26
|
Mathavan N, Raina DB, Tägil M, Isaksson H. Longitudinal in vivo monitoring of callus remodeling in BMP-7- and Zoledronate-treated fractures. J Orthop Res 2020; 38:1905-1913. [PMID: 32073160 DOI: 10.1002/jor.24632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/20/2019] [Accepted: 02/11/2020] [Indexed: 02/04/2023]
Abstract
Pharmacological interventions that combine pro-anabolic and anti-catabolic drugs to treat recalcitrant fractures have shown remarkable efficacy in augmenting the regenerative response. Specifically, in rodent models of fracture repair, treatment with BMP-7 and Zoledronate (ZA) has almost uniformally resulted in complete union. However, delayed remodeling may be problematic for ZA-treated fractures. The increase in newly formed bone is substantial but if translated in humans, delayed remodeling may delay functional recovery. Our objective was to determine if, and to what extent, bone morphogenetic protein (BMP) (in synergistically administered BMP-7 + ZA) can modulate the delayed hard callus remodeling caused by ZA. Callus remodeling in BMP-7-only and BMP-7 + ZA-treated osteotomies were monitored using in vivo µCT to follow the progression of healing at 6-week intervals over 24 weeks in an open femoral fracture rat model. None of the groups recovered baseline cortical bone volumes within 24 weeks post-osteotomy. Treatment prolonged the remodeling phase but the kinetics of remodeling appeared to differ between BMP and BMP + ZA groups. However, the mechanical characteristics were largely restored. Callus/bone volumes in BMP-only treated fractures peaked as early as week 3 suggesting that remodeling is stimulated prematurely. However, this rate of remodeling was not maintained as BMP-7 was found to exhibit negligible changes in callus/bone volumes between weeks 6 and 18, whereas declines in callus/bone volumes were present at these time points in the BMP-7 + ZA group. Our findings suggest that inclusion of ZA as an anti-catabolic agent may not be detrimental to the regenerative process despite a prolonged remodeling phase.
Collapse
|
27
|
Qayoom I, Verma R, Murugan PA, Raina DB, Teotia AK, Matheshwaran S, Nair NN, Tägil M, Lidgren L, Kumar A. A biphasic nanohydroxyapatite/calcium sulphate carrier containing Rifampicin and Isoniazid for local delivery gives sustained and effective antibiotic release and prevents biofilm formation. Sci Rep 2020; 10:14128. [PMID: 32839480 PMCID: PMC7445265 DOI: 10.1038/s41598-020-70726-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/22/2020] [Indexed: 12/23/2022] Open
Abstract
Long term multiple systemic antibiotics form the cornerstone in the treatment of bone and joint tuberculosis, often combined with local surgical eradication. Implanted carriers for local drug delivery have recently been introduced to overcome some of the limitations associated with conventional treatment strategies. In this study, we used a calcium sulphate hemihydrate (CSH)/nanohydroxyapatite (nHAP) based nanocement (NC) biomaterial as a void filler as well as a local delivery carrier of two standard of care tuberculosis drugs, Rifampicin (RFP) and Isoniazid (INH). We observed that the antibiotics showed different release patterns where INH showed a burst release of 67% and 100% release alone and in combination within one week, respectively whereas RFP showed sustained release of 42% and 49% release alone and in combination over a period of 12 weeks, respectively indicating different possible interactions of antibiotics with nHAP. The interactions were studied using computational methodology, which showed that the binding energy of nHAP with RFP was 148 kcal/mol and INH was 11 kcal/mol, thus varying substantially resulting in RFP being retained in the nHAP matrix. Our findings suggest that a biphasic ceramic based drug delivery system could be a promising treatment alternative to bone and joint TB.
Collapse
|
28
|
Le Cann S, Tudisco E, Tägil M, Hall SA, Isaksson H. Bone Damage Evolution Around Integrated Metal Screws Using X-Ray Tomography - in situ Pullout and Digital Volume Correlation. Front Bioeng Biotechnol 2020; 8:934. [PMID: 32850760 PMCID: PMC7419699 DOI: 10.3389/fbioe.2020.00934] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
Better understanding of the local deformation of the bone network around metallic implants subjected to loading is of importance to assess the mechanical resistance of the bone-implant interface and limit implant failure. In this study, four titanium screws were osseointegrated into rat tibiae for 4 weeks and screw pullout was conducted in situ under x-ray microtomography, recording macroscopic mechanical behavior and full tomographies at multiple load steps before failure. Images were analyzed using Digital Volume Correlation (DVC) to access internal displacement and deformation fields during loading. A repeatable failure pattern was observed, where a ∼300–500 μm-thick envelope of bone detached from the trabecular structure. Fracture initiated close to the screw tip and propagated along the implant surface, at a distance of around 500 μm. Thus, the fracture pattern appeared to be influenced by the microstructure of the bone formed closely around the threads, which confirmed that the model is relevant for evaluating the effect of pharmacological treatments affecting local bone formation. Moreover, cracks at the tibial plateau were identified by DVC analysis of the tomographic images acquired during loading. Moderate strains were first distributed in the trabecular bone, which localized into higher strains regions with subsequent loading, revealing crack-formation not evident in the tomographic images. The in situ loading methodology followed by DVC is shown to be a powerful tool to study internal deformation and fracture behavior of the newly formed bone close to an implant when subjected to loading. A better understanding of the interface failure may help improve the outcome of surgical implants.
