26
|
Conlin MP, Reid DA, Small GW, Chang HH, Watanabe G, Lieber MR, Ramsden DA, Rothenberg E. DNA Ligase IV Guides End-Processing Choice during Nonhomologous End Joining. Cell Rep 2018; 20:2810-2819. [PMID: 28930678 DOI: 10.1016/j.celrep.2017.08.091] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 12/15/2022] Open
Abstract
Nonhomologous end joining (NHEJ) must adapt to diverse end structures during repair of chromosome breaks. Here, we investigate the mechanistic basis for this flexibility. DNA ends are aligned in a paired-end complex (PEC) by Ku, XLF, XRCC4, and DNA ligase IV (LIG4); we show by single-molecule analysis how terminal mispairs lead to mobilization of ends within PECs and consequent sampling of more end-alignment configurations. This remodeling is essential for direct ligation of damaged and mispaired ends during cellular NHEJ, since remodeling and ligation of such ends both require a LIG4-specific structural motif, insert1. Insert1 is also required for PEC remodeling that enables nucleolytic processing when end structures block direct ligation. Accordingly, cells expressing LIG4 lacking insert1 are sensitive to ionizing radiation. Cellular NHEJ of diverse ends thus identifies the steps necessary for repair through LIG4-mediated sensing of differences in end structure and consequent dynamic remodeling of aligned ends.
Collapse
|
27
|
Duncan JR, Lieber MR, Adachi N, Wahl RL. Radiation Dose Does Matter: Mechanistic Insights into DNA Damage and Repair Support the Linear No-Threshold Model of Low-Dose Radiation Health Risks. J Nucl Med 2018; 59:1014-1016. [PMID: 29853652 DOI: 10.2967/jnumed.118.210252] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 11/16/2022] Open
|
28
|
Pannunzio NR, Lieber MR. Concept of DNA Lesion Longevity and Chromosomal Translocations. Trends Biochem Sci 2018; 43:490-498. [PMID: 29735400 DOI: 10.1016/j.tibs.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/07/2018] [Accepted: 04/08/2018] [Indexed: 01/11/2023]
Abstract
A subset of chromosomal translocations related to B cell malignancy in human patients arises due to DNA breaks occurring within defined 20-600 base pair (bp) zones. Several factors influence the breakage rate at these sites including transcription, DNA sequence, and topological tension. These factors favor non-B DNA structures that permit formation of transient single-stranded DNA (ssDNA), making the DNA more vulnerable to agents such as the enzyme activation-induced cytidine deaminase (AID) and reactive oxygen species (ROS). Certain DNA lesions created during the ssDNA state persist after the DNA resumes its normal duplex structure. We propose that factors favoring both formation of transient ssDNA and persistent DNA lesions are key in determining the DNA breakage mechanism.
Collapse
|
29
|
Pannunzio NR, Lieber MR. AID and Reactive Oxygen Species Can Induce DNA Breaks within Human Chromosomal Translocation Fragile Zones. Mol Cell 2017; 68:901-912.e3. [PMID: 29220655 DOI: 10.1016/j.molcel.2017.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/02/2017] [Accepted: 11/10/2017] [Indexed: 01/07/2023]
Abstract
DNA double-strand breaks (DSBs) occurring within fragile zones of less than 200 base pairs account for the formation of the most common human chromosomal translocations in lymphoid malignancies, yet the mechanism of how breaks occur remains unknown. Here, we have transferred human fragile zones into S. cerevisiae in the context of a genetic assay to understand the mechanism leading to DSBs at these sites. Our findings indicate that a combination of factors is required to sensitize these regions. Foremost, DNA strand separation by transcription or increased torsional stress can expose these DNA regions to damage from either the expression of human AID or increased oxidative stress. This damage causes DNA lesions that, if not repaired quickly, are prone to nuclease cleavage, resulting in DSBs. Our results provide mechanistic insight into why human neoplastic translocation fragile DNA sequences are more prone to enzymes or agents that cause longer-lived DNA lesions.
