26
|
Clerc-Renaud B, Boss MK, Griffin LR, LaRue SM, Leary D. Potential for BioXmark liquid fiducial marker to improve identification of superficial component of canine oral tumors for computer-based radiation therapy planning. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2019; 60:1072-1080. [PMID: 31597992 PMCID: PMC6741831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The objective of this study was to evaluate a novel liquid fiducial marker, BioXmark, to improve identification of the superficial component of oral tumors in dogs with computed tomography imaging. Liquid fiducial marker was injected in 6 patients at the visible and palpable extent of each tumor. Gross tumor volumes with and without BioXmark were compared in terms of volume and conformity using a Paddick conformity index, Dice similarity coefficient, and gross tumor volumes mismatch analysis. All patients showed an increase in gross tumor volumes defined by BioXmark compared with the conventionally identified post-contrast gross tumor volumes contours. Volumetric conformity and gross tumor volumes mismatch analysis of the superficial component of gross tumor volumes resulted in a median conformity index of 0.61 and median Dice similarity coefficient of 0.76. The superficial gross tumor volumes showed a median increase of 47% when BioXmark was used. This study demonstrated a potential utility to combining liquid fiducial markers to post-contrast computed tomography images for improved oral tumor localization and gross tumor volumes contouring for radiation therapy planning.
Collapse
|
27
|
Jolly MK, Ware KE, Xu S, Gilja S, Shetler S, Yang Y, Wang X, Austin RG, Runyambo D, Hish AJ, Bartholf DeWitt S, George JT, Kreulen RT, Boss MK, Lazarides AL, Kerr DL, Gerber DG, Sivaraj D, Armstrong AJ, Dewhirst MW, Eward WC, Levine H, Somarelli JA. E-Cadherin Represses Anchorage-Independent Growth in Sarcomas through Both Signaling and Mechanical Mechanisms. Mol Cancer Res 2019; 17:1391-1402. [PMID: 30862685 PMCID: PMC6548594 DOI: 10.1158/1541-7786.mcr-18-0763] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/16/2018] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
CDH1 (also known as E-cadherin), an epithelial-specific cell-cell adhesion molecule, plays multiple roles in maintaining adherens junctions, regulating migration and invasion, and mediating intracellular signaling. Downregulation of E-cadherin is a hallmark of epithelial-to-mesenchymal transition (EMT) and correlates with poor prognosis in multiple carcinomas. Conversely, upregulation of E-cadherin is prognostic for improved survival in sarcomas. Yet, despite the prognostic benefit of E-cadherin expression in sarcoma, the mechanistic significance of E-cadherin in sarcomas remains poorly understood. Here, by combining mathematical models with wet-bench experiments, we identify the core regulatory networks mediated by E-cadherin in sarcomas, and decipher their functional consequences. Unlike carcinomas, E-cadherin overexpression in sarcomas does not induce a mesenchymal-to-epithelial transition (MET). However, E-cadherin acts to reduce both anchorage-independent growth and spheroid formation of sarcoma cells. Ectopic E-cadherin expression acts to downregulate phosphorylated CREB1 (p-CREB) and the transcription factor, TBX2, to inhibit anchorage-independent growth. RNAi-mediated knockdown of TBX2 phenocopies the effect of E-cadherin on CREB levels and restores sensitivity to anchorage-independent growth in sarcoma cells. Beyond its signaling role, E-cadherin expression in sarcoma cells can also strengthen cell-cell adhesion and restricts spheroid growth through mechanical action. Together, our results demonstrate that E-cadherin inhibits sarcoma aggressiveness by preventing anchorage-independent growth. IMPLICATIONS: We highlight how E-cadherin can restrict aggressive behavior in sarcomas through both biochemical signaling and biomechanical effects.