Collapse
|
29
|
Sebastian S, Liu Y, Christensen R, Raina DB, Tägil M, Lidgren L. Antibiotic containing bone cement in prevention of hip and knee prosthetic joint infections: A systematic review and meta-analysis. J Orthop Translat 2020; 23:53-60. [PMID: 32489860 PMCID: PMC7256060 DOI: 10.1016/j.jot.2020.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Prosthetic joint infection (PJI) is the most serious total joint arthroplasty (TJA) complication despite several aseptic and antiseptic preventive measures. There is no clear evidence or even consensus, whether antibiotic-loaded bone cement (ALBC) should be used, in addition to systemic short-term routine antibiotic prophylaxis, to reduce the risk of PJI in primary TJA. We aimed to analyze the efficacy of ALBC for prevention of PJI in patients undergoing primary TJA. METHODS We searched systematically for randomized controlled trials (RCTs) in PubMed, Scopus, Embase, Web of Science and Cochrane library. Two reviewers independently screened potentially eligible studies according to predefined selection criteria and assessed the risk of bias using a modified version of the Cochrane risk of bias tool. PJI was prespecified as the primary outcome of interest. The meta-analyses were based on risk ratios using random-effects model per default. For the purpose of sensitivity, the corresponding fixed effects model odds ratios were calculated with the use of the Peto method as well. To evaluate a potential difference in effect sizes using different types (subgroups) of antibiotics used in bone cement, and at different follow-up periods, we performed stratified meta-analyses. RESULTS Thirty-seven studies were eligible for the systematic review and qualitative synthesis, and 9 trials (6507 total joint arthroplasties) were included in this meta-analysis. Overall ALBC significantly reduced the risk of PJI following primary TJAs (RRs, 0.36; 95% CIs, 0.16 to 0.80; P = 0.01) with a moderate degree of inconsistency (I2 = 47%). Based on stratified meta-analyses the use of gentamicin appeared to have a better effect (P = 0.0005) in the total hip arthroplasty. Pooled data of different antibiotics used in knee arthroplasties showed a significant association of cefuroxime (RRs, 0.08; 95% CIs, 0.01 to 0.63; P = 0.02). Further, ALBCs significantly reduced the PJI at one and two years of follow-up (P = 0.03 and P = 0.005 respectively). CONCLUSIONS The evidence suggests that ALBCs are effective in reducing the PJI following primary TJA; i.e. between 20 and 84% reduced risk. However, the clear limitations of the available trial evidence highlight the need for joint-specific confirmatory trials, that will need to be designed as cluster-randomized trials of clinics in countries with well-functioning arthroplasty registries.The translational potential of this article: This meta-analysis highlights the prophylactic potential of ALBCs in lowering the risk of infection following primary hip or knee arthroplasties but emphasizes the need for more recent confirmatory trials.
Collapse
|
30
|
Raina DB, Glencross A, Chaher N, Liu Y, Lidgren L, Isaksson H, Tägil M. Synthesis and Characterization of a Biocomposite Bone Bandage for Controlled Delivery of Bone-Active Drugs in Fracture Nonunions. ACS Biomater Sci Eng 2020; 6:2867-2878. [PMID: 33463281 DOI: 10.1021/acsbiomaterials.9b01574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fracture nonunions are common in orthopedics and their treatment often involves multiple surgical interventions. The aim of this study was to fabricate and characterize a gelatin-nano-hydroxyapatite membrane (GM)-based bone bandage for controlled delivery of bio-active molecules; recombinant human bone morphogenic protein-2 (rhBMP-2) and zoledronic acid (ZA) to promote osteoinduction and prevent callus resorption, respectively. In vitro cell-material interaction experiments using MC3T3 cells seeded on the GM indicated good biocompatibility. rhBMP-2-functionalized GM promoted osteogenic differentiation of MC3T3 cells and the rhBMP-2 bio-activity thus remained, as indicated by increased levels of alkaline phosphatase compared to only GM. The GM released a small amount (1.1%) of rhBMP-2 in vitro over a period of 5 weeks, demonstrating a strong interaction of rhBMP-2 with the GM. In the first animal study, the GM specimens loaded with rhBMP-2 or with the combination of rhBMP-2 + ZA were placed in the abdominal muscle pouch of rats. In the GM + rhBMP-2 + ZA group, significantly higher bone volume (21.5 ± 5.9 vs 2.7 ± 1.0 mm3) and area (3.3 ± 2.3 vs 1.0 ± 0.4 mm2) of bone were observed compared to GM + rhBMP-2 after 4 weeks, as indicated by micro-computed tomography and histomorphometry, respectively. Finally, a nonunion model in rats was used to evaluate the efficacy of the GM bandage and bio-active molecules in healing of fracture nonunions. The GM functionalized with rhBMP-2 + ZA led to higher bone formation around the fracture (63.9 ± 19.0 vs 31.8 ± 3.7 mm3) and stronger fracture callus (110.8 ± 46.8 vs 45.6 ± 17.8 N) compared to the empty controls. However, the overall union rate was only marginally improved. The GM alone or combined with ZA did not aid in bone healing in this model. Thus, this study shows that controlled delivery of rhBMP-2 + ZA via the developed GM is a promising approach that could aid in earlier full load bearing in patients with nonunion.