Collapse
|
30
|
Pannunzio NR, Watanabe G, Lieber MR. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem 2017; 293:10512-10523. [PMID: 29247009 DOI: 10.1074/jbc.tm117.000374] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nonhomologous DNA end-joining (NHEJ) is the predominant double-strand break (DSB) repair pathway throughout the cell cycle and accounts for nearly all DSB repair outside of the S and G2 phases. NHEJ relies on Ku to thread onto DNA termini and thereby improve the affinity of the NHEJ enzymatic components consisting of polymerases (Pol μ and Pol λ), a nuclease (the Artemis·DNA-PKcs complex), and a ligase (XLF·XRCC4·Lig4 complex). Each of the enzymatic components is distinctive for its versatility in acting on diverse incompatible DNA end configurations coupled with a flexibility in loading order, resulting in many possible junctional outcomes from one DSB. DNA ends can either be directly ligated or, if the ends are incompatible, processed until a ligatable configuration is achieved that is often stabilized by up to 4 bp of terminal microhomology. Processing of DNA ends results in nucleotide loss or addition, explaining why DSBs repaired by NHEJ are rarely restored to their original DNA sequence. Thus, NHEJ is a single pathway with multiple enzymes at its disposal to repair DSBs, resulting in a diversity of repair outcomes.
Collapse
|
31
|
Reid DA, Conlin MP, Yin Y, Chang HH, Watanabe G, Lieber MR, Ramsden DA, Rothenberg E. Bridging of double-stranded breaks by the nonhomologous end-joining ligation complex is modulated by DNA end chemistry. Nucleic Acids Res 2017; 45:1872-1878. [PMID: 27924007 PMCID: PMC5389564 DOI: 10.1093/nar/gkw1221] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/22/2016] [Indexed: 01/02/2023] Open
Abstract
The nonhomologous end-joining (NHEJ) pathway is the primary repair pathway for DNA double strand breaks (DSBs) in humans. Repair is mediated by a core complex of NHEJ factors that includes a ligase (DNA Ligase IV; L4) that relies on juxtaposition of 3΄ hydroxyl and 5΄ phosphate termini of the strand breaks for catalysis. However, chromosome breaks arising from biological sources often have different end chemistries, and how these different end chemistries impact the way in which the core complex directs the necessary transitions from end pairing to ligation is not known. Here, using single-molecule FRET (smFRET), we show that prior to ligation, differences in end chemistry strongly modulate the bridging of broken ends by the NHEJ core complex. In particular, the 5΄ phosphate group is a recognition element for L4 and is critical for the ability of NHEJ factors to promote stable pairing of ends. Moreover, other chemical incompatibilities, including products of aborted ligation, are sufficient to disrupt end pairing. Based on these observations, we propose a mechanism for iterative repair of DSBs by NHEJ.
Collapse
|
32
|
Duncan JR, Lieber MR, Adachi N, Wahl RL. DNA Repair After Exposure to Ionizing Radiation Is Not Error-Free. J Nucl Med 2017; 59:348. [DOI: 10.2967/jnumed.117.197673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Gerodimos CA, Chang HHY, Watanabe G, Lieber MR. Effects of DNA end configuration on XRCC4-DNA ligase IV and its stimulation of Artemis activity. J Biol Chem 2017; 292:13914-13924. [PMID: 28696258 DOI: 10.1074/jbc.m117.798850] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/05/2017] [Indexed: 11/06/2022] Open
Abstract
In humans, nonhomologous DNA end-joining (NHEJ) is the major pathway by which DNA double-strand breaks are repaired. Recognition of each broken DNA end by the DNA repair protein Ku is the first step in NHEJ, followed by the iterative binding of nucleases, DNA polymerases, and the XRCC4-DNA ligase IV (X4-LIV) complex in an order influenced by the configuration of the two DNA ends at the break site. The endonuclease Artemis improves joining efficiency by functioning in a complex with DNA-dependent protein kinase, catalytic subunit (DNA-PKcs) that carries out endonucleolytic cleavage of 5' and 3' overhangs. Previously, we observed that X4-LIV alone can stimulate Artemis activity on 3' overhangs, but this DNA-PKcs-independent endonuclease activity of Artemis awaited confirmation. Here, using in vitro nuclease and ligation assays, we find that stimulation of Artemis nuclease activity by X4-LIV and the efficiency of blunt-end ligation are determined by structural configurations at the DNA end. Specifically, X4-LIV stimulated Artemis to cut near the end of 3' overhangs without the involvement of other NHEJ proteins. Of note, this ligase complex is not able to stimulate Artemis activity at hairpins or at 5' overhangs. We also found that X4-LIV and DNA-PKcs interfere with one another with respect to stimulating Artemis activity at 3' overhangs, favoring the view that these NHEJ proteins are sequentially rather than concurrently recruited to DNA ends. These data suggest specific functional and positional relationships among these components that explain genetic and molecular features of NHEJ and V(D)J recombination within cells.
