26
|
Fan J, Lin R, Xia S, Chen D, Elf SE, Liu S, Pan Y, Xu H, Qian Z, Wang M, Shan C, Zhou L, Lei QY, Li Y, Mao H, Lee BH, Sudderth J, DeBerardinis RJ, Zhang G, Owonikoko T, Gaddh M, Arellano ML, Khoury HJ, Khuri FR, Kang S, Doetsch PW, Lonial S, Boggon TJ, Curran WJ, Chen J. Tetrameric Acetyl-CoA Acetyltransferase 1 Is Important for Tumor Growth. Mol Cell 2016; 64:859-874. [PMID: 27867011 DOI: 10.1016/j.molcel.2016.10.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/26/2016] [Accepted: 10/11/2016] [Indexed: 12/30/2022]
Abstract
Mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1) regulates pyruvate dehydrogenase complex (PDC) by acetylating pyruvate dehydrogenase (PDH) and PDH phosphatase. How ACAT1 is "hijacked" to contribute to the Warburg effect in human cancer remains unclear. We found that active, tetrameric ACAT1 is commonly upregulated in cells stimulated by EGF and in diverse human cancer cells, where ACAT1 tetramers, but not monomers, are phosphorylated and stabilized by enhanced Y407 phosphorylation. Moreover, we identified arecoline hydrobromide (AH) as a covalent ACAT1 inhibitor that binds to and disrupts only ACAT1 tetramers. The resultant AH-bound ACAT1 monomers cannot reform tetramers. Inhibition of tetrameric ACAT1 by abolishing Y407 phosphorylation or AH treatment results in decreased ACAT1 activity, leading to increased PDC flux and oxidative phosphorylation with attenuated cancer cell proliferation and tumor growth. These findings provide a mechanistic understanding of how oncogenic events signal through distinct acetyltransferases to regulate cancer metabolism and suggest ACAT1 as an anti-cancer target.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
74 |
27
|
Franklin WA, Doetsch PW, Haseltine WA. Structural determination of the ultraviolet light-induced thymine-cytosine pyrimidine-pyrimidone (6-4) photoproduct. Nucleic Acids Res 1985; 13:5317-25. [PMID: 4022781 PMCID: PMC321867 DOI: 10.1093/nar/13.14.5317] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ultraviolet light induces damage to DNA, with the majority of the damage expressed as the formation of cyclobutane dimers and pyrimidine-pyrimidone (6-4) photoproducts. The (6-4) photoproducts have been implicated as important UV light-induced premutagenic DNA lesions. The most abundant of the (6-4) products is the thymine-cytosine pyrimidine-pyrimidone (6-4) photoproduct, or TC (6-4) product. The structure of the TC (6-4) product was deduced by proton NMR, IR, and fast atom bombardment mass spectroscopy, and the product was found to differ from the previously described photoadduct, Thy(6-4)Pyo, by the presence of an amino group at the 5 position of the 5' pyrimidine. The implications of this structure on DNA base pairing and the induction of ultraviolet light-induced mutations are discussed.
Collapse
|
research-article |
40 |
73 |
28
|
Chan GL, Doetsch PW, Haseltine WA. Cyclobutane pyrimidine dimers and (6-4) photoproducts block polymerization by DNA polymerase I. Biochemistry 1985; 24:5723-8. [PMID: 4084488 DOI: 10.1021/bi00342a006] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bipyrimidine cyclobutane dimers and 6-4'-(pyrimidin-2'-one)-pyrimidine photoproducts are the major adducts formed in DNA following exposure to ultraviolet light. The relationship between the type and frequency of UV-induced DNA damage and the effects of such damage on DNA replication were investigated. UV-irradiated M13 phage DNA was employed in polymerization reactions with the Kenow fragment of Escherichia coli DNA polymerase I. The locations and frequencies of polymerase termination events occurring within a defined sequence of M13 DNA were compared with measurements of the locations and frequencies of UV-induced DNA damage of the same DNA sequence by using UV-specific enzymatic and chemical methods. The results indicate that both cyclobutane dimers and (6-4) photoproducts quantitatively block polymerization by DNA polymerase I.