Collapse
|
31
|
Lidgren L, Raina DB, Tägil M, Tanner KE. Recycling implants: a sustainable solution for musculoskeletal research. Acta Orthop 2020; 91:125. [PMID: 31902268 PMCID: PMC7144250 DOI: 10.1080/17453674.2019.1706301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
32
|
Raina DB, Liu Y, Isaksson H, Tägil M, Lidgren L. Synthetic hydroxyapatite: a recruiting platform for biologically active molecules. Acta Orthop 2019; 91:126-132. [PMID: 31680611 PMCID: PMC7144254 DOI: 10.1080/17453674.2019.1686865] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background and purpose - Targeted delivery of drugs is important to achieve efficient local concentrations and reduce systemic side effects. We hypothesized that locally implanted synthetic hydroxyapatite (HA) particles can act as a recruiting moiety for systemically administered drugs, leading to targeted drug accretion.Methods - Synthetic HA particles were implanted ectopically in a muscle pouch in rats, and the binding of systemically circulating drugs such as zoledronic acid (ZA), tetracycline and 18F-fluoride (18F) was studied. The local biological effect was verified in an implant integration model in rats, wherein a hollow implant was filled with synthetic HA particles and the animals were given systemic ZA, 2-weeks post-implantation. The effect of HA particle size on drug binding and the possibility of reloading HA particles were also evaluated in the muscle pouch.Results - The systemically administered biomolecules (ZA, tetracycline and 18F) all sought the HA moiety placed in the muscle pouch. Statistically significant higher peri-implant bone volume and peak force were observed in the implant containing HA particles compared with the empty implant. After a single injection of ZA at 2 weeks, micro HA particles showed a tendency to accumulate more 14C-zoledronic acid (14C-ZA) than nano-HA particles in the muscle pouch. HA particles could be reloaded when ZA was given again at 4 weeks, showing increased 14C-ZA accretion by 73% in microparticles and 77% in nanoparticles.Interpretation - We describe a novel method of systemic drug loading resulting in targeted accretion in locally implanted particulate HA, thereby biologically activating the material.
Collapse
|
33
|
Raina DB, Larsson D, Sezgin EA, Isaksson H, Tägil M, Lidgren L. Biomodulation of an implant for enhanced bone-implant anchorage. Acta Biomater 2019; 96:619-630. [PMID: 31301423 DOI: 10.1016/j.actbio.2019.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/14/2019] [Accepted: 07/04/2019] [Indexed: 12/23/2022]
Abstract
Aseptic loosening of implants is the major cause for revision surgery. By modulating the bone-implant interface, early bone-implant anchorage could be improved. Implant surface manipulation by the addition of osteopromotive molecules locally and systemically to promote implant integration has been described with limited success. This study describes a novel approach by making the implant capable of biologically modulating its surroundings. It was hypothesized that the early implant fixation would improve by filling the interior of the implant with a carrier providing spatio-temporal release of bone active drugs with known osteogenic effect. The implant consisted of a threaded polyether ether ketone (PEEK) hollow chamber with holes at the bottom. The implant was filled with a calcium sulphate (CaS)/hydroxyapatite (HA) carrier, delivering two bone active molecules; zoledronic acid (ZA) and bone morphogenic protein-2 (BMP-2). At first, a rat abdominal muscle pouch model indicated a sustained in-vivo release of both 125I-rhBMP-2 (57%) and 14C-ZA (22%) from the CaS/HA carrier over a period of 4-weeks. The biomodulated implant was then inserted in the proximal tibia in rats with the following experimental groups: G1) Empty implant, G2) Implant + CaS/HA, G3) Implant + CaS/HA + ZA and G4) Implant + CaS/HA + ZA + rhBMP-2. Significantly higher bone volume (BV) was seen around the implant in groups G3 (3.3 ± 0.7 mm3) and G4 (3.1 ± 0.7 mm3) compared to the control (1.3 ± 0.4 mm3) using micro-computed tomography and qualitative histology. Group G3, also exhibited significantly higher pull-out force and absorbed energy when compared to the control group G1. These findings indicate that a low dose of ZA alone, released in a controlled manner from within a fenestrated implant is enough to improve implant anchorage without the need of adding rhBMP-2. This simple method of using a fenestrated implant containing a ceramic carrier releasing bone active molecules improved bone anchorage and could clinically reduce prosthetic failure. STATEMENT OF SIGNIFICANCE: Aseptic loosening remains as a major cause for implant revisions and early reaction of surrounding bone to the prosthesis is important for longevity. A novel approach to enhance early bone-implant anchorage is presented. The implant is filled with a carrier providing controlled release of bone active molecules. In an animal model, a calcium sulphate (CaS)/hydroxyapatite (HA) carrier was used to provide a spatio-temporal release of bone morphogenic protein-2 (BMP-2) and zoledronic acid (ZA). Significantly better bone-implant integration was achieved using ZA alone, thereby eliminating the need for adding BMP-2. The developed method of implant biomodulation holds potential to prevent implant loosening and is an alternative to prosthetic coatings or systemic drug treatment. Importantly, all constituents are approved for clinical use.