Collapse
|
28
|
Wormhoudt TL, Boss MK, Lunn K, Griffin L, Leary D, Dowers K, Rao S, LaRue SM. Stereotactic radiation therapy for the treatment of functional pituitary adenomas associated with feline acromegaly. J Vet Intern Med 2018; 32:1383-1391. [PMID: 29782043 PMCID: PMC6060317 DOI: 10.1111/jvim.15212] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/21/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022] Open
Abstract
Background Conventional fractionated radiotherapy has been shown to be partially effective for management of pituitary tumors in cats that cause acromegaly and diabetes mellitus (DM), but, the efficacy and safety of stereotactic radiation therapy (SRT) as a treatment for acromegalic cats has not been described. Hypothesis Stereotactic radiation therapy is an effective and safe treatment for controlling acromegaly associated with pituitary adenomas in cats. Additionally, SRT‐treated acromegalic cats with DM will experience a decrease in insulin requirements after radiation therapy. Animals Fifty‐three client‐owned cats referred to Colorado State University for SRT to treat pituitary tumors causing poorly controlled DM secondary to acromegaly. Methods Retrospective study of cats treated for acromegaly with SRT between 2008 and 2016 at Colorado State University. Diagnosis of acromegaly was based on history, physical examination, laboratory results, and cross‐sectional imaging of the pituitary. Signalment, radiation protocol, insulin requirements over time, adverse effects, and survival were recorded. Results Median survival time was 1072 days. Of the 41 cats for which insulin dosage information was available, 95% (39/41) experienced a decrease in required insulin dose, with 32% (13/41) achieving diabetic remission. Remission was permanent in 62% (8/13) and temporary in 38% (5/13) cats. Median duration to lowest insulin dose was 9.5 months. Of the treated cats, 14% developed hypothyroidism and required supplementation after SRT. Conclusions Stereotactic radiation therapy is safe and effective for treating cats with acromegaly. Cats treated with SRT have improved survival time and control of their DM when compared to previously reported patients treated with non‐SRT.
Collapse
|
29
|
Nickoloff JA, Boss MK, Allen CP, LaRue SM. Translational research in radiation-induced DNA damage signaling and repair. Transl Cancer Res 2017; 6:S875-S891. [PMID: 30574452 PMCID: PMC6298755 DOI: 10.21037/tcr.2017.06.02] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Radiotherapy is an effective tool in the fight against cancer. It is non-invasive and painless, and with advanced tumor imaging and beam control systems, radiation can be delivered to patients safely, generally with minor or no adverse side effects, accounting for its increasing use against a broad range of tumors. Tumors and normal cells respond to radiation-induced DNA damage by activating a complex network of DNA damage signaling and repair pathways that determine cell fate including survival, death, and genome stability. DNA damage response (DDR) proteins represent excellent targets to augment radiotherapy, and many agents that inhibit key response proteins are being combined with radiation and genotoxic chemotherapy in clinical trials. This review focuses on how insights into molecular mechanisms of DDR pathways are translated to small animal preclinical studies, to clinical studies of naturally occurring tumors in companion animals, and finally to human clinical trials. Companion animal studies, under the umbrella of comparative oncology, have played key roles in the development of clinical radiotherapy throughout its >100-year history. There is growing appreciation that rapid translation of basic knowledge of DNA damage and repair systems to improved radiotherapy practice requires a comprehensive approach that embraces the full spectrum of cancer research, with companion animal clinical trials representing a critical bridge between small animal preclinical studies, and human clinical trials.
