence consisted of two 2-week phases. Plasma concentrations of aripiprazole and dehydroaripiprazole were measured using liquid chromatography with mass spectrometric detection. RESULTS Plasma concentrations of aripiprazole and the sum of aripiprazole and dehydroaripiprazole during paroxetine coadministration were 1.7-fold (95% confidence intervals [CI], 1.3-2.1, p<0.001) and 1.5-fold (95% CI 1.2-1.9, p<0.01) higher than those values before the coadministration. These values were not influenced by escitalopram coadministration (1.3-fold, 95% CI 1.1-1.5 and 1.3-fold, 95% CI 1.0-1.5). Plasma dehydroaripiprazole concentrations remained constant during the study. CONCLUSION The present study suggests that low doses of escitalopram can be safely coadministered with aripiprazole, at least from a pharmacokinetic point of view.
Collapse
|
39
|
Sharma N, Fahr J, Renaux B, Saifeddine M, Kumar R, Nishikawa S, Mihara K, Ramachandran R, Hollenberg MD, Rancourt DE. Implantation serine proteinase 2 is a monomeric enzyme with mixed serine proteolytic activity and can silence signalling via proteinase activated receptors. Biochem Cell Biol 2013; 91:487-97. [DOI: 10.1139/bcb-2013-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Implantation serine proteinase 2 (ISP2), a S1 family serine proteinase, is known for its role in the critical processes of embryo hatching and implantation in the mouse uterus. Native implantation serine proteinases (ISPs) are co-expressed and co-exist as heterodimers in uterine and blastocyst tissues. The ISP1–ISP2 enzyme complex shows trypsin-like substrate specificity. In contrast, we found that ISP2, isolated as a 34 kDa monomer from a Pichia pastoris expression system, exhibited a mixed serine proteolytic substrate specificity, as determined by a phage display peptide cleavage approach and verified by the in vitro cleavage of synthetic peptides. Based upon the peptide sequence substrate selectivity, a database search identified many potential ISP2 targets of physiological relevance, including the proteinase activated receptor 2 (PAR2). The in vitro cleavage studies with PAR2-derived peptides confirmed the mixed substrate specificity of ISP2. Treatment of cell lines expressing proteinase-activated receptors (PARs) 1, 2, and 4 with ISP2 prevented receptor activation by either thrombin (PARs 1 and 4) or trypsin (PAR2). The disarming and silencing of PARs by ISP2 may play a role in successful embryo implantation.
Collapse
|
40
|
Mihara K, Sugiura T, Okamura Y, Kanemoto H, Mizuno T, Moriguchi M, Aramaki T, Uesaka K. A predictive factor of insufficient liver regeneration after preoperative portal vein embolization. ACTA ACUST UNITED AC 2013; 51:118-28. [PMID: 24247292 DOI: 10.1159/000356368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 10/14/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND Preoperative portal vein embolization (PVE) is performed to enhance the future remnant liver function (FRLF) and volume (FRLV). However, the volume of the nonembolized liver does not increase enough in some patients, which results in an insufficient FRLF. The aim of this study was to evaluate the predictors of insufficient FRLF after PVE for extended hepatectomy. METHODS This retrospective study included 172 patients (107 patients with cholangiocarcinoma, 40 patients with metastatic liver cancer and 25 patients with hepatocellular carcinoma) who underwent PVE before extended hepatectomy. The total liver function was evaluated by measuring the indocyanine green plasma clearance rate (KICG). Computed tomography volumetry was conducted to evaluate the total liver volume and FRLV. The KICG of the future remnant liver (remK) was calculated using the following formula: KICG × FRLV/total liver volume. The safety margin for hepatectomy was set at remK after PVE (post-PVE remK) ≥ 0.05. RESULTS One hundred and twenty-three patients with a post-PVE remK level of >0.05 underwent hepatectomy without postoperative liver failure [sufficient liver regeneration (SLR) group], and 9 patients with a post-PVE remK level of <0.05 did not due to insufficient FRLF [insufficient liver regeneration (ILR) group]. In the SLR group, the KICG values did not change after PVE (median, 0.144-0.146, p = 0.523); however, the %FRLV and remK increased significantly (35.0-44.3%, p < 0.001 and 0.0488-0.0610, p < 0001, respectively). In contrast, in the ILR group, the KICG values decreased significantly (0.128-0.108, p = 0.021) and the %FRLV increased marginally (27.4-32.6%, p = 0.051). As a result, the remK did not increase significantly (0.0351-0.0365, p = 0.213). A receiver operating characteristic curve demonstrated an remK value of 0.04 obtained before PVE (pre-PVE remK) to be the optimal cutoff point for defective liver regeneration. The univariate and multivariate analyses revealed that a pre-PVE remK value of <0.04 was a factor for ILR. It was also correlated with postoperative liver failure in the analysis of the patients who underwent hepatectomy. CONCLUSIONS The patients in the ILR group did not achieve SLR after PVE due to a significant decrease in the KICG and an insufficient increase in %FRLV. A pre-PVE remK value of <0.04 is a useful predictor of insufficient regeneration of the nonembolized liver, even after PVE.