Collapse
|
34
|
Rand KA, Song C, Dean E, Serie DJ, Curtin K, Sheng X, Hu D, Huff CA, Bernal-Mizrachi L, Tomasson MH, Ailawadhi S, Singhal S, Pawlish K, Peters ES, Bock CH, Stram A, Van Den Berg DJ, Edlund CK, Conti DV, Zimmerman T, Hwang AE, Huntsman S, Graff J, Nooka A, Kong Y, Pregja SL, Berndt SI, Blot WJ, Carpten J, Casey G, Chu L, Diver WR, Stevens VL, Lieber MR, Goodman PJ, Hennis AJM, Hsing AW, Mehta J, Kittles RA, Kolb S, Klein EA, Leske C, Murphy AB, Nemesure B, Neslund-Dudas C, Strom SS, Vij R, Rybicki BA, Stanford JL, Signorello LB, Witte JS, Ambrosone CB, Bhatti P, John EM, Bernstein L, Zheng W, Olshan AF, Hu JJ, Ziegler RG, Nyante SJ, Bandera EV, Birmann BM, Ingles SA, Press MF, Atanackovic D, Glenn MJ, Cannon-Albright LA, Jones B, Tricot G, Martin TG, Kumar SK, Wolf JL, Deming Halverson SL, Rothman N, Brooks-Wilson AR, Rajkumar SV, Kolonel LN, Chanock SJ, Slager SL, Severson RK, Janakiraman N, Terebelo HR, Brown EE, De Roos AJ, Mohrbacher AF, Colditz GA, Giles GG, Spinelli JJ, Chiu BC, Munshi NC, Anderson KC, Levy J, Zonder JA, Orlowski RZ, Lonial S, Camp NJ, Vachon CM, Ziv E, Stram DO, Hazelett DJ, Haiman CA, Cozen W. A Meta-analysis of Multiple Myeloma Risk Regions in African and European Ancestry Populations Identifies Putatively Functional Loci. Cancer Epidemiol Biomarkers Prev 2016; 25:1609-1618. [PMID: 27587788 PMCID: PMC5524541 DOI: 10.1158/1055-9965.epi-15-1193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 06/20/2016] [Accepted: 07/05/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) in European populations have identified genetic risk variants associated with multiple myeloma. METHODS We performed association testing of common variation in eight regions in 1,318 patients with multiple myeloma and 1,480 controls of European ancestry and 1,305 patients with multiple myeloma and 7,078 controls of African ancestry and conducted a meta-analysis to localize the signals, with epigenetic annotation used to predict functionality. RESULTS We found that variants in 7p15.3, 17p11.2, 22q13.1 were statistically significantly (P < 0.05) associated with multiple myeloma risk in persons of African ancestry and persons of European ancestry, and the variant in 3p22.1 was associated in European ancestry only. In a combined African ancestry-European ancestry meta-analysis, variation in five regions (2p23.3, 3p22.1, 7p15.3, 17p11.2, 22q13.1) was statistically significantly associated with multiple myeloma risk. In 3p22.1, the correlated variants clustered within the gene body of ULK4 Correlated variants in 7p15.3 clustered around an enhancer at the 3' end of the CDCA7L transcription termination site. A missense variant at 17p11.2 (rs34562254, Pro251Leu, OR, 1.32; P = 2.93 × 10-7) in TNFRSF13B encodes a lymphocyte-specific protein in the TNF receptor family that interacts with the NF-κB pathway. SNPs correlated with the index signal in 22q13.1 cluster around the promoter and enhancer regions of CBX7 CONCLUSIONS: We found that reported multiple myeloma susceptibility regions contain risk variants important across populations, supporting the use of multiple racial/ethnic groups with different underlying genetic architecture to enhance the localization and identification of putatively functional alleles. IMPACT A subset of reported risk loci for multiple myeloma has consistent effects across populations and is likely to be functional. Cancer Epidemiol Biomarkers Prev; 25(12); 1609-18. ©2016 AACR.
