26
|
Balakit AA, Makki SQ, Sert Y, Ucun F, Alshammari MB, Thordarson P, El-Hiti GA. Synthesis, spectrophotometric and DFT studies of new Triazole Schiff bases as selective naked-eye sensors for acetate anion. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1808217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Wojciechowski JP, Martin AD, Du EY, Garvey CJ, Nordon RE, Thordarson P. Correction: Non-reversible heat-induced gelation of a biocompatible Fmoc-hexapeptide in water. NANOSCALE 2020; 12:15905. [PMID: 32729863 DOI: 10.1039/d0nr90160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Correction for 'Non-reversible heat-induced gelation of a biocompatible Fmoc-hexapeptide in water' by Jonathan P. Wojciechowski et al., Nanoscale, 2020, 12, 8262-8267, DOI: .
Collapse
|
28
|
Romana B, Hassan MM, Sonvico F, Garrastazu Pereira G, Mason AF, Thordarson P, Bremmell KE, Barnes TJ, Prestidge CA. A liposome-micelle-hybrid (LMH) oral delivery system for poorly water-soluble drugs: Enhancing solubilisation and intestinal transport. Eur J Pharm Biopharm 2020; 154:338-347. [PMID: 32739535 DOI: 10.1016/j.ejpb.2020.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/31/2022]
Abstract
A novel liposome-micelle-hybrid (LMH) carrier system was developed as a superior oral drug delivery platform compared to conventional liposome or micelle formulations. The optimal LMH system was engineered by encapsulating TPGS micelles in the aqueous core of liposomes and its efficacy for oral delivery was demonstrated using lovastatin (LOV) as a model poorly soluble drug with P-gp (permeability glycoprotein) limited intestinal absorption. LOV-LMH was characterised as unilamellar, spherical vesicles encapsulating micellar structures within the interior aqueous core and showing an average diameter below 200 nm. LMH demonstrated enhanced drug loading, water apparent solubility and extended/controlled release of LOV compared to conventional liposomes and micelles. LMH exhibited enhanced LOV absorption and transportation in a Caco-2 cell monolayer model of the intestine by inhibiting the P-gp transporter system compared to free LOV. The LMH system is a promising novel oral delivery approach for enhancing bioavailability of poorly water-soluble drugs, especially those presenting P-gp effluxes limited absorption.
Collapse
|
29
|
Tjandra KC, Forest CR, Wong CK, Alcantara S, Kelly HG, Ju Y, Stenzel MH, McCarroll JA, Kavallaris M, Caruso F, Kent SJ, Thordarson P. Modulating the Selectivity and Stealth Properties of Ellipsoidal Polymersomes through a Multivalent Peptide Ligand Display. Adv Healthc Mater 2020; 9:e2000261. [PMID: 32424998 DOI: 10.1002/adhm.202000261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/20/2020] [Indexed: 12/16/2022]
Abstract
There is a need for improved nanomaterials to simultaneously target cancer cells and avoid non-specific clearance by phagocytes. An ellipsoidal polymersome system is developed with a unique tunable size and shape property. These particles are functionalized with in-house phage-display cell-targeting peptide to target a medulloblastoma cell line in vitro. Particle association with medulloblastoma cells is modulated by tuning the peptide ligand density on the particles. These polymersomes has low levels of association with primary human blood phagocytes. The stealth properties of the polymersomes are further improved by including the peptide targeting moiety, an effect that is likely driven by the peptide protecting the particles from binding blood plasma proteins. Overall, this ellipsoidal polymersome system provides a promising platform to explore tumor cell targeting in vivo.