Collapse
|
41
|
Mihara K, Ramachandran R, Renaux B, Saifeddine M, Hollenberg MD. Neutrophil elastase and proteinase-3 trigger G protein-biased signaling through proteinase-activated receptor-1 (PAR1). J Biol Chem 2013; 288:32979-90. [PMID: 24052258 DOI: 10.1074/jbc.m113.483123] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neutrophil proteinases released at sites of inflammation can affect tissue function by either activating or disarming signal transduction mediated by proteinase-activated receptors (PARs). Because PAR1 is expressed at sites where abundant neutrophil infiltration occurs, we hypothesized that neutrophil-derived enzymes might also regulate PAR1 signaling. We report here that both neutrophil elastase and proteinase-3 cleave the human PAR1 N terminus at sites distinct from the thrombin cleavage site. This cleavage results in a disarming of thrombin-activated calcium signaling through PAR1. However, the distinct non-canonical tethered ligands unmasked by neutrophil elastase and proteinase-3, as well as synthetic peptides with sequences derived from these novel exposed tethered ligands, selectively stimulated PAR1-mediated mitogen-activated protein kinase activation. This signaling was blocked by pertussis toxin, implicating a Gαi-triggered signal pathway. We conclude that neutrophil proteinases trigger biased PAR1 signaling and we describe a novel set of tethered ligands that are distinct from the classical tethered ligand revealed by thrombin. We further demonstrate the function of this biased signaling in regulating endothelial cell barrier integrity.
Collapse
|
42
|
Polley D, Mihara K, Ramachandran R, Vliagoftis H, Boitano S, Hollenberg MD, Daines M. Cockroach Allergen Proteinases Regulate Proteinase‐Activated Receptor‐1 (PAR1) Signalling. FASEB J 2013. [DOI: 10.1096/fasebj.27.1_supplement.1171.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Hollenberg MD, Polley D, Ramachandran R, Mihara K. Biased signaling by proteinase‐activated receptor 1 (PAR1) via activation with neutrophil and cockroach serine proteinases: tracking of distinct receptor dynamics with dual fluorochrome tagged receptors. FASEB J 2013. [DOI: 10.1096/fasebj.27.1_supplement.1171.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Ramachandran R, Eissa A, Mihara K, Oikonomopoulou K, Saifeddine M, Renaux B, Diamandis E, Hollenberg MD. Proteinase-activated receptors (PARs): differential signalling by kallikrein-related peptidases KLK8 and KLK14. Biol Chem 2012; 393:421-7. [PMID: 22505524 DOI: 10.1515/hsz-2011-0251] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/04/2012] [Indexed: 12/15/2022]
Abstract
We compared signalling pathways such as calcium transients, MAPK activation, β-arrestin interactions and receptor internalization triggered by kallikrein-related peptidases (KLKs) 8 and 14 in human and rat proteinase-activated receptor (PAR)2-expressing human embryonic kidney (HEK) and Kirsten transformed rat kidney (KNRK) cells. Further, we analysed processing by KLK8 vs. KLK14 of synthetic human and rat PAR2-derived sequences representing the cleavage-activation domain of PAR2. Our data show that like KLK14, KLK8 can unmask a PAR2 receptor-activating sequence from a peptide precursor. However, whilst KLK8, like KLK14, can signal in rat-PAR2-expressing KNRK cells, this enzyme cannot signal via human PAR2 in HEK or KNRK cells, but rather, disarms HEK PAR1. Thus, KLK8 and KLK14 can signal differentially via the PARs to affect tissue function.