Collapse
|
30
|
Tovmasyan A, Sampaio RS, Boss MK, Bueno-Janice JC, Bader BH, Thomas M, Reboucas JS, Orr M, Chandler JD, Go YM, Jones DP, Venkatraman TN, Haberle S, Kyui N, Lascola CD, Dewhirst MW, Spasojevic I, Benov L, Batinic-Haberle I. Anticancer therapeutic potential of Mn porphyrin/ascorbate system. Free Radic Biol Med 2015; 89:1231-47. [PMID: 26496207 PMCID: PMC4684782 DOI: 10.1016/j.freeradbiomed.2015.10.416] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/05/2015] [Accepted: 10/18/2015] [Indexed: 01/12/2023]
Abstract
Ascorbate (Asc) as a single agent suppressed growth of several tumor cell lines in a mouse model. It has been tested in a Phase I Clinical Trial on pancreatic cancer patients where it exhibited no toxicity to normal tissue yet was of only marginal efficacy. The mechanism of its anticancer effect was attributed to the production of tumoricidal hydrogen peroxide (H2O2) during ascorbate oxidation catalyzed by endogenous metalloproteins. The amount of H2O2 could be maximized with exogenous catalyst that has optimized properties for such function and is localized within tumor. Herein we studied 14 Mn porphyrins (MnPs) which differ vastly with regards to their redox properties, charge, size/bulkiness and lipophilicity. Such properties affect the in vitro and in vivo ability of MnPs (i) to catalyze ascorbate oxidation resulting in the production of H2O2; (ii) to subsequently employ H2O2 in the catalysis of signaling proteins oxidations affecting cellular survival pathways; and (iii) to accumulate at site(s) of interest. The metal-centered reduction potential of MnPs studied, E1/2 of Mn(III)P/Mn(II)P redox couple, ranged from -200 to +350 mV vs NHE. Anionic and cationic, hydrophilic and lipophilic as well as short- and long-chained and bulky compounds were explored. Their ability to catalyze ascorbate oxidation, and in turn cytotoxic H2O2 production, was explored via spectrophotometric and electrochemical means. Bell-shape structure-activity relationship (SAR) was found between the initial rate for the catalysis of ascorbate oxidation, vo(Asc)ox and E1/2, identifying cationic Mn(III) N-substituted pyridylporphyrins with E1/2>0 mV vs NHE as efficient catalysts for ascorbate oxidation. The anticancer potential of MnPs/Asc system was subsequently tested in cellular (human MCF-7, MDA-MB-231 and mouse 4T1) and animal models of breast cancer. At the concentrations where ascorbate (1mM) and MnPs (1 or 5 µM) alone did not trigger any alteration in cell viability, combined treatment suppressed cell viability up to 95%. No toxicity was observed with normal human breast epithelial HBL-100 cells. Bell-shape relationship, essentially identical to vo(Asc)oxvs E1/2, was also demonstrated between MnP/Asc-controlled cytotoxicity and E1/2-controlled vo(Asc)ox. Magnetic resonance imaging studies were conducted to explore the impact of ascorbate on T1-relaxivity. The impact of MnP/Asc on intracellular thiols and on GSH/GSSG and Cys/CySS ratios in 4T1 cells was assessed and cellular reduction potentials were calculated. The data indicate a significant increase in cellular oxidative stress induced by MnP/Asc. Based on vo(Asc)oxvs E1/2 relationships and cellular toxicity, MnTE-2-PyP(5+) was identified as the best catalyst among MnPs studied. Asc and MnTE-2-PyP(5+) were thus tested in a 4T1 mammary mouse flank tumor model. The combination of ascorbate (4 g/kg) and MnTE-2-PyP(5+) (0.2mg/kg) showed significant suppression of tumor growth relative to either MnTE-2-PyP(5+) or ascorbate alone. About 7-fold higher accumulation of MnTE-2-PyP(5+) in tumor vs normal tissue was found to contribute largely to the anticancer effect.