Collapse
|
30
|
Ariawan AD, Sun B, Wojciechowski JP, Lin I, Du EY, Goodchild SC, Cranfield CG, Ittner LM, Thordarson P, Martin AD. Effect of polar amino acid incorporation on Fmoc-diphenylalanine-based tetrapeptides. SOFT MATTER 2020; 16:4800-4805. [PMID: 32400837 DOI: 10.1039/d0sm00320d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Peptide hydrogels show great promise as extracellular matrix mimics due to their tuneable, fibrous nature. Through incorporation of polar cationic, polar anionic or polar neutral amino acids into the Fmoc-diphenylalanine motif, we show that electrostatic charge plays a key role in the properties of the subsequent gelators. Specifically, we show that an inverse relationship exists for biocompatibility in the solution state versus the gel state for cationic and anionic peptides. Finally, we use tethered bilayer lipid membrane (tBLM) experiments to suggest a likely mode of cytotoxicity for tetrapeptides which exhibit cytotoxicity in the solution state.
Collapse
|
31
|
Duché G, Thordarson P, Kearnes M. The importance of reflecting on treatment and post-treatment care when assessing the social aspects of cosmetic nanomedicine and transdermal delivery system. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102214. [PMID: 32360550 DOI: 10.1016/j.nano.2020.102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/03/2020] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
Abstract
In the field of nanomedicine, the development of targeted drug delivery aims to design more effective delivery systems that directly target cancer cells and tumours. The development of transdermal delivery mechanisms is promising. At the same time, these areas of research raise profound social and ethical questions and are tied to significant transformations in the nature of contemporary healthcare and personal subjectivity. Socio- political consideration of these issues is shaped by a wider set of debates concerning the societal dimensions of nanotechnology. In this paper we report findings from an interdisciplinary research project uilising semi-structured interviews with key-informants engaged in cancer research and health-care. We identified narrative constracts that shaped participants' responses to and understandings of novel nanomedicines. This analysis contributes to a growing body of literature on the social and ethical aspects of nanotechnology and nanomedicine, providing evidence for the engagement of publics in the early stage of technological developments.
Collapse
|
32
|
Wojciechowski JP, Martin AD, Du EY, Garvey CJ, Nordon RE, Thordarson P. Non-reversible heat-induced gelation of a biocompatible Fmoc-hexapeptide in water. NANOSCALE 2020; 12:8262-8267. [PMID: 32236222 DOI: 10.1039/d0nr00289e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogel materials which respond to changes in temperature are widely applicable for injectable drug delivery or tissue engineering applications. Here, we report the unsual heat-induced gelation behaviour of a low molecular weight gelator based on an Fmoc-hexapeptide, Fmoc-GFFRGD. We show that Fmoc-GFFRGD forms kinetically stable fibres when mixed with divalent cations (e.g. Ca2+). Gelation of the mixture occurs upon heating of the mixture which enables electrostatic screening by the divalent cations and hydrophobic collapse of the fibres to give a self-supporting hydrogel network that shows good biocompatibility with L929 fibroblast cells. This work highlights a unique mechanism to initiate heat-induced gelation which should find opportunities as a gelation trigger for injectable hydrogels or fundamental self-assembly applications.
Collapse
|
33
|
Aldilla VR, Chen R, Martin AD, Marjo CE, Rich AM, Black DS, Thordarson P, Kumar N. Anthranilamide-based Short Peptides Self-Assembled Hydrogels as Antibacterial Agents. Sci Rep 2020; 10:770. [PMID: 31964927 PMCID: PMC6972728 DOI: 10.1038/s41598-019-57342-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022] Open
Abstract
In this study, we describe the synthesis and molecular properties of anthranilamide-based short peptides which were synthesised via ring opening of isatoic anhydride in excellent yields. These short peptides were incorporated as low molecular weight gelators (LMWG), bola amphiphile, and C3-symmetric molecules to form hydrogels in low concentrations (0.07-0.30% (w/v)). The critical gel concentration (CGC), viscoelastic properties, secondary structure, and fibre morphology of these short peptides were influenced by the aromaticity of the capping group or by the presence of electronegative substituent (namely fluoro) and hydrophobic substituent (such as methyl) in the short peptides. In addition, the hydrogels showed antibacterial activity against S. aureus 38 and moderate toxicity against HEK cells in vitro.