Collapse
|
45
|
Mihara K, Elliott G, Boots A, Nelissen R. Inhibition of p38 kinase suppresses the development of psoriasis-like lesions in a human skin transplant model of psoriasis. Br J Dermatol 2012; 167:455-7. [DOI: 10.1111/j.1365-2133.2012.10939.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Polley D, Mihara K, Saifeddine M, Renaux B, Vliagoftis H, Boitano S, Daines M, Hollenberg MD. Allergen‐derived proteinases: Isolation, characterization and signaling via proteinase‐activated receptors (PARs). FASEB J 2012. [DOI: 10.1096/fasebj.26.1_supplement.664.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Li Y, Mihara K, Saifeddine M, Krawetz A, Lau DCW, Li H, Ding H, Triggle CR, Hollenberg MD. Perivascular adipose tissue-derived relaxing factors: release by peptide agonists via proteinase-activated receptor-2 (PAR2) and non-PAR2 mechanisms. Br J Pharmacol 2012; 164:1990-2002. [PMID: 21615723 DOI: 10.1111/j.1476-5381.2011.01501.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE We hypothesized that proteinase-activated receptor-2 (PAR2)-mediated vasorelaxation in murine aorta tissue can be due in part to the release of adipocyte-derived relaxing factors (ADRFs). EXPERIMENTAL APPROACH Aortic rings from obese TallyHo and C57Bl6 intact or PAR2-null mice either without or with perivascular adipose tissue (PVAT) were contracted with phenylephrine and relaxation responses to PAR2-selective activating peptides (PAR2-APs: SLIGRL-NH(2) and 2-furoyl-LIGRLO-NH(2) ), trypsin and to PAR2-inactive peptides (LRGILS-NH(2) , 2-furoyl-OLRGIL-NH(2) and LSIGRL-NH(2) ) were measured. Relaxation was monitored in the absence or presence of inhibitors that either alone or in combination were previously shown to inhibit ADRF-mediated responses: L-NAME (NOS), indomethacin (COX), ODQ (guanylate cyclase), catalase (H(2) O(2) ) and the K(+) channel-targeted reagents, apamin, charybdotoxin, 4-aminopyridine and glibenclamide. KEY RESULTS Endothelium-intact PVAT-free preparations did not respond to PAR2-inactive peptides (LRGILS-NH(2) , LSIGRL-NH(2) , 2-furoyl-OLRGIL-NH(2) ), whereas active PAR2-APs (SLIGRL-NH(2) ; 2-furoyl-LIGRLO-NH(2) ) caused an L-NAME-inhibited relaxation. However, in PVAT-containing preparations treated with L-NAME/ODQ/indomethacin together, both PAR2-APs and trypsin caused relaxant responses in PAR2-intact, but not PAR2-null-derived tissues. The PAR2-induced PVAT-dependent relaxation (SLIGRL-NH(2) ) persisted in the presence of apamin plus charybdotoxin, 4-aminopyridine and glibenclamide, but was blocked by catalase, implicating a role for H(2) O(2) . Surprisingly, the PAR2-inactive peptides, LRGILS-NH(2) and 2-furoyl-OLRGIL-NH(2) (but not LSIGRL-NH(2) ), caused relaxation in PVAT-containing preparations from both PAR2-null and PAR2-intact (C57Bl, TallyHo) mice. The LRGILS-NH(2) -induced relaxation was distinct from the PAR2 response, being blocked by 4-aminopyridine, but not catalase. CONCLUSIONS Distinct ADRFs that may modulate vascular tone in pathophysiological settings can be released from murine PVAT by both PAR2-dependent and PAR2-independent mechanisms.