Collapse
|
31
|
Ashcraft KA, Boss MK, Tovmasyan A, Roy Choudhury K, Fontanella AN, Young KH, Palmer GM, Birer SR, Landon CD, Park W, Das SK, Weitner T, Sheng H, Warner DS, Brizel DM, Spasojevic I, Batinic-Haberle I, Dewhirst MW. Novel Manganese-Porphyrin Superoxide Dismutase-Mimetic Widens the Therapeutic Margin in a Preclinical Head and Neck Cancer Model. Int J Radiat Oncol Biol Phys 2015; 93:892-900. [PMID: 26530759 DOI: 10.1016/j.ijrobp.2015.07.2283] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/20/2015] [Accepted: 07/24/2015] [Indexed: 11/29/2022]
Abstract
PURPOSE To test the effects of a novel Mn porphyrin oxidative stress modifier, Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin (MnBuOE), for its radioprotective and radiosensitizing properties in normal tissue versus tumor, respectively. METHODS AND MATERIALS Murine oral mucosa and salivary glands were treated with a range of radiation doses with or without MnBuOE to establish the dose-effect curves for mucositis and xerostomia. Radiation injury was quantified by intravital near-infrared imaging of cathepsin activity, assessment of salivation, and histologic analysis. To evaluate effects of MnBuOE on the tumor radiation response, we administered the drug as an adjuvant to fractionated radiation of FaDu xenografts. Again, a range of radiation therapy (RT) doses was administered to establish the radiation dose-effect curve. The 50% tumor control dose values with or without MnBuOE and dose-modifying factor were determined. RESULTS MnBuOE protected normal tissue by reducing RT-mediated mucositis, xerostomia, and fibrosis. The dose-modifying factor for protection against xerostomia was 0.77. In contrast, MnBuOE increased tumor local control rates compared with controls. The dose-modifying factor, based on the ratio of 50% tumor control dose values, was 1.3. Immunohistochemistry showed that MnBuOE-treated tumors exhibited a significant influx of M1 tumor-associated macrophages, which provides mechanistic insight into its radiosensitizing effects in tumors. CONCLUSIONS MnBuOE widens the therapeutic margin by decreasing the dose of radiation required to control tumor, while increasing normal tissue resistance to RT-mediated injury. This is the first study to quantitatively demonstrate the magnitude of a single drug's ability to radioprotect normal tissue while radiosensitizing tumor.
Collapse
|
32
|
Choudhury KR, Keir ST, Ashcraft KA, Boss MK, Dewhirst MW. Dynamic treatment effect (DTE) curves reveal the mode of action for standard and experimental cancer therapies. Oncotarget 2015; 6:14656-68. [PMID: 25986925 PMCID: PMC4546495 DOI: 10.18632/oncotarget.4141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 12/21/2022] Open
Abstract
We present a method for estimating the empirical dynamic treatment effect (DTE) curves from tumor growth delay (TGD) studies. This improves on current common methods of TGD analysis, such as T/C ratio and doubling times, by providing a more detailed treatment effect and overcomes their lack of reproducibility. The methodology doesn't presuppose any prior form for the treatment effect dynamics and is shown to give consistent estimates with missing data. The method is illustrated by application to real data from TGD studies involving three types of therapy. Firstly, we demonstrate that radiotherapy induces a sharp peak in inhibition in a FaDu model. The height, duration and timing of the peak increase linearly with radiation dose. Second, we demonstrate that a combination of temozolomide and an experimental therapy in a glioma PDX model yields an effect, similar to an additive version of the DTE curves for the mono-therapies, except that there is a 30 day delay in peak inhibition. In the third study, we consider the DTE of anti-angiogenic therapy in glioma. We show that resulting DTE curves are flat. We discuss how features of the DTE curves should be interpreted and potentially used to improve therapy.
Collapse
|
33
|
Boss MK, Dewhirst M. A tribute to Philip Marcus and the development of the clonogenic assay. Radiat Res 2015; 183:497-500. [PMID: 26000758 DOI: 10.1667/rr14048.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Philip Marcus (1927-2013), a prominent and celebrated virus and interferon researcher, was also influential to the field of radiobiology. His work as a graduate student led to the development of the first mammalian cell clonogenic assay. This tribute to Philip Marcus is written to memorialize this inventive scientist and share the stimulating story of how he and his mentors developed the clonogenic assay.