Collapse
|
34
|
Mathavan N, Koopman J, Raina DB, Turkiewicz A, Tägil M, Isaksson H. 18F-fluoride as a prognostic indicator of bone regeneration. Acta Biomater 2019; 90:403-411. [PMID: 30965143 DOI: 10.1016/j.actbio.2019.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 01/19/2023]
Abstract
Positron emission tomography (PET) is a form of nuclear imaging, which quantitatively assesses the metabolic activity through the uptake of radioactive tracers. 18F-fluoride is a positron-emitting isotope with high affinity for bone. Despite its potential as a non-invasive measure of bone metabolism, quantitative 18F-fluoride PET has only been used sparsely in orthopaedic applications. It has been speculated that 18F-fluoride PET characterizes cellular activity of bone forming cells in the early stages of the regenerative process and therefore precedes the mineralization detected by conventional computed tomography (CT). Our aim was thus to combine in vivo PET and CT to map the spatiotemporal course of bone regeneration during fracture healing using an open femur fracture model in the rat and characterize regeneration in untreated and pharmacologically treated fractures using both imaging modalities. We hypothesized that PET 18F-fluoride tracer activity at an earlier time point is predictive of CT measured bone formation at a later time point. On the basis of the RMSE and R2 metrics of linear regression models it was conceivable for bone volumes to be predicted up to three weeks in advance in a rodent model (RMSE: 14 mm3-18 mm3, R2: 0.79-0.82). Moreover, the data suggested that 18F-fluoride positron-emitting activity had the potential to separate bone formation from resorption and thus could be of interest across a wide array of orthopaedic applications. Based on this data, we conclude that 18F-fluoride positron-emitting activity is strongly correlated to bone formation and could potentially predict the volume of bone regenerated at fracture sites. The volume of bone regenerated at a fracture site can be interpreted as a measure of the healing response and 18F-fluoride should be further investigated as a predictive diagnostic tool to identify if bone fractures will heal successfully or result in delayed healing or non-union. STATEMENT OF SIGNIFICANCE: We aimed to combine in vivo PET and CT imaging to map the spatiotemporal course of bone regeneration during fracture healing using an open femur fracture model in the rat and characterize regeneration in untreated and pharmacologically treated fractures using both imaging modalities. We hypothesized that PET 18F-fluoride tracer activity at an earlier time point is predictive of CT measured bone formation at a later time point. Our data suggest that 18F-fluoride positron-emitting activity can separate bone formation from resorption and thus could be of interest across a wide array of orthopaedic applications including as a predictive diagnostic tool to identify if fractures will heal successfully or result in delayed healing or non-union.
Collapse
|
35
|
Kok J, Širka A, Grassi L, Raina DB, Tarasevičius Š, Tägil M, Lidgren L, Isaksson H. Fracture strength of the proximal femur injected with a calcium sulfate/hydroxyapatite bone substitute. Clin Biomech (Bristol, Avon) 2019; 63:172-178. [PMID: 30903873 DOI: 10.1016/j.clinbiomech.2019.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Available interventions for preventing fragility hip fractures show limited efficacy. Injection of a biomaterial as bone substitute could increase the fracture strength of the hip. This study aimed to show the feasibility of injecting a calcium sulfate/hydroxyapatite based biomaterial in the femoral neck and to calculate the consequent change in strength using the finite element method. METHODS Five patients were injected with 10 ml calcium sulfate/hydroxyapatite in their femoral neck. Quantitative CT scans were taken before and after injection. Five additional patients with fragility hip fractures were also scanned and the images from the non-fractured contralateral sides were used. Finite element models were created for all proximal femora with and without injection and the models were tested under stance and sideways fall loading until fracture. The change in fracture strength caused by the injection was calculated. Additionally, perturbations in volume, location, and stiffness of the injected material were created to investigate their contribution to the fracture strength increase. FINDINGS The 10 ml injection succeeded in all patients. Baseline simulations showed theoretical fracture strength increases of 0-9%. Volume increase, change in location and increase in stiffness of the material led to increases in fracture strength of 1-27%, -8-26% and 0-17%, respectively. Altering the location of the injection to a more lateral position and increasing the stiffness of the material led to increases in fracture strength of up to 42%. INTERPRETATION This study shows that an injection of calcium sulfate/hydroxyapatite is feasible and can theoretically increase the hip's fracture strength.