Collapse
|
|
40 |
70 |
29
|
Doetsch PW, Suhadolnik RJ, Sawada Y, Mosca JD, Flick MB, Reichenbach NL, Dang AQ, Wu JM, Charubala R, Pfleiderer W, Henderson EE. Core (2'-5')oligoadenylate and the cordycepin analog: inhibitors of Epstein--Barr virus-induced transformation of human lymphocytes in the absence of interferon. Proc Natl Acad Sci U S A 1981; 78:6699-703. [PMID: 6171822 PMCID: PMC349117 DOI: 10.1073/pnas.78.11.6699] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The 3'-deoxyadenosine (cordycepin) analog of (2'-5')oligo(A) [(2'-5')oligoadenylate with a triphosphate at the 5' end], synthesized enzymatically from cordycepin 5'-triphosphate in lysed rabbit reticulocytes or L-cell extracts was (i) inhibitory to translation in lysed rabbit reticulocytes and (ii) metabolically stable in extracts of either L cells or C85-5C lymphoblasts. The 5' dephosphorylated (core) (2'-5')oligo(A) and the core cordycepin analog can replace human fibroblast interferon in preventing the transformation of human lymphocytes after infection with Epstein--Barr virus B95-8 (EBV) as determined by the decreased incorporation of [3H]thymidine into cellular DNA and the inhibition of morphological transformation of EBV-infected lymphocytes. Whereas the naturally occurring core (2'-5')oligo(A) was cytotoxic to uninfected lymphocytes and proliferating lymphoblasts, the core cordycepin analog was not. Human leukocyte interferon was more effective than human fibroblast interferon in the inhibition of EBV-induced transformation of human umbilical cord lymphocytes and adult peripheral blood lymphocytes.
Collapse
|
research-article |
44 |
67 |
30
|
Augeri L, Lee YM, Barton AB, Doetsch PW. Purification, characterization, gene cloning, and expression of Saccharomyces cerevisiae redoxyendonuclease, a homolog of Escherichia coli endonuclease III. Biochemistry 1997; 36:721-9. [PMID: 9020769 DOI: 10.1021/bi9625511] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Saccharomyces cerevisiae redoxyendonuclease (Scr), a homolog of Escherichia coli endonuclease III, was purified from yeast deficient in the major apurinic/apyrimidinic endonuclease, Apnl. Studies of this highly purified preparation of Scr have revealed a number of similarities between this protein and endonuclease III as well as provided further evidence for a common mechanism of action for this class of DNA glycosylase/AP lyases. We have employed a sensitive and specific assay for Scr which utilizes oligonucleotide substrates containing a single 5,6-dihydrouracil base lesion or an abasic site. These substrates were utilized to investigate the mode of action of Scr on damaged DNA and to compare the kinetic properties of the yeast enzyme with its E. coli counterpart. Furthermore, we have identified two distinct genes, SCR1 and SCR2, which encode highly homologous proteins with similar activities in yeast. Analysis of the deduced amino acid sequences of SCR1 and SCR2 suggests that S. cerevisiae possesses two similar enzymes encoded on separate chromosomes: one which bears an Fe-S binding motif, while the other does not. The potential biological roles of these two forms of Scr are discussed.