Collapse
|
35
|
Chang HHY, Watanabe G, Gerodimos CA, Ochi T, Blundell TL, Jackson SP, Lieber MR. Different DNA End Configurations Dictate Which NHEJ Components Are Most Important for Joining Efficiency. J Biol Chem 2016; 291:24377-24389. [PMID: 27703001 PMCID: PMC5114395 DOI: 10.1074/jbc.m116.752329] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/26/2016] [Indexed: 02/02/2023] Open
Abstract
The nonhomologous DNA end-joining (NHEJ) pathway is a key mechanism for repairing dsDNA breaks that occur often in eukaryotic cells. In the simplest model, these breaks are first recognized by Ku, which then interacts with other NHEJ proteins to improve their affinity at DNA ends. These include DNA-PKcs and Artemis for trimming the DNA ends; DNA polymerase μ and λ to add nucleotides; and the DNA ligase IV complex to ligate the ends with the additional factors, XRCC4 (X-ray repair cross-complementing protein 4), XLF (XRCC4-like factor/Cernunos), and PAXX (paralog of XRCC4 and XLF). In vivo studies have demonstrated the degrees of importance of these NHEJ proteins in the mechanism of repair of dsDNA breaks, but interpretations can be confounded by other cellular processes. In vitro studies with NHEJ proteins have been performed to evaluate the nucleolytic resection, polymerization, and ligation steps, but a complete system has been elusive. Here we have developed a NHEJ reconstitution system that includes the nuclease, polymerase, and ligase components to evaluate relative NHEJ efficiency and analyze ligated junctional sequences for various types of DNA ends, including blunt, 5' overhangs, and 3' overhangs. We find that different dsDNA end structures have differential dependence on these enzymatic components. The dependence of some end joining on only Ku and XRCC4·DNA ligase IV allows us to formulate a physical model that incorporates nuclease and polymerase components as needed.
Collapse
|
36
|
Abstract
Analysis of chromosomal translocation sequence locations in human lymphomas has provided valuable clues about the mechanism of the translocations and when they occur. Biochemical analyses on the mechanisms of DNA breakage and rejoining permit formulation of detailed models of the human chromosomal translocation process in lymphoid neoplasms. Most human lymphomas are derived from B cells in which a DNA break at an oncogene is initiated by activation-induced deaminase (AID). The partner locus in many cases is located at one of the antigen receptor loci, and this break is generated by the recombination activating gene (RAG) complex or by AID. After breakage, the joining process typically occurs by non-homologous DNA end-joining (NHEJ). Some of the insights into this mechanism also apply to translocations that occur in non-lymphoid neoplasms.
Collapse
|
37
|
Chang HHY, Lieber MR. Structure-Specific nuclease activities of Artemis and the Artemis: DNA-PKcs complex. Nucleic Acids Res 2016; 44:4991-7. [PMID: 27198222 PMCID: PMC4914130 DOI: 10.1093/nar/gkw456] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/06/2016] [Indexed: 12/23/2022] Open
Abstract
Artemis is a vertebrate nuclease with both endo- and exonuclease activities that acts on a wide range of nucleic acid substrates. It is the main nuclease in the non-homologous DNA end-joining pathway (NHEJ). Not only is Artemis important for the repair of DNA double-strand breaks (DSBs) in NHEJ, it is essential in opening the DNA hairpin intermediates that are formed during V(D)J recombination. Thus, humans with Artemis deficiencies do not have T- or B-lymphocytes and are diagnosed with severe combined immunodeficiency (SCID). While Artemis is the only vertebrate nuclease capable of opening DNA hairpins, it has also been found to act on other DNA substrates that share common structural features. Here, we discuss the key structural features that all Artemis DNA substrates have in common, thus providing a basis for understanding how this structure-specific nuclease recognizes its DNA targets.
Collapse
|
38
|
Greco GE, Matsumoto Y, Brooks RC, Lu Z, Lieber MR, Tomkinson AE. SCR7 is neither a selective nor a potent inhibitor of human DNA ligase IV. DNA Repair (Amst) 2016; 43:18-23. [PMID: 27235626 DOI: 10.1016/j.dnarep.2016.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/06/2016] [Indexed: 11/15/2022]
Abstract
DNA ligases are attractive therapeutics because of their involvement in completing the repair of almost all types of DNA damage. A series of DNA ligase inhibitors with differing selectivity for the three human DNA ligases were identified using a structure-based approach with one of these inhibitors being used to inhibit abnormal DNA ligase IIIα-dependent repair of DNA double-strand breaks (DSB)s in breast cancer, neuroblastoma and leukemia cell lines. Raghavan and colleagues reported the characterization of a derivative of one of the previously identified DNA ligase inhibitors, which they called SCR7 (designated SCR7-R in our experiments using SCR7). SCR7 appeared to show increased selectivity for DNA ligase IV, inhibit the repair of DSBs by the DNA ligase IV-dependent non-homologous end-joining (NHEJ) pathway, reduce tumor growth, and increase the efficacy of DSB-inducing therapeutic modalities in mouse xenografts. In attempting to synthesize SCR7, we encountered problems with the synthesis procedures and discovered discrepancies in its reported structure. We determined the structure of a sample of SCR7 and a related compound, SCR7-G, that is the major product generated by the published synthesis procedure for SCR7. We also found that SCR7-G has the same structure as the compound (SCR7-X) available from a commercial vendor (XcessBio). The various SCR7 preparations had similar activity in DNA ligation assay assays, exhibiting greater activity against DNA ligases I and III than DNA ligase IV. Furthermore, SCR7-R failed to inhibit DNA ligase IV-dependent V(D)J recombination in a cell-based assay. Based on our results, we conclude that SCR7 and the SCR7 derivatives are neither selective nor potent inhibitors of DNA ligase IV.