Collapse
|
36
|
Le Cann S, Tudisco E, Turunen MJ, Patera A, Mokso R, Tägil M, Belfrage O, Hall SA, Isaksson H. Investigating the Mechanical Characteristics of Bone-Metal Implant Interface Using in situ Synchrotron Tomographic Imaging. Front Bioeng Biotechnol 2019; 6:208. [PMID: 30719433 PMCID: PMC6348316 DOI: 10.3389/fbioe.2018.00208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
Long-term stability of endosseous implants depends on successful bone formation, ingrowth and adaptation to the implant. Specifically, it will define the mechanical properties of the newly formed bone-implant interface. 3D imaging during mechanical loading tests (in situ loading) can improve the understanding of the local processes leading to bone damage and failure. In this study, titanium screws were implanted into rat tibiae and were allowed to integrate for 4 weeks with or without the addition of the growth factor Bone Morphogenetic Protein and the bisphosphonate Zoledronic Acid. Samples were subjected to in situ pullout using high-resolution synchrotron x-ray tomography at the Tomcat beamline (SLS, PSI, Switzerland) at 30 keV with 25 ms exposure time, resulting in a total acquisition time of 45 s per scan, with a 3.6 μm isotropic voxel size. Using a custom-made loading device positioned inside the beamline, screws were pulled out with 0.05 mm increment, acquiring multiple scans until rupture of the sample. The in situ loading protocol was adapted to ensure short imaging time, which enabled multiple samples to be tested with short loading steps, while keeping the total testing time low and reducing dose deposition. Higher trabecular bone content was quantified in the surrounding of the screw in the treated groups, which correlated with increased mechanical strength and stiffness. Differences in screw implantation, such as contact between threads and cortex as well as minor tilt of the screw were also correlated to the mechanical parameters. In situ loading enabled the investigation of crack propagation during the pullout, highlighting the mechanical behavior of the interface. Three typical crack types were observed: (1) rupture at the interface of trabecular and cortical bone tissues, close to the screw, (2) large crack inside the cortex connected to the implant, and (3) first failure away from the screw with cracks propagating toward the screw-bone interface. Mechanical properties of in vivo integrated bone-metal screws rely on a combination of multiple parameters that are difficult to identify and separate one from the other.
Collapse
|
37
|
Teotia AK, Raina DB, Isaksson H, Tägil M, Lidgren L, Seppälä J, Kumar A. Composite bilayered scaffolds with bio-functionalized ceramics for cranial bone defects: An in vivo evaluation. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/2399-7532/aafc5b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Belfrage O, Tägil M, Sundberg M, Kesteris U, Flivik G. Locally administered bisphosphonate in hip stem revisions using the bone impaction grafting technique: a randomised, placebo-controlled study with DXA and five-year RSA follow-up. Hip Int 2019; 29:26-34. [PMID: 29932001 DOI: 10.1177/1120700018781809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND: Bisphosphonates have previously been shown to increase the density of impacted graft bone. In the present study we hypothesise that bisphosphonates also reduce early stem subsidence. We examined the effect of locally applied bisphosphonate to allografts on prosthetic micromotion and bone density in femoral stem revision with impaction grafting. METHODS: 37 patients were randomised to either clodronate or saline as local adjunct to the morsellised allograft bone. 24 patients were finally analysed per protocol and evaluated by dual-energy x-ray absorptiometry (DXA) during the first year and with radiostereometric analysis (RSA) for 5 years. RESULTS: There were no significant differences neither in bone density, nor in migratory behaviour between the groups. The femoral stems had subsided 3.6 mm in both groups (p = 0.99) at 5 years and there was no difference as measured over time with mixed models analysis. The clinical outcome was good in both groups. CONCLUSION: Clodronate as a local addendum to allograft bone in hip revision did not increase bone density or reduce micromotion of the implant.