Collapse
|
34
|
Martin AD, Thordarson P. Beyond Fmoc: a review of aromatic peptide capping groups. J Mater Chem B 2020; 8:863-877. [PMID: 31950969 DOI: 10.1039/c9tb02539a] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Self-assembling short peptides have attracted widespread interest due to their tuneable, biocompatible nature and have potential applications in energy materials, tissue engineering, sensing and drug delivery. The hierarchical self-assembly of these peptides is highly dependent on the selection of not only amino acid sequence, but also the capping group which is often employed at the N-terminus of the peptide to drive self-assembly. Although the Fmoc (9H-fluorenylmethyloxycarbonyl) group is commonly used due to its utility in solid phase peptide synthesis, many other aromatic capping groups have been reported which yield functional, responsive materials. This review explores recent developments in the utilisation of functional, aromatic capping groups beyond the Fmoc group for the creation of redox-responsive, fluorescent and drug delivering hydrogel scaffolds.
Collapse
|
35
|
Urbina-Blanco CA, Jilani SZ, Speight IR, Bojdys MJ, Friščić T, Stoddart JF, Nelson TL, Mack J, Robinson RAS, Waddell EA, Lutkenhaus JL, Godfrey M, Abboud MI, Aderinto SO, Aderohunmu D, Bibič L, Borges J, Dong VM, Ferrins L, Fung FM, John T, Lim FPL, Masters SL, Mambwe D, Thordarson P, Titirici MM, Tormet-González GD, Unterlass MM, Wadle A, Yam VWW, Yang YW. A diverse view of science to catalyse change. Chem Sci 2020. [DOI: 10.1039/d0sc90150d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Valuing diversity leads to scientific excellence, the progress of science and, most importantly, it is simply the right thing to do. We must value diversity not only in words, but also in actions.
Collapse
|
36
|
Martin AD, Wojciechowski JP, Du EY, Rawal A, Stefen H, Au CG, Hou L, Cranfield CG, Fath T, Ittner LM, Thordarson P. Decoupling the effects of hydrophilic and hydrophobic moieties at the neuron-nanofibre interface. Chem Sci 2019; 11:1375-1382. [PMID: 34123262 PMCID: PMC8148083 DOI: 10.1039/c9sc05686f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peptide-based nanofibres are a versatile class of tunable materials with applications in optoelectronics, sensing and tissue engineering. However, the understanding of the nanofibre surface at the molecular level is limited. Here, a series of homologous dilysine–diphenylalnine tetrapeptides were synthesised and shown to self-assemble into water-soluble nanofibres. Despite the peptide nanofibres displaying similar morphologies, as evaluated through atomic force microscopy and neutron scattering, significant differences were observed in their ability to support sensitive primary neurons. Contact angle and labelling experiments revealed that differential presentation of lysine moieties at the fibre surface did not affect neuronal viability; however the mobility of phenylalanine residues at the nanofibre surface, elucidated through solid- and gel-state NMR studies and confirmed through tethered bilayer lipid membrane experiments, was found to be the determining factor in governing the suitability of a given peptide as a scaffold for primary neurons. This work offers new insights into characterising and controlling the nanofibre surface at the molecular level. The mobility of hydrophobic moieties at a peptide nanofibre surface determines its suitability as a scaffold for sensitive primary cells.![]()
Collapse
|
37
|
Sun Y, Gu J, Wang H, Sessler JL, Thordarson P, Lin YJ, Gong H. AAAA-DDDD Quadruple H-Bond-Assisted Ionic Interactions: Robust Bis(guanidinium)/Dicarboxylate Heteroduplexes in Water. J Am Chem Soc 2019; 141:20146-20154. [PMID: 31789022 DOI: 10.1021/jacs.9b09503] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The use of geminal di(guanidinium) and acridin-9(10H)-one-derived di(carboxylate) derivatives (1a-c and 2a-e, respectively) allows stabilization of heterodimers characterized by high binding affinities in water (maximum ΔG < -7 kcal mol-1, Ka > 105 M-1) as inferred from UV-vis spectroscopic titrations and ITC measurements, therefore rivaling or surpassing the interaction energy between the strongest DNA or RNA triplet pairs. These duplexes are readily accessible and are structurally modifiable, rendering them attractive as building blocks for creating heteroduplex constructs. Incorporating poly(ethylene glycol)-decorated benzyl groups into the dicarboxylate, allows formation of hydrogels in the case of 1b-2c.