Collapse
|
39
|
Pannunzio NR, Lieber MR. Dissecting the Roles of Divergent and Convergent Transcription in Chromosome Instability. Cell Rep 2016; 14:1025-1031. [PMID: 26804908 DOI: 10.1016/j.celrep.2015.12.098] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 11/29/2015] [Accepted: 12/21/2015] [Indexed: 11/29/2022] Open
Abstract
The interplay of transcription, topological tension, and chromosome breakage is a subject of intense interest, but, with so many facets to the problem, it is difficult to test. Here, we vary the orientation of promoters relative to one another in a yeast system that permits sensitive detection of chromosome breaks. Interestingly, convergent transcription that would direct RNA polymerases into one another does not increase chromosome breakage. In contrast, divergent transcription that would create underwound and potentially single-stranded DNA does cause a marked increase in chromosome breakage. Furthermore, we examine the role that topoisomerases are playing in preventing genome instability at these promoters and find that Top2 is required to prevent instability at converging promoters.
Collapse
|
40
|
Chang HHY, Watanabe G, Lieber MR. Unifying the DNA end-processing roles of the artemis nuclease: Ku-dependent artemis resection at blunt DNA ends. J Biol Chem 2015; 290:24036-50. [PMID: 26276388 DOI: 10.1074/jbc.m115.680900] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 11/06/2022] Open
Abstract
Artemis is a member of the metallo-β-lactamase protein family of nucleases. It is essential in vertebrates because, during V(D)J recombination, the RAG complex generates hairpins when it creates the double strand breaks at V, D, and J segments, and Artemis is required to open the hairpins so that they can be joined. Artemis is a diverse endo- and exonuclease, and creating a unified model for its wide range of nuclease properties has been challenging. Here we show that Artemis resects iteratively into blunt DNA ends with an efficiency that reflects the AT-richness of the DNA end. GC-rich ends are not cut by Artemis alone because of a requirement for DNA end breathing (and confirmed using fixed pseudo-Y structures). All DNA ends are cut when both the DNA-dependent protein kinase catalytic subunit and Ku accompany Artemis but not when Ku is omitted. These are the first biochemical data demonstrating a Ku dependence of Artemis action on DNA ends of any configuration. The action of Artemis at blunt DNA ends is slower than at overhangs, consistent with a requirement for a slow DNA end breathing step preceding the cut. The AT sequence dependence, the order of strand cutting, the length of the cuts, and the Ku-dependence of Artemis action at blunt ends can be reconciled with the other nucleolytic properties of both Artemis and Artemis·DNA-PKcs in a model incorporating DNA end breathing of blunt ends to form transient single to double strand boundaries that have structural similarities to hairpins and fixed 5' and 3' overhangs.
Collapse
|
41
|
Zhang ZZ, Pannunzio NR, Lu Z, Hsu E, Yu K, Lieber MR. The repetitive portion of the Xenopus IgH Mu switch region mediates orientation-dependent class switch recombination. Mol Immunol 2015; 67:524-31. [PMID: 26277278 DOI: 10.1016/j.molimm.2015.07.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 11/26/2022]
Abstract
Vertebrates developed immunoglobulin heavy chain (IgH) class switch recombination (CSR) to express different IgH constant regions. Most double-strand breaks for Ig CSR occur within the repetitive portion of the switch regions located upstream of each set of constant domain exons for the Igγ, Igα or Igϵ heavy chain. Unlike mammalian switch regions, Xenopus switch regions do not have a high G-density on the non-template DNA strand. In previous studies, when Xenopus Sμ DNA was moved to the genome of mice, it is able to support substantial CSR when it is used to replace the murine Sγ1 region. Here, we tested both the 2kb repetitive portion and the 4.6 kb full-length portions of the Xenopus Sμ in both their natural (forward) orientation relative to the constant domain exons, as well as the opposite (reverse) orientation. Consistent with previous work, we find that the 4.6 kb full-length Sμ mediates similar levels of CSR in both the forward and reverse orientations. Whereas, the forward orientation of the 2kb portion can restore the majority of the CSR level of the 4.6 kb full-length Sμ, the reverse orientation poorly supports R-looping and no CSR. The forward orientation of the 2kb repetitive portion has more GG dinucleotides on the non-template strand than the reverse orientation. The correlation of R-loop formation with CSR efficiency, as demonstrated in the 2kb repetitive fragment of the Xenopus switch region, confirms a role played by R-looping in CSR that appears to be conserved through evolution.