Collapse
|
39
|
Landgren M, Teurneau V, Abramo A, Geijer M, Tägil M. Intermediate-Term Outcome After Distal Radius Fracture in Patients With Poor Outcome at 1 Year: A Register Study With a 2- to 12-Year Follow-Up. J Hand Surg Am 2019; 44:39-45. [PMID: 30502018 DOI: 10.1016/j.jhsa.2018.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/26/2018] [Accepted: 10/16/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE Most patients recover well from a distal radius fracture (DRF). However, approximately one-fifth have severe disability after 1 year when evaluated using the Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire. In the present study, we evaluated this subgroup of patients in our register with an inferior outcome. We hypothesized that the patient-reported outcome would improve with time. METHODS Since 2001, patients 18 years and older with a DRF, at the Department of Orthopedics, Skåne University Hospital (Lund, Sweden) are prospectively registered in the Lund Wrist Fracture Register. We have previously defined a DASH score above 35 at the 1-year follow-up as the cutoff of major disability. Between 2003 and 2012, 17% of the patients (445 of 2,571) in the register exceeded this cutoff. Three hundred eighty-eight were women and 57 men and the mean age was 69 years (range, 18-95 years). One-fourth had been surgically treated. In December 2014, 2 to 12 years after the fracture, a follow-up DASH questionnaire was sent to the 346 of 445 patients still alive. RESULTS Seventy-three patients (27%) had initially been treated surgically and 196 (73%) nonsurgically for their DRF. Two hundred sixty-nine of 346 patients (78%) returned the follow-up DASH questionnaire at 2 to 12 years (mean, 5.5 years) after the fracture. The overall median DASH score improved from 50 at 1 year to 36 at the 2- to 12-year follow-up, (P < .05). Forty-seven percent had improved to a score below the cutoff 35, but 53% remained at a high suboptimal level. CONCLUSIONS The subjective outcome after a DRF improves over time for patients with an inferior result at 1 year, but more than half of the patients continue to have major disability. TYPE OF STUDY/LEVEL OF EVIDENCE Prognostic II.
Collapse
|
40
|
Qayoom I, Raina DB, Širka A, Tarasevičius Š, Tägil M, Kumar A, Lidgren L. Anabolic and antiresorptive actions of locally delivered bisphosphonates for bone repair: A review. Bone Joint Res 2018; 7:548-560. [PMID: 30464835 PMCID: PMC6215244 DOI: 10.1302/2046-3758.710.bjr-2018-0015.r2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During the last decades, several research groups have used bisphosphonates for local application to counteract secondary bone resorption after bone grafting, to improve implant fixation or to control bone resorption caused by bone morphogenetic proteins (BMPs). We focused on zoledronate (a bisphosphonate) due to its greater antiresorptive potential over other bisphosphonates. Recently, it has become obvious that the carrier is of importance to modulate the concentration and elution profile of the zoledronic acid locally. Incorporating one fifth of the recommended systemic dose of zoledronate with different apatite matrices and types of bone defects has been shown to enhance bone regeneration significantly in vivo. We expect the local delivery of zoledronate to overcome the limitations and side effects associated with systemic usage; however, we need to know more about the bioavailability and the biological effects. The local use of BMP-2 and zoledronate as a combination has a proven additional effect on bone regeneration. This review focuses primarily on the local use of zoledronate alone, or in combination with bone anabolic factors, in various preclinical models mimicking different orthopaedic conditions. Cite this article: I. Qayoom, D. B. Raina, A. Širka, Š. Tarasevičius, M. Tägil, A. Kumar, L. Lidgren. Anabolic and antiresorptive actions of locally delivered bisphosphonates for bone repair: A review. Bone Joint Res 2018;7:548–560. DOI: 10.1302/2046-3758.710.BJR-2018-0015.R2.
Collapse
|
41
|
|
42
|
Širka A, Raina DB, Isaksson H, Tanner KE, Smailys A, Kumar A, Tarasevičius Š, Tägil M, Lidgren L. Calcium Sulphate/Hydroxyapatite Carrier for Bone Formation in the Femoral Neck of Osteoporotic Rats. Tissue Eng Part A 2018; 24:1753-1764. [PMID: 29855219 PMCID: PMC6302674 DOI: 10.1089/ten.tea.2018.0075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study investigated bone regeneration in the femoral neck canal of osteoporotic rats using a novel animal model. A calcium sulphate (CS)/hydroxyapatite (HA) carrier was used to deliver a bisphosphonate, zoledronic acid (ZA), locally, with or without added recombinant human bone morphogenic protein-2 (rhBMP-2). Twenty-eight-week-old ovariectomized Sprague–Dawley rats were used. A 1 mm diameter and 8 mm long defect was created in the femoral neck by drilling from the lateral cortex in the axis of the femoral neck, leaving the surrounding cortex intact. Three treatment groups and one control group were used: (1) CS/HA alone, (2) CS/HA + ZA (10 μg) (3) CS/HA + ZA (10 μg) + rhBMP-2 (4 μg), and (4) empty defect (control). The bone formation was assessed at 4 weeks post surgery using in vivo micro computed tomography (micro-CT). At 8 weeks post surgery, the animals were sacrificed, and both defect and contralateral femurs were subjected to micro-CT, mechanical testing, and histology. Micro-CT results showed that the combination of CS/HA with ZA or ZA + rhBMP-2 increased the bone formation in the defect when compared to the other groups and to the contralateral hips. Evidence of new dense bone formation in CS/HA + ZA and CS/HA + ZA + rhBMP-2 groups was seen histologically. Mechanical testing results showed no differences in the load to fracture between the treatments in either of the treated or contralateral legs. The CS/HA biomaterial can be used as a carrier for ZA and rhBMP-2 to regenerate bone in the femoral neck canal of osteoporotic rats.