Collapse
|
38
|
Kudisch M, Lim CH, Thordarson P, Miyake GM. Energy Transfer to Ni-Amine Complexes in Dual Catalytic, Light-Driven C-N Cross-Coupling Reactions. J Am Chem Soc 2019; 141:19479-19486. [PMID: 31714761 DOI: 10.1021/jacs.9b11049] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dual catalytic light-driven cross-coupling methodologies utilizing a Ni(II) salt with a photocatalyst (PC) have emerged as promising methodologies to forge aryl C-N bonds under mild conditions. The recent discovery that the PC can be omitted and the Ni(II) complex directly photoexcited suggests that the PC may perform energy transfer (EnT) to the Ni(II) complex, a mechanistic possibility that has recently been proposed in other systems across dual Ni photocatalysis. Here, we report the first studies in this field capable of distinguishing EnT from electron transfer (ET), and the results are consistent with Förster-type EnT from the excited state [Ru(bpy)3]Cl2 PC to Ni-amine complexes. The structure and speciation of Ni-amine complexes that are the proposed EnT acceptors were elucidated by crystallography and spectroscopic binding studies. With the acceptors known, quantitative Förster theory was utilized to predict the ratio of quenching rate constants upon changing the PC, enabling selection of an organic phenoxazine PC that proved to be more effective in catalyzing C-N cross-coupling reactions with a diverse selection of amines and aryl halides.
Collapse
|
39
|
Gerz I, Lindh EM, Thordarson P, Edman L, Kullgren J, Mindemark J. Oligomer Electrolytes for Light-Emitting Electrochemical Cells: Influence of the End Groups on Ion Coordination, Ion Binding, and Turn-on Kinetics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40372-40381. [PMID: 31621280 DOI: 10.1021/acsami.9b15233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The electrolyte is an essential constituent of the light-emitting electrochemical cell (LEC), since its operating mechanism is dependent on the redistribution of mobile ions in the active layer. Recent developments of new ion transporters have yielded high-performance devices, but knowledge about the interactions between the ionic species and the ion transporters and the influence of these interactions on the LEC performance is lacking. We therefore present a combined computational and experimental effort that demonstrates that the selection of the end group in a star-branched oligomeric ion transporter based on trimethylolpropane ethoxylate has a paramount influence on the ionic interactions in the electrolyte and thereby also on the performance of the corresponding LECs. With hydroxyl end groups, the cation from the salt is strongly coordinated to the ion transporter, which leads to suppression of ion pairing, but the penalty is a hindered ion release and a slow turn-on for the LEC devices. With methoxy end groups, an intermediate coordination strength is seen together with the formation of contact ion pairs, but the LEC performance is very good with fast turn-on. Using a series of ion transporters with alkyl carbonate end groups, the ion transporter:cation coordination strength is lowered further, but the turn-on kinetics are slower than what is seen for devices comprising the methoxy end-capped ion transporter.