Collapse
|
34
|
Zagar TM, Vujaskovic Z, Formenti S, Rugo H, Muggia F, O'Connor B, Myerson R, Stauffer P, Hsu IC, Diederich C, Straube W, Boss MK, Boico A, Craciunescu O, Maccarini P, Needham D, Borys N, Blackwell KL, Dewhirst MW. Two phase I dose-escalation/pharmacokinetics studies of low temperature liposomal doxorubicin (LTLD) and mild local hyperthermia in heavily pretreated patients with local regionally recurrent breast cancer. Int J Hyperthermia 2015; 30:285-94. [PMID: 25144817 PMCID: PMC4162656 DOI: 10.3109/02656736.2014.936049] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose Unresectable chest wall recurrences of breast cancer (CWR) in heavily pretreated patients are especially difficult to treat. We hypothesised that thermally enhanced drug delivery using low temperature liposomal doxorubicin (LTLD), given with mild local hyperthermia (MLHT), will be safe and effective in this population. Patients and methods This paper combines the results of two similarly designed phase I trials. Eligible CWR patients had progressed on the chest wall after prior hormone therapy, chemotherapy, and radiotherapy. Patients were to get six cycles of LTLD every 21–35 days, followed immediately by chest wall MLHT for 1 hour at 40–42 °C. In the first trial 18 subjects received LTLD at 20, 30, or 40 mg/m2; in the second trial, 11 subjects received LTLD at 40 or 50 mg/m2. Results The median age of all 29 patients enrolled was 57 years. Thirteen patients (45%) had distant metastases on enrolment. Patients had received a median dose of 256 mg/m2 of prior anthracyclines and a median dose of 61 Gy of prior radiation. The median number of study treatments that subjects completed was four. The maximum tolerated dose was 50 mg/m2, with seven subjects (24%) developing reversible grade 3–4 neutropenia and four (14%) reversible grade 3–4 leucopenia. The rate of overall local response was 48% (14/29, 95% CI: 30–66%), with. five patients (17%) achieving complete local responses and nine patients (31%) having partial local responses. Conclusion LTLD at 50 mg/m2 and MLHT is safe. This combined therapy produces objective responses in heavily pretreated CWR patients. Future work should test thermally enhanced LTLD delivery in a less advanced patient population.
Collapse
|
35
|
Somarelli JA, Boss MK, Epstein JI, Armstrong AJ, Garcia-Blanco MA. Carcinosarcomas: tumors in transition? Histol Histopathol 2015; 30:673-87. [PMID: 25587806 DOI: 10.14670/hh-30.673] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carcinosarcomas are rare, biphasic tumors that are comprised of carcinomatous and sarcomatous elements. While the exact mechanism by which these two phenotypes arise within a single tumor remains unclear, molecular evidence indicates that the epitheliod and spindle-cell components share a clonal origin. We propose that the biphasic nature of these neoplasms may represent an extreme case of epithelial plasticity, in which an epithelial-like cell undergoes a transition to a more mesenchymal phenotype. The present review will discuss both the histological and molecular biological evidence of the involvement of epithelial plasticity in driving the mixed phenotypes observed in carcinosarcomas.
Collapse
|
36
|
Fontanella AN, Boss MK, Hadsell M, Zhang J, Schroeder T, Berman KG, Dewhirst MW, Chang S, Palmer GM. Effects of high-dose microbeam irradiation on tumor microvascular function and angiogenesis. Radiat Res 2015; 183:147-58. [PMID: 25574586 DOI: 10.1667/rr13712.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microbeam radiation therapy (MRT) is a form of cancer treatment in which a single large dose of radiation is spatially fractionated in-line or grid-like patterns. Preclinical studies have demonstrated that MRT is capable of eliciting high levels of tumor response while sparing normal tissue that is exposed to the same radiation field. Since a large fraction of the MRT-treated tumor is in the dose valley region that is not directly irradiated, tumor response may be driven by radiation bystander effects, which in turn elicit a microvascular response. Differential alterations in hemodynamics between the tumor and normal tissue may explain the therapeutic advantages of MRT. Direct observation of these dynamic responses presents a challenge for conventional ex vivo analysis. Furthermore, knowledge gleaned from in vitro studies of radiation bystander response has not been widely incorporated into in vivo models of tumor radiotherapy, and the biological contribution of the bystander effect within the tumor microenvironment is unknown. In this study, we employed noninvasive, serial observations of the tumor microenvironment to address the question of how tumor vasculature and HIF-1 expression are affected by microbeam radiotherapy. Tumors (approximately 4 mm in diameter) grown in a dorsal window chamber were irradiated in a single fraction using either a single, microplanar beam (300 micron wide swath) or a wide-field setup (whole-window chamber) to a total dose of 50 Gy. The tumors were optically observed daily for seven days postirradiation. Microvascular changes in the tumor and surrounding normal tissue differed greatly between the wide-field and microbeam treatments. We present evidence that these changes may be due to dissimilar spatial and temporal patterns of HIF-1 expression induced through radiation bystander effects.