Collapse
|
42
|
Swaminathan S, Klemm L, Park E, Papaemmanuil E, Ford A, Kweon SM, Trageser D, Hasselfeld B, Henke N, Mooster J, Geng H, Schwarz K, Kogan SC, Casellas R, Schatz DG, Lieber MR, Greaves MF, Müschen M. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nat Immunol 2015; 16:766-774. [PMID: 25985233 PMCID: PMC4475638 DOI: 10.1038/ni.3160] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/26/2015] [Indexed: 12/14/2022]
Abstract
Childhood acute lymphoblastic leukemia (ALL) can often be traced to a pre-leukemic clone carrying a prenatal genetic lesion. Postnatally acquired mutations then drive clonal evolution toward overt leukemia. The enzymes RAG1-RAG2 and AID, which diversify immunoglobulin-encoding genes, are strictly segregated in developing cells during B lymphopoiesis and peripheral mature B cells, respectively. Here we identified small pre-BII cells as a natural subset with increased genetic vulnerability owing to concurrent activation of these enzymes. Consistent with epidemiological findings on childhood ALL etiology, susceptibility to genetic lesions during B lymphopoiesis at the transition from the large pre-BII cell stage to the small pre-BII cell stage was exacerbated by abnormal cytokine signaling and repetitive inflammatory stimuli. We demonstrated that AID and RAG1-RAG2 drove leukemic clonal evolution with repeated exposure to inflammatory stimuli, paralleling chronic infections in childhood.
Collapse
|
43
|
Zhang ZZ, Hsieh CL, Okitsu CY, Han L, Yu K, Lieber MR. Effect of CpG dinucleotides within IgH switch region repeats on immunoglobulin class switch recombination. Mol Immunol 2015; 66:284-9. [PMID: 25899867 DOI: 10.1016/j.molimm.2015.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/31/2015] [Accepted: 04/04/2015] [Indexed: 12/30/2022]
Abstract
Immunoglobulin (Ig) heavy chains undergo class switch recombination (CSR) to change the heavy chain isotype from IgM to IgG, A or E. The switch regions are several kilobases long, repetitive, and G-rich on the nontemplate strand. They are also relatively depleted of CpG (also called CG) sites for unknown reasons. Here we use synthetic switch regions at the IgH switch alpha (Sα) locus to test the effect of CpG sites and to try to understand why the IgH switch sequences evolved to be relatively depleted of CpG. We find that even just two CpG sites within an 80 bp synthetic switch repeat iterated 15 times (total switch region length of 1200 bp containing 30 CpG sites) are sufficient to dramatically reduce both Ig CSR and transcription through the switch region from the upstream Iα sterile transcript promoter, which is the promoter that directs transcripts through the Sα region. De novo DNA methylation occurs at the four CpG sites in and around the Iα promoter when each 80 bp Iα switch repeat contains the two CpG sites. Thus, a relatively low density of CpG sites within the switch repeats can induce upstream CpG methylation at the IgH alpha locus, and cause a substantial decrease in transcription from the sterile transcript promoter. This effect is likely the reason that switch regions evolved to contain very few CpG sites. We discuss these findings as they relate to DNA methylation and to Ig CSR.