Collapse
|
40
|
Tjandra KC, McCarthy N, Yang L, Laos AJ, Sharbeen G, Phillips PA, Forgham H, Sagnella SM, Whan RM, Kavallaris M, Thordarson P, McCarroll JA. Identification of Novel Medulloblastoma Cell-Targeting Peptides for Use in Selective Chemotherapy Drug Delivery. J Med Chem 2019; 63:2181-2193. [DOI: 10.1021/acs.jmedchem.9b00851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Khiabani PS, Soeriyadi AH, Nam EV, Peterson JR, Webb JEA, Thordarson P, Donald WA, Gooding JJ. Understanding the performance of a paper-based UV exposure sensor: The photodegradation mechanism of brilliant blue FCF in the presence of TiO 2 photocatalysts in both the solid state and solution. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1076-1083. [PMID: 30900784 DOI: 10.1002/rcm.8442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE The decolouration of brilliant blue FCF by the action of titanium dioxide (TiO2 ) under ultraviolet (UV) exposure has been recently reported as the basis of a paper-based sensor for monitoring UV sun exposure. The mechanism of brilliant blue FCF photodegradation in the presence of the photocatalyst and the resulting photoproducts are thus far unknown. METHODS The UV-initiated photodegradation of brilliant blue FCF in the presence of TiO2 for both the aqueous and the solid state was investigated. Degradation in the solid state was observed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS). Decomposition of the dye in the aqueous state was analyzed using liquid chromatography/mass spectrometry (LC/MS) and ultraviolet-visible (UV-Vis) spectroscopy. RESULTS After UV radiation exposure, the brilliant blue FCF base peak [M1 + NH4 ]+ (m/z calc. 766.194 found 766.194) decreased in the LC/MS chromatogram with a concomitant appearance of BB-FCF decomposition products involving the sequential loss of the N-ethyl and N-methylbenzene sulfonate (MBSA) groups, assigned as [M2 + H]+ (-MBSA, calc. 579.163 found 579.162), [M3 + H]+ (-MBSA, -Et, calc. 551.131 found 551.131), [M4 + H]+ (-2MBSA, calc. 409.158 found 409.158), [M5 + H]+ (-2MBSA, -Et, calc. 381.127 found 381.127). Ions [M2 + H]+ and [M3 + H]+ were also identified in the photodegradation products using MALDI-MS. Observation by UV-Vis indicated a decrease in the solution absorbance maxima and an associated blue-shift upon UV exposure in solution. CONCLUSIONS The LC/MS analysis indicated two main oxidation processes. The most obvious was attack of the N-methylene, eliminating either ethyl or MBSA groups. The presence of the hydroxylated decomposition product M13 ([M13 + H]+ , calc. 595.157 found 595.157) supported this assignment. In addition, the detection of photoproduct M8, proposed to be 3-((ethylamino)methyl)benzenesulfonic acid ([M8 + H]+ , calc. 216.069 found 216.069), indicates an aryl-oxidative elimination. The absence of the aryl-hydroxy products normally expected to accompany the formation of M8 is proposed to be due to TiO2 -binding catechol-like derivatives, which are then removed upon filtration.
Collapse
|
42
|
|
43
|
Wong CK, Martin AD, Floetenmeyer M, Parton RG, Stenzel MH, Thordarson P. Faceted polymersomes: a sphere-to-polyhedron shape transformation. Chem Sci 2019; 10:2725-2731. [PMID: 30996990 PMCID: PMC6419931 DOI: 10.1039/c8sc04206c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/09/2019] [Indexed: 12/22/2022] Open
Abstract
The creation of "soft" deformable hollow polymeric nanoparticles with complex non-spherical shapes via block copolymer self-assembly remains a challenge. In this work, we show that a perylene-bearing block copolymer can self-assemble into polymeric membrane sacs (polymersomes) that not only possess uncommonly faceted polyhedral shapes but are also intrinsically fluorescent. Here, we further reveal for the first time an experimental visualization of the entire polymersome faceting process. We uncover how our polymersomes facet through a sphere-to-polyhedron shape transformation pathway that is driven by perylene aggregation confined within a topologically spherical polymersome shell. Finally, we illustrate the importance in understanding this shape transformation process by demonstrating our ability to controllably isolate different intermediate polymersome morphologies. The findings presented herein should provide opportunities for those who utilize non-spherical polymersomes for drug delivery, nanoreactor or templating applications, and those who are interested in the fundamental aspects of polymersome self-assembly.