Collapse
|
37
|
Abstract
SIGNIFICANCE Most solid tumors contain regions of low oxygenation or hypoxia. Tumor hypoxia has been associated with a poor clinical outcome and plays a critical role in tumor radioresistance. RECENT ADVANCES Two main types of hypoxia exist in the tumor microenvironment: chronic and cycling hypoxia. Chronic hypoxia results from the limited diffusion distance of oxygen, and cycling hypoxia primarily results from the variation in microvessel red blood cell flux and temporary disturbances in perfusion. Chronic hypoxia may cause either tumor progression or regressive effects depending on the tumor model. However, there is a general trend toward the development of a more aggressive phenotype after cycling hypoxia. With advanced hypoxia imaging techniques, spatiotemporal characteristics of tumor hypoxia and the changes to the tumor microenvironment can be analyzed. CRITICAL ISSUES In this review, we focus on the biological and clinical consequences of chronic and cycling hypoxia on radiation treatment. We also discuss the advanced non-invasive imaging techniques that have been developed to detect and monitor tumor hypoxia in preclinical and clinical studies. FUTURE DIRECTIONS A better understanding of the mechanisms of tumor hypoxia with non-invasive imaging will provide a basis for improved radiation therapeutic practices.
Collapse
|
38
|
Boss MK, Bristow R, Dewhirst MW. Linking the history of radiation biology to the hallmarks of cancer. Radiat Res 2014; 181:561-77. [PMID: 24811865 PMCID: PMC4072211 DOI: 10.1667/rr13675.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hanahan and Weinberg recently updated their conceptual framework of the "Hallmarks of Cancer". The original article, published in 2000, is among the most highly cited reviews in the field of oncology. The goal of this review is to highlight important discoveries in radiation biology that pertain to the Hallmarks. We identified early studies that exemplified how ionizing radiation affects the hallmarks or how radiation was used experimentally to advance the understanding of key hallmarks. A literature search was performed to obtain relevant primary research, and topics were assigned to a particular hallmark to allow an organized, chronological account of the radiobiological advancements. The hallmarks are reviewed in an order that flows from cellular to microenvironmental effects.
Collapse
|
39
|
Boss MK, Williams LE. What is your diagnosis? Mycoplasma hemofelis infection. J Am Vet Med Assoc 2007; 230:995-6. [PMID: 17397335 DOI: 10.2460/javma.230.7.995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Laschinger HK, Boss MK. Learning styles of baccalaureate nursing students and attitudes toward theory-based nursing. J Prof Nurs 1989; 5:215-23. [PMID: 2778223 DOI: 10.1016/s8755-7223(89)80054-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The purpose of this study was to investigate personal and environmental factors related to undergraduate and post-RN nursing students' attitudes toward theory-based nursing from Kolb's experimental learning theory perspective. The study is part of a larger project designed to test aspects of Kolb's theory in the nursing population. Hypotheses about relationships among learning styles, perception of environmental press, experience in nursing, attitudes toward theory-based nursing, preferred nursing theory, and preferred method of learning theory were proposed for investigation. Seventy-six post-RN and 121 upper-level generic baccalaureate nursing students each completed two measures of personal learning style, a measure of perception of environmental press of nursing learning environments, and a nursing theories questionnaire. Learning style and environmental press perceptions were found to be significantly related to attitudes toward theory-based nursing. Concrete learners and subjects who perceived nursing environments to be predominantly concrete were significantly less positive toward theory-based nursing than abstract learners. Experience in nursing was found to be related to perception of environmental press. Learning style was not found to be significantly related to preferred method of learning nursing theories nor to preferred nursing theory for practice. Implications for nursing education are discussed.
Collapse
|