Collapse
|
48
|
Mihara K, Bhattacharyya J, Kitanaka A, Yanagihara K, Kubo T, Takei Y, Asaoku H, Takihara Y, Kimura A. T-cell immunotherapy with a chimeric receptor against CD38 is effective in eliminating myeloma cells. Leukemia 2011; 26:365-7. [PMID: 21836610 DOI: 10.1038/leu.2011.205] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Ramachandran R, Mihara K, Chung H, Renaux B, Lau CS, Muruve DA, DeFea KA, Bouvier M, Hollenberg MD. Neutrophil elastase acts as a biased agonist for proteinase-activated receptor-2 (PAR2). J Biol Chem 2011; 286:24638-48. [PMID: 21576245 DOI: 10.1074/jbc.m110.201988] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human neutrophil proteinases (elastase, proteinase-3, and cathepsin-G) are released at sites of acute inflammation. We hypothesized that these inflammation-associated proteinases can affect cell signaling by targeting proteinase-activated receptor-2 (PAR(2)). The PAR family of G protein-coupled receptors is triggered by a unique mechanism involving the proteolytic unmasking of an N-terminal self-activating tethered ligand (TL). Proteinases can either activate PAR signaling by unmasking the TL sequence or disarm the receptor for subsequent enzyme activation by cleaving downstream from the TL sequence. We found that none of neutrophil elastase, cathepsin-G, and proteinase-3 can activate G(q)-coupled PAR(2) calcium signaling; but all of these proteinases can disarm PAR(2), releasing the N-terminal TL sequence, thereby preventing G(q)-coupled PAR(2) signaling by trypsin. Interestingly, elastase (but neither cathepsin-G nor proteinase-3) causes a TL-independent PAR(2)-mediated activation of MAPK that, unlike the canonical trypsin activation, does not involve either receptor internalization or recruitment of β-arrestin. Cleavage of synthetic peptides derived from the extracellular N terminus of PAR(2), downstream of the TL sequence, demonstrated distinct proteolytic sites for all three neutrophil-derived enzymes. We conclude that in inflammation, neutrophil proteinases can modulate PAR(2) signaling by preventing/disarming the G(q)/calcium signal pathway and, via elastase, can selectively activate the p44/42 MAPK pathway. Our data illustrate a new mode of PAR regulation that involves biased PAR(2) signaling by neutrophil elastase and a disarming/silencing effect of cathepsin-G and proteinase-3.
Collapse
|
50
|
Arizmendi NG, Abel M, Mihara K, Davidson C, Polley D, Nadeem A, El Mays T, Gilmore BF, Walker B, Gordon JR, Hollenberg MD, Vliagoftis H. Mucosal allergic sensitization to cockroach allergens is dependent on proteinase activity and proteinase-activated receptor-2 activation. THE JOURNAL OF IMMUNOLOGY 2011; 186:3164-72. [PMID: 21270400 DOI: 10.4049/jimmunol.0903812] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have shown that proteinase-activated receptor-2 (PAR(2)) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR(2) in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR(2). To study the role of PAR(2) in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins. We hypothesized that PAR(2) activation in the airways by natural allergens with serine proteinase activity plays an important role in allergic sensitization. Cockroach extract (CE) was administered to BALB/c mice intranasally on five consecutive days (sensitization phase) and a week later for four more days (challenge phase). Airway hyperresponsiveness (AHR) and allergic airway inflammation were assessed after the last challenge. To study the role of PAR(2), mice were exposed intranasally to a receptor-blocking anti-PAR(2) Ab before each administration of CE during the sensitization phase. Mucosal exposure to CE induced eosinophilic airway inflammation, AHR, and cockroach-specific IgG1. Heat-inactivated or soybean trypsin inhibitor-treated CE failed to induce these effects, indicating that proteinase activity plays an important role. The use of an anti-PAR(2) blocking Ab during the sensitization phase completely inhibited airway inflammation and also decreased AHR and the production of cockroach-specific IgG1. PAR(2) activation by CE acts as an adjuvant for allergic sensitization even in the absence of functional TLR4. We conclude that CE induces PAR(2)-dependent allergic airway sensitization in a mouse model of allergic airway inflammation. PAR(2) activation may be a general mechanism used by aeroallergens to induce allergic sensitization.
Collapse
|