Collapse
|
44
|
Farahani AD, Martin AD, Iranmanesh H, Bhadbhade MM, Beves JE, Thordarson P. Gel- and Solid-State-Structure of Dialanine and Diphenylalanine Amphiphiles: Importance of C⋅⋅⋅H Interactions in Gelation. Chemphyschem 2019; 20:972-983. [PMID: 30784156 DOI: 10.1002/cphc.201801104] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 02/13/2019] [Indexed: 12/26/2022]
Abstract
To investigate the role of the capping group in the solution and solid-state self-assembly of short peptide amphiphiles, dialanine and diphenylalanine have been linked via the N-terminus to a benzene (phenyl) and 3-naphthyl capping groups using three different methylene linkers; (CH2 )n , n=0-4 for the benezene and 0, 1 and 2 for the naphthalene capping group. Atomic force microscopy (AFM), oscillatory rheology, circular dichroism (CD), and IR analysis have been employed to understand the properties of these peptide-based hydrogels. Several X-ray structures of these short peptide gelators give useful conformational information regarding packing. A comparison of these solid state structures with their gel state properties yielded greater insights into the process of self-assembly in short peptide gelators, particularly in terms of the important role of C⋅⋅⋅H interactions appear to play in determining if a short aromatic peptide does form a gel or not.
Collapse
|
45
|
Tjandra KC, Thordarson P. Multivalency in Drug Delivery–When Is It Too Much of a Good Thing? Bioconjug Chem 2019; 30:503-514. [DOI: 10.1021/acs.bioconjchem.8b00804] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Wong CK, Stenzel MH, Thordarson P. Non-spherical polymersomes: formation and characterization. Chem Soc Rev 2019; 48:4019-4035. [DOI: 10.1039/c8cs00856f] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This tutorial review summarizes recent efforts over the past decade to study the morphological transformation of conventionally spherical polymersomes into non-spherical polymersomes.
Collapse
|
47
|
Aulsebrook ML, Starck M, Grace MR, Graham B, Thordarson P, Pal R, Tuck KL. Interaction of Nucleotides with a Trinuclear Terbium(III)-Dizinc(II) Complex: Efficient Sensitization of Terbium Luminescence by Guanosine Monophosphate and Application to Real-Time Monitoring of Phosphodiesterase Activity. Inorg Chem 2018; 58:495-505. [PMID: 30561998 DOI: 10.1021/acs.inorgchem.8b02731] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An in-depth study of the interaction of a trinuclear terbium(III)-dizinc(II) complex with an array of nucleotides differing in the type of nucleobase and number of phosphate groups, as well as cyclic versus acyclic variants, is presented. The study examined the nature of the interaction and the efficiency at which guanine was able to sensitize terbium(III) luminescence. Competitive binding and titration studies were performed to help establish the nature/mode of the interactions. These established that (1) interaction occurs by the coordination of phosphate groups to zinc(II) (in addition to uridine in the case of uridine monophosphate), (2) acyclic nucleotides bind more strongly than cyclic counterparts because of their higher negative charge, (3) guanine-containing nucleotides are able to sensitize terbium(III) luminescence with the efficiency of sensitization following the order guanosine monophosphate (GMP) > guanosine diphosphate > guanosine triphosphate because of the mode of binding, and (4) nucleoside monophosphates bind to a single zinc(II) ion, whereas di- and triphosphates appear to bind in a bridging mode between two host molecules. Furthermore, it has been shown that guanine is a sensitizer of terbium(III) luminescence. On the basis of the ability of GMP to effectively sensitize terbium(III)-based luminescence while cyclic GMP (cGMP) does not, the complex has been utilized to monitor the catalytic conversion of cGMP to GMP by a phosphodiesterase enzyme in real time using time-gated luminescence on a benchtop fluorimeter. The complex has the potential to find broad application in monitoring the activity of enzymes that process nucleotides (co)substrates, including high-throughput drug-screening programs.