Collapse
|
Comparative Study |
28 |
65 |
31
|
You HJ, Swanson RL, Doetsch PW. Saccharomyces cerevisiae possesses two functional homologues of Escherichia coli endonuclease III. Biochemistry 1998; 37:6033-40. [PMID: 9558341 DOI: 10.1021/bi973042h] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We previously identified two distinct genes of Saccharomyces cerevisiae redoxyendonuclease (SCR1 and SCR2) which possess a high degree of sequence similarity to Escherichia coli endonuclease III [Augeri, L., Lee, Y. M., Barton, A. B., and Doetsch, P. W. (1997) Biochemistry 36, 721-729]. The proteins encoded by SCR1 and SCR2 were overexpressed in E. coli and purified to apparent homogeneity. Both proteins recognized and cleaved DNA substrates containing dihydrouracil, 2,6-diamino-4-hydroxy-5N-methylformamidopyrimidine (FaPy-7-MeGua), and abasic sites but not DNA substrates containing uracil or 8-oxoguanine. Purified Scr2, but not Scr1, possesses spectral properties which indicate the presence of an iron-sulfur center. Kinetic parameters for Scr1 and Scr2 were determined by using an oligonucleotide containing a single dihydrouracil. Analysis of the deduced amino acid sequences of Scr1 and Scr2 suggests that Scr2 bears an iron-sulfur motif, while Scr1 does not have this motif. However, Scr1 has a long, positively charged N-terminus that could be a mitochondrial transit sequence. Targeted gene disruption of SCR1 and SCR2 produced a double mutant that had no detectable enzymatic activity against the dihydrouracil-containing substrate. Northern blot analysis showed that SCR1 was induced by menadione, but SCR2 was not. These results indicate that although Scr1 and Scr2 are both functional homologues of E. coli endonuclease III, they differ from each other with respect to their amino acid sequences and inducibility by DNA damaging agents, suggesting that their precise biological roles may be different.
Collapse
|
|
27 |
60 |
32
|
Evert BA, Salmon TB, Song B, Jingjing L, Siede W, Doetsch PW. Spontaneous DNA Damage in Saccharomyces cerevisiae Elicits Phenotypic Properties Similar to Cancer Cells. J Biol Chem 2004; 279:22585-94. [PMID: 15020594 DOI: 10.1074/jbc.m400468200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the spectrum of effects elicited by specific levels of spontaneous DNA damage, a series of isogenic Saccharomyces cerevisiae strains defective in base excision repair (BER) and nucleotide excision repair (NER) were analyzed. In log phase of growth, when compared with wild type (WT) or NER-defective cells, BER-defective cells and BER/NER-defective cells possess elevated levels of unrepaired, spontaneous oxidative DNA damage. This system allowed establishment of a range of approximately 400 to 1400 Ntg1p-recognized DNA lesions per genome necessary to provoke profound biological changes similar in many respects to the phenotypic properties of cancer cells. The BER/NER-defective cells are genetically unstable, exhibiting mutator and hyper-recombinogenic phenotypes. They also exhibit aberrations in morphology, DNA content, and growth characteristics compared with WT, BER-defective, and NER-defective cells. The BER/NER-defective cells also possess increased levels of intracellular reactive oxygen species, activate the yeast checkpoint response pathway via Rad53p phosphorylation in stationary phase, and show profound changes in transcription patterns, a subset of which can be ascribed to responses resulting from unrepaired DNA damage. By establishing a relationship between specific levels of spontaneous DNA damage and the ensuing deleterious biological consequences, these yeast DNA excision repair-defective strains are an informative model for gauging the progressive biological consequences of spontaneous DNA damage accumulation and may have relevancy for delineating underlying mechanisms in tumorigenesis.
Collapse
|
|
21 |
55 |
33
|
Marullo R, Werner E, Zhang H, Chen GZ, Shin DM, Doetsch PW. HPV16 E6 and E7 proteins induce a chronic oxidative stress response via NOX2 that causes genomic instability and increased susceptibility to DNA damage in head and neck cancer cells. Carcinogenesis 2015; 36:1397-406. [PMID: 26354779 DOI: 10.1093/carcin/bgv126] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/18/2015] [Indexed: 12/16/2022] Open
Abstract