Collapse
|
44
|
Zhang ZZ, Pannunzio NR, Hsieh CL, Yu K, Lieber MR. Complexities due to single-stranded RNA during antibody detection of genomic rna:dna hybrids. BMC Res Notes 2015; 8:127. [PMID: 25890199 PMCID: PMC4393563 DOI: 10.1186/s13104-015-1092-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/24/2015] [Indexed: 12/21/2022] Open
Abstract
Background Long genomic R-loops in eukaryotes were first described at the immunoglobulin heavy chain locus switch regions using bisulfite sequencing and functional studies. A mouse monoclonal antibody called S9.6 has been used for immunoprecipitation (IP) to identify R-loops, based on the assumption that it is specific for RNA:DNA over other nucleic acid duplexes. However, recent work has demonstrated that a variable domain of S9.6 binds AU-rich RNA:RNA duplexes with a KD that is only 5.6-fold weaker than for RNA:DNA duplexes. Most IP protocols do not pre-clear the genomic nucleic acid with RNase A to remove free RNA. Fold back of ssRNA can readily generate RNA:RNA duplexes that may bind the S9.6 antibody, and adventitious binding of RNA may also create short RNA:DNA regions. Here we investigate whether RNase A is needed to obtain reliable IP with S9.6. Findings As our test locus, we chose the most well-documented site for kilobase-long mammalian genomic R-loops, the immunoglobulin heavy chain locus (IgH) class switch regions. The R-loops at this locus can be induced by using cytokines to stimulate transcription from germline transcript promoters. We tested IP using S9.6 with and without various RNase treatments. The RNase treatments included RNase H to destroy the RNA in an RNA:DNA duplex and RNase A to destroy single-stranded (ss) RNA to prevent it from binding S9.6 directly (as duplex RNA) and to prevent the ssRNA from annealing to the genome, resulting in adventitious RNA:DNA hybrids. We find that optimal detection of RNA:DNA duplexes requires removal of ssRNA using RNase A. Without RNase A treatment, known regions of R-loop formation containing RNA:DNA duplexes can not be reliably detected. With RNase A treatment, a signal can be detected over background, but only within a limited 2 or 3-fold range, even with a stable kilobase-long genomic R-loop. Conclusion Any use of the S9.6 antibody must be preceded by RNase A treatment to remove free ssRNA that may compete for the S9.6 binding by forming RNA:RNA regions or short, transient RNA:DNA duplexes. Caution should be used when interpreting S9.6 data, and confirmation by independent structural and functional methods is essential. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1092-1) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Lu Z, Lieber MR, Tsai AG, Pardo CE, Müschen M, Kladde MP, Hsieh CL. Human lymphoid translocation fragile zones are hypomethylated and have accessible chromatin. Mol Cell Biol 2015; 35:1209-22. [PMID: 25624348 PMCID: PMC4355534 DOI: 10.1128/mcb.01085-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/26/2014] [Accepted: 01/16/2015] [Indexed: 12/19/2022] Open
Abstract
Chromosomal translocations are a hallmark of hematopoietic malignancies. CG motifs within translocation fragile zones (typically 20 to 600 bp in size) are prone to chromosomal translocation in lymphomas. Here we demonstrate that the CG motifs in human translocation fragile zones are hypomethylated relative to the adjacent DNA. Using a methyltransferase footprinting assay on isolated nuclei (in vitro), we find that the chromatin at these fragile zones is accessible. We also examined in vivo accessibility using cellular expression of a prokaryotic methylase. Based on this assay, which measures accessibility over a much longer time interval than is possible with in vitro methods, these fragile zones were found to be more accessible than the adjacent DNA. Because DNA within the fragile zones can be methylated by both cellular and exogenous methyltransferases, the fragile zones are predominantly in a duplex DNA conformation. These observations permit more-refined models for why these zones are 100- to 1,000-fold more prone to undergo chromosomal translocation than the adjacent regions.
Collapse
|
46
|
Zhang ZZ, Pannunzio NR, Hsieh CL, Yu K, Lieber MR. The role of G-density in switch region repeats for immunoglobulin class switch recombination. Nucleic Acids Res 2014; 42:13186-93. [PMID: 25378327 PMCID: PMC4245955 DOI: 10.1093/nar/gku1100] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/19/2014] [Accepted: 10/22/2014] [Indexed: 02/06/2023] Open
Abstract
The boundaries of R-loops are well-documented at immunoglobulin heavy chain loci in mammalian B cells. Within primary B cells or B cell lines, the upstream boundaries of R-loops typically begin early in the repetitive portion of the switch regions. Most R-loops terminate within the switch repetitive zone, but the remainder can extend a few hundred base pairs further, where G-density on the non-template DNA strand gradually drops to the genome average. Whether the G-density determines how far the R-loops extend is an important question. We previously studied the role of G-clusters in initiating R-loop formation, but we did not examine the role of G-density in permitting the elongation of the R-loop, after it had initiated. Here, we vary the G-density of different portions of the switch region in a murine B cell line. We find that both class switch recombination (CSR) and R-loop formation decrease significantly when the overall G-density is reduced from 46% to 29%. Short 50 bp insertions with low G-density within switch regions do not appear to affect either CSR or R-loop elongation, whereas a longer (150 bp) insertion impairs both. These results demonstrate that G-density is an important determinant of the length over which mammalian genomic R-loops extend.