Collapse
|
43
|
Zampelis V, Belfrage O, Tägil M, Sundberg M, Flivik G. Decreased migration with locally administered bisphosphonate in cemented cup revisions using impaction bone grafting technique. Acta Orthop 2018; 89:17-22. [PMID: 28895428 PMCID: PMC5810827 DOI: 10.1080/17453674.2017.1371468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background and purpose - Impaction bone grafting (IBG) in revision hip surgery is an established method in restoring bone stock deficiencies. We hypothesized that local treatment of the morsellized allograft with a bisphosphonate in cemented revision would, in addition to increased bone density, also reduce the early migration of the cup as measured by radiostereometry (RSA). Patients and methods - 20 patients with aseptic cup loosening underwent revision using the IBG technique. The patients were randomized to either clodronate (10 patients) or saline (10 patients, control group) as local adjunct to the morsellized bone. The outcome was evaluated by dual-energy X-ray absorptiometry (DXA) during the first year regarding periacetabular bone density and with radiostereometric analysis (RSA) for the first 2 years regarding cup migration. Results - 2 patients were lost to follow-up: 9 patients remained in the clodronate and 9 in the control group. Less proximal migration was found in the clodronate group compared with the controls, measured both over time (mixed-models analysis, p = 0.02) as well as at the specified time points up to 2 years (0.22 mm and 0.59 mm respectively, p = 0.02). Both groups seemed to have stabilized at 1 year. We found similar bone mineral density measured by DXA, and similar RSA migration in the other directions. No cups were re-revised. Interpretation - Local treatment of the allograft bone with clodronate reduced early proximal migration of the revised cup but without any measurable difference in periacetabular bone density.
Collapse
|
44
|
Raina DB, Larsson D, Mrkonjic F, Isaksson H, Kumar A, Lidgren L, Tägil M. Gelatin- hydroxyapatite- calcium sulphate based biomaterial for long term sustained delivery of bone morphogenic protein-2 and zoledronic acid for increased bone formation: In-vitro and in-vivo carrier properties. J Control Release 2018; 272:83-96. [DOI: 10.1016/j.jconrel.2018.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/30/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022]
|
45
|
Mathavan N, Turunen MJ, Guizar-Sicairos M, Bech M, Schaff F, Tägil M, Isaksson H. The compositional and nano-structural basis of fracture healing in healthy and osteoporotic bone. Sci Rep 2018; 8:1591. [PMID: 29371668 PMCID: PMC5785543 DOI: 10.1038/s41598-018-19296-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 12/28/2017] [Indexed: 01/08/2023] Open
Abstract
Osteoporosis, a prevalent metabolic bone disorder, predisposes individuals to increased susceptibility to fractures. It is also, somewhat controversially, thought to delay or impair the regenerative response. Using high-resolution Fourier-transform infrared spectroscopy and small/wide-angle X-ray scattering we sought to answer the following questions: Does the molecular composition and the nano-structure in the newly regenerated bone differ between healthy and osteoporotic environments? And how do pharmacological treatments, such as bone morphogenetic protein 7 (BMP-7) alone or synergistically combined with zoledronate (ZA), alter callus composition and nano-structure in such environments? Cumulatively, on the basis of compositional and nano-structural characterizations of newly formed bone in an open-osteotomy rat model, the healing response in untreated healthy and ovariectomy-induced osteoporotic environments was fundamentally the same. However, the BMP-7 induced osteogenic response resulted in greater heterogeneity in the nano-structural crystal dimensions and this effect was more pronounced with osteoporosis. ZA mitigated the effects of the upregulated catabolism induced by both BMP-7 and an osteoporotic bone environment. The findings contribute to our understanding of how the repair processes in healthy and osteoporotic bone differ in both untreated and treated contexts and the data presented represents the most comprehensive study of fracture healing at the nanoscale undertaken to date.
Collapse
|
46
|
Horstmann PF, Raina DB, Isaksson H, Hettwer W, Lidgren L, Petersen MM, Tägil M. Composite Biomaterial as a Carrier for Bone-Active Substances for Metaphyseal Tibial Bone Defect Reconstruction in Rats. Tissue Eng Part A 2017; 23:1403-1412. [DOI: 10.1089/ten.tea.2017.0040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
47
|
Isaksson H, Le Cann S, Perdikouri C, Turunen MJ, Kaestner A, Tägil M, Hall SA, Tudisco E. Neutron tomographic imaging of bone-implant interface: Comparison with X-ray tomography. Bone 2017; 103:295-301. [PMID: 28739417 DOI: 10.1016/j.bone.2017.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/14/2023]
Abstract
Metal implants, in e.g. joint replacements, are generally considered to be a success. As mechanical stability is important for the longevity of a prosthesis, the biological reaction of the bone to the mechanical loading conditions after implantation and during remodelling determines its fate. The bone reaction at the implant interface can be studied using high-resolution imaging. However, commonly used X-ray imaging suffers from image artefacts in the close proximity of metal implants, which limit the possibility to closely examine the bone at the bone-implant interface. An alternative ex vivo 3D imaging method is offered by neutron tomography. Neutrons interact with matter differently than X-rays; therefore, this study explores if neutron tomography may be used to enrich studies on bone-implant interfaces. A stainless steel screw was implanted in a rat tibia and left to integrate for 6weeks. After extracting the tibia, the bone-screw construct was imaged using X-ray and neutron tomography at different resolutions. Artefacts were visible in all X-ray images in the close proximity of the implant, which limited the ability to accurately quantify the bone around the implant. In contrast, neutron images were free of metal artefacts, enabling full analysis of the bone-implant interface. Trabecular structural bone parameters were quantified in the metaphyseal bone away from the implant using all imaging modalities. The structural bone parameters were similar for all images except for the lowest resolution neutron images. This study presents the first proof-of-concept that neutron tomographic imaging can be used for ex-vivo evaluation of bone microstructure and that it constitutes a viable, new tool to study the bone-implant interface tissue remodelling.