Human papillomavirus (HPV) is the causative agent of a subgroup of head and neck cancer characterized by an intrinsic radiosensitivity. HPV initiates cellular transformation through the activity of E6 and E7 proteins. E6 and E7 expression is necessary but not sufficient to transform the host cell, as genomic instability is required to acquire the malignant phenotype in HPV-initiated cells. This study reveals a key role played by oxidative stress in promoting genomic instability and radiosensitivity in HPV-positive head and neck cancer. By employing an isogenic human cell model, we observed that expression of E6 and E7 is sufficient to induce reactive oxygen species (ROS) generation in head and neck cancer cells. E6/E7-induced oxidative stress is mediated by nicotinamide adenine dinucleotide phosphate oxidases (NOXs) and causes DNA damage and chromosomal aberrations. This mechanism for genomic instability distinguishes HPV-positive from HPV-negative tumors, as we observed NOX-induced oxidative stress in HPV-positive but not HPV-negative head and neck cancer cells. We identified NOX2 as the source of HPV-induced oxidative stress as NOX2 silencing significantly reduced ROS generation, DNA damage and chromosomal aberrations in HPV-positive cells. Due to their state of chronic oxidative stress, HPV-positive cells are more susceptible to DNA damage induced by ROS and ionizing radiation (IR). Furthermore, exposure to IR results in the formation of complex lesions in HPV-positive cells as indicated by the higher amount of chromosomal breakage observed in this group of cells. These results reveal a novel mechanism for sustaining genomic instability in HPV-positive head and neck tumors and elucidate its contribution to their intrinsic radiosensitivity.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
54 |
34
|
Freyer GA, Davey S, Ferrer JV, Martin AM, Beach D, Doetsch PW. An alternative eukaryotic DNA excision repair pathway. Mol Cell Biol 1995; 15:4572-7. [PMID: 7623848 PMCID: PMC230697 DOI: 10.1128/mcb.15.8.4572] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
DNA lesions induced by UV light, cyclobutane pyrimidine dimers, and (6-4)pyrimidine pyrimidones are known to be repaired by the process of nucleotide excision repair (NER). However, in the fission yeast Schizosaccharomyces pombe, studies have demonstrated that at least two mechanisms for excising UV photo-products exist; NER and a second, previously unidentified process. Recently we reported that S. pombe contains a DNA endonuclease, SPDE, which recognizes and cleaves at a position immediately adjacent to cyclobutane pyrimidine dimers and (6-4)pyrimidine pyrimidones. Here we report that the UV-sensitive S. pombe rad12-502 mutant lacks SPDE activity. In addition, extracts prepared from the rad12-502 mutant are deficient in DNA excision repair, as demonstrated in an in vitro excision repair assay. DNA repair activity was restored to wild-type levels in extracts prepared from rad12-502 cells by the addition of partially purified SPDE to in vitro repair reaction mixtures. When the rad12-502 mutant was crossed with the NER rad13-A mutant, the resulting double mutant was much more sensitive to UV radiation than either single mutant, demonstrating that the rad12 gene product functions in a DNA repair pathway distinct from NER. These data directly link SPDE to this alternative excision repair process. We propose that the SPDE-dependent DNA repair pathway is the second DNA excision repair process present in S. pombe.
Collapse
|
research-article |
30 |
53 |
35
|
Beljanski V, Marzilli LG, Doetsch PW. DNA damage-processing pathways involved in the eukaryotic cellular response to anticancer DNA cross-linking drugs. Mol Pharmacol 2004; 65:1496-506. [PMID: 15155842 DOI: 10.1124/mol.65.6.1496] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used a panel of isogenic Saccharomyces cerevisiae strains compromised in several different DNA damage-processing pathways to assess in vivo processing of DNA adducts induced by four cross-linking anticancer drugs. By examining cytotoxicity profiles, cell cycle arrest patterns, and determining recombination and mutation frequencies, we found that cisplatin-, nitrogen mustard-, mitomycin-, and carmustine-induced DNA adducts in S. cerevisiae are processed by components of the nucleotide excision repair (NER), recombination repair (RR), and translesion synthesis (TLS) pathways, with substantially different contributions of each pathway for the drugs studied here. In contrast to previous studies that used single pathway-compromised strains to identify genes that mediate sensitivity to DNA cross-linking drugs, we used strains that were compromised in multiple pathways. By doing so, we were able to establish several functions that were previously unknown and interconnections between different DNA damage-processing pathways. To our surprise, we found that for cisplatin-induced cytotoxicity, TLS and RR contribute to survival to a significant extent. In the case of nitrogen mustard DNA adduct processing, equal involvement of two major pathways was established: one that requires functional RR and NER components and one that requires functional TLS and NER components. These data reveal the complexity of DNA cross-link processing that, in many cases, requires interactions of components from several different DNA damage-processing systems. We demonstrate the usefulness of yeast strains with multiple simultaneous defects in DNA damage-processing pathways for studying the modes of action of anticancer drugs.