Collapse
|
48
|
Wu YN, Shieh DB, Yang LX, Sheu HS, Zheng R, Thordarson P, Chen DH, Braet F. Characterization of Iron Core⁻Gold Shell Nanoparticles for Anti-Cancer Treatments: Chemical and Structural Transformations During Storage and Use. MATERIALS 2018; 11:ma11122572. [PMID: 30563014 PMCID: PMC6316008 DOI: 10.3390/ma11122572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022]
Abstract
Finding a cancer-selective drug that avoids damaging healthy cells and organs is a holy grail in medical research. In our previous studies, gold-coated iron (Fe@Au) nanoparticles showed cancer selective anti-cancer properties in vitro and in vivo but were found to gradually lose that activity with storage or "ageing." To determine the reasons for this diminished anti-cancer activity, we examined Fe@Au nanoparticles at different preparation and storage stages by means of transmission electron microscopy combined with and energy-dispersive X-ray spectroscopy, along with X-ray diffraction analysis and cell viability tests. We found that dried and reconstituted Fe@Au nanoparticles, or Fe@Au nanoparticles within cells, decompose into irregular fragments of γ-F₂O₃ and agglomerated gold clumps. These changes cause the loss of the particles' anti-cancer effects. However, we identified that the anti-cancer properties of Fe@Au nanoparticles can be well preserved under argon or, better still, liquid nitrogen storage for six months and at least one year, respectively.
Collapse
|
49
|
Tómasson DA, Ghosh D, Kržišnik Z, Fasolin LH, Vicente AA, Martin AD, Thordarson P, Damodaran KK. Enhanced Mechanical and Thermal Strength in Mixed-Enantiomers-Based Supramolecular Gel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12957-12967. [PMID: 30272986 DOI: 10.1021/acs.langmuir.8b02729] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mixing supramolecular gels based on enantiomers leads to re-arrangement of gel fibers at the molecular level, which results in more favorable packing and tunable properties. Bis(urea) compounds tagged with a phenylalanine methyl ester in racemic and enantiopure forms were synthesized. Both enantiopure and racemate compounds formed gels in a wide range of solvents and the racemate (1-rac) formed a stronger gel network compared with the enantiomers. The gel (1R+1S) obtained by mixing equimolar amount of enantiomers (1R and 1S) showed enhanced mechanical and thermal stability compared to enantiomers and racemate gels. The preservation of chirality in these compounds was analyzed by circular dichroism and optical rotation measurements. Analysis of the scanning electron microscopy (SEM) and atomic force microscopy (AFM) images revealed that the network in the mixed gel is a combination of enantiomers and racemate fibers, which was further supported by solid-state NMR. The analysis of the packing in xerogels by solid-state NMR spectra and the existence of twisted-tape morphology in SEM and AFM images confirmed the presence of both self-sorted and co-assembled fibers in mixed gel. The enhanced thermal and mechanical strength may be attributed to the enhanced intermolecular forces between the racemate and the enantiomer and the combination of both self-sorted and co-assembled enantiomers in the mixed gel.
Collapse
|
50
|
Faria M, Björnmalm M, Thurecht KJ, Kent SJ, Parton RG, Kavallaris M, Johnston APR, Gooding JJ, Corrie SR, Boyd BJ, Thordarson P, Whittaker AK, Stevens MM, Prestidge CA, Porter CJH, Parak WJ, Davis TP, Crampin EJ, Caruso F. Minimum information reporting in bio-nano experimental literature. NATURE NANOTECHNOLOGY 2018; 13:777-785. [PMID: 30190620 PMCID: PMC6150419 DOI: 10.1038/s41565-018-0246-4] [Citation(s) in RCA: 381] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/24/2018] [Indexed: 04/14/2023]
Abstract
Studying the interactions between nanoengineered materials and biological systems plays a vital role in the development of biological applications of nanotechnology and the improvement of our fundamental understanding of the bio-nano interface. A significant barrier to progress in this multidisciplinary area is the variability of published literature with regards to characterizations performed and experimental details reported. Here, we suggest a 'minimum information standard' for experimental literature investigating bio-nano interactions. This standard consists of specific components to be reported, divided into three categories: material characterization, biological characterization and details of experimental protocols. Our intention is for these proposed standards to improve reproducibility, increase quantitative comparisons of bio-nano materials, and facilitate meta analyses and in silico modelling.
Collapse
|