Collapse
|
48
|
Mrkonjic A, Geijer M, Lindau T, Tägil M. No long-term risk of wrist osteoarthritis due to subchondral haematomas in distal radial fractures. J Plast Surg Hand Surg 2017; 52:163-165. [DOI: 10.1080/2000656x.2017.1372290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Landgren M, Abramo A, Geijer M, Kopylov P, Tägil M. Similar 1-year subjective outcome after a distal radius fracture during the 10-year-period 2003-2012. Acta Orthop 2017; 88:451-456. [PMID: 28290758 PMCID: PMC5499340 DOI: 10.1080/17453674.2017.1303601] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background and purpose - During the last decades, treatment of distal radius fractures (DRFs) has changed, with surgical intervention being more common and with new techniques. We investigated whether this change has influenced the subjective outcome. Here we report, year by year, the 1-year score after a DRF over a 10-year-period, using a patient-reported outcome measure. Patients and methods - Patients aged 18 years or more with a DRF between 2003 and 2012 were prospectively and consecutively registered in a longitudinal outcome database. 1 year after the fracture, all the patients were sent a validated subjective outcome questionnaire, the Disabilities of the Arm, Shoulder, and Hand (DASH). The lower the score (0-100), the better the outcome. Results - Between 2003 and 2012, 3,666 patients (2,833 of them women; mean age 62 (18-98) years) were included. 22% were operated and the rate remained constant over the years. The surgical methods shifted from external fixators (42%) and fragment-specific plates (45%) in 2003, to mainly volar locking plates (65%) in 2012. 70% of the patients responded to the 1-year DASH questionnaire. The median DASH score was 9 (IQR: 2-25) for the cohort, both in surgically treated patients (9 (IQR: 3-25)) and in non-surgically treated patients (9 (IQR 2-27)). Subgroup analysis showed a higher median DASH score for women than for men; for patients with AO type C fractures rather than type B or type A fractures; for patients with external fixation or fragment-specific fixation than for those who underwent surgery using volar locking plates; and for patients who were operated by a general orthopedic surgeon rather than a hand surgeon. Interpretation - The shift in surgical treatment had no influence on the subjective outcome for the cohort.
Collapse
|
50
|
Le Cann S, Tudisco E, Perdikouri C, Belfrage O, Kaestner A, Hall S, Tägil M, Isaksson H. Characterization of the bone-metal implant interface by Digital Volume Correlation of in-situ loading using neutron tomography. J Mech Behav Biomed Mater 2017; 75:271-278. [PMID: 28759839 DOI: 10.1016/j.jmbbm.2017.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/19/2017] [Accepted: 07/01/2017] [Indexed: 12/22/2022]
Abstract
Metallic implants are commonly used as surgical treatments for many orthopedic conditions. The long-term stability of implants relies on an adequate integration with the surrounding bone. Unsuccessful integration could lead to implant loosening. By combining mechanical loading with high-resolution 3D imaging methods, followed by image analysis such as Digital Volume Correlation (DVC), we aim at evaluating ex vivo the mechanical resistance of newly formed bone at the interface. X-rays tomography is commonly used to image bone but induces artefacts close to metallic components. Utilizing a different interaction with matter, neutron tomography is a promising alternative but has not yet been used in studies of bone mechanics. This work demonstrates that neutron tomography during in situ loading is a feasible tool to characterize the mechanical response of bone-implant interfaces, especially when combined with DVC. Experiments were performed where metal screws were implanted in rat tibiae during 4 weeks. The screws were pulled-out while the samples were sequentially imaged in situ with neutron tomography. The images were analyzed to quantify bone ingrowth around the implants. DVC was used to track the internal displacements and calculate the strain fields in the bone during loading. The neutron images were free of metal-related artefacts, which enabled accurate quantification of bone ingrowth on the screw (ranging from 60% to 71%). DVC allowed successful identification of the deformation and cracks that occurred during mechanical loading and led to final failure of the bone-implant interface.
Collapse
|