Collapse
|
47
|
Raghavan SC, Lieber MR. Chromosomal Translocations and Non-B DNA Structures in the Human Genome. Cell Cycle 2014. [DOI: 10.4161/cc.3.6.944] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
48
|
Shimazaki N, Lieber MR. Histone methylation and V(D)J recombination. Int J Hematol 2014; 100:230-7. [PMID: 25060705 DOI: 10.1007/s12185-014-1637-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 01/27/2023]
Abstract
V(D)J recombination is the process by which the diversity of antigen receptor genes is generated and is also indispensable for lymphocyte development. This recombination event occurs in a cell lineage- and stage-specific manner, and is carefully controlled by chromatin structure and ordered histone modifications. The recombinationally active V(D)J loci are associated with hypermethylation at lysine4 of histone H3 and hyperacetylation of histones H3/H4. The recombination activating gene 1 (RAG1) and RAG2 complex initiates recombination by introducing double-strand DNA breaks at recombination signal sequences (RSS) adjacent to each coding sequence. To be recognized by the RAG complex, RSS sites must be within an open chromatin context. In addition, the RAG complex specifically recognizes hypermethylated H3K4 through its plant homeodomain (PHD) finger in the RAG2 C terminus, which stimulates RAG catalytic activity via that interaction. In this review, we describe how histone methylation controls V(D)J recombination and discuss its potential role in lymphoid malignancy by mistargeting the RAG complex.
Collapse
|
49
|
Zhang ZZ, Pannunzio NR, Han L, Hsieh CL, Yu K, Lieber MR. The strength of an Ig switch region is determined by its ability to drive R loop formation and its number of WGCW sites. Cell Rep 2014; 8:557-69. [PMID: 25017067 DOI: 10.1016/j.celrep.2014.06.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/20/2014] [Accepted: 06/12/2014] [Indexed: 12/22/2022] Open
Abstract
R loops exist at the murine IgH switch regions and possibly other locations, but their functional importance is unclear. In biochemical systems, R loop initiation requires DNA sequence regions containing clusters of G nucleotides, but cellular studies have not been done. Here, we vary the G-clustering, total switch region length, and the number of target sites (WGCW sites for the activation-induced deaminase) at synthetic switch regions in a murine B cell line to determine the effect on class switch recombination (CSR). G-clusters increase CSR regardless of their immediate proximity to the WGCW sites. This increase is accompanied by an increase in R loop formation. CSR efficiency correlates better with the absolute number of WGCW sites in the switch region rather than the total switch region length or density of WGCW sites. Thus, the overall strength of the switch region depends on G-clusters, which initiate R loop formation, and on the number of WGCW sites.
Collapse
|
50
|
Li S, Chang HH, Niewolik D, Hedrick MP, Pinkerton AB, Hassig CA, Schwarz K, Lieber MR. Evidence that the DNA endonuclease ARTEMIS also has intrinsic 5'-exonuclease activity. J Biol Chem 2014; 289:7825-34. [PMID: 24500713 DOI: 10.1074/jbc.m113.544874] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
ARTEMIS is a member of the metallo-β-lactamase protein family. ARTEMIS has endonuclease activity at DNA hairpins and at 5'- and 3'-DNA overhangs of duplex DNA, and this endonucleolytic activity is dependent upon DNA-PKcs. There has been uncertainty about whether ARTEMIS also has 5'-exonuclease activity on single-stranded DNA and 5'-overhangs, because this 5'-exonuclease is not dependent upon DNA-PKcs. Here, we show that the 5'-exonuclease and the endonuclease activities co-purify. Second, we show that a point mutant of ARTEMIS at a putative active site residue (H115A) markedly reduces both the endonuclease activity and the 5'-exonuclease activity. Third, divalent cation effects on the 5'-exonuclease and the endonuclease parallel one another. Fourth, both the endonuclease activity and 5'-exonuclease activity of ARTEMIS can be blocked in parallel by small molecule inhibitors, which do not block unrelated nucleases. We conclude that the 5'-exonuclease is intrinsic to ARTEMIS, making it relevant to the role of ARTEMIS in nonhomologous DNA end joining.
Collapse
|