Collapse
|
|
21 |
51 |
36
|
Chen G, Luo Y, Warncke K, Sun Y, Yu DS, Fu H, Behera M, Ramalingam SS, Doetsch PW, Duong DM, Lammers M, Curran WJ, Deng X. Acetylation regulates ribonucleotide reductase activity and cancer cell growth. Nat Commun 2019; 10:3213. [PMID: 31324785 PMCID: PMC6642173 DOI: 10.1038/s41467-019-11214-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 06/25/2019] [Indexed: 12/26/2022] Open
Abstract
Ribonucleotide reductase (RNR) catalyzes the de novo synthesis of deoxyribonucleoside diphosphates (dNDPs) to provide dNTP precursors for DNA synthesis. Here, we report that acetylation and deacetylation of the RRM2 subunit of RNR acts as a molecular switch that impacts RNR activity, dNTP synthesis, and DNA replication fork progression. Acetylation of RRM2 at K95 abrogates RNR activity by disrupting its homodimer assembly. RRM2 is directly acetylated by KAT7, and deacetylated by Sirt2, respectively. Sirt2, which level peak in S phase, sustains RNR activity at or above a threshold level required for dNTPs synthesis. We also find that radiation or camptothecin-induced DNA damage promotes RRM2 deacetylation by enhancing Sirt2-RRM2 interaction. Acetylation of RRM2 at K95 results in the reduction of the dNTP pool, DNA replication fork stalling, and the suppression of tumor cell growth in vitro and in vivo. This study therefore identifies acetylation as a regulatory mechanism governing RNR activity.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
51 |
37
|
Zhou W, Reines D, Doetsch PW. T7 RNA polymerase bypass of large gaps on the template strand reveals a critical role of the nontemplate strand in elongation. Cell 1995; 82:577-85. [PMID: 7664337 PMCID: PMC3375833 DOI: 10.1016/0092-8674(95)90030-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We show that T7 RNA polymerase can efficiently transcribe DNA containing gaps from one to five bases in the template strand. Surprisingly, broken template strands missing up to 24 bases can still be transcribed, although at reduced efficiency. The resulting transcripts contain the full template sequence with the RNA deleted for the gapped region missing on the template strand. These findings indicate that the end of a downstream template strand can be brought into the polymerase and transcribed as if it were a part of an intact polynucleotide chain by utilizing the unpaired nontemplate strand. This, as well as transcription of an intact template strand, relies heavily upon the non-template strand, suggesting that a duplex DNA-binding site on the leading edge of RNA polymerase is required for RNA chain elongation on DNA templates. This work contributes substantially to the emerging picture that the nontemplate strand is an important element of the transcription elongation complex.
Collapse
|
research-article |
30 |
46 |
38
|
Zhou W, Doetsch PW. Transcription bypass or blockage at single-strand breaks on the DNA template strand: effect of different 3' and 5' flanking groups on the T7 RNA polymerase elongation complex. Biochemistry 1994; 33:14926-34. [PMID: 7993919 DOI: 10.1021/bi00253a032] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have studied the effects of single-strand breaks present on the template strand during T7 RNA polymerase transcription elongation. A synthetic DNA template with a T7 promoter was designed to contain a one-nucleotide gap at a defined location on the template strand. This gap, surprisingly, was efficiently bypassed by T7 RNA polymerase during transcription elongation, and the full-length transcript (FLT37) generated from the bypass event was shortened by one nucleotide compared to the full-length transcript (FLT38) generated from an intact, unbroken template strand. FLT37 did not contain any nucleotide insertions opposite to the gap, so that the RNA sequence downstream from the gap, although accurately transcribed, contained a single base deletion compared to FLT38. This, to our knowledge, is the first demonstration that the continuity of the DNA template strand is not a necessary requirement for DNA-dependent RNA polymerase transcription elongation. DNA templates with different 3' and 5' termini at the single-strand break site were also investigated in this study. One of these templates, 1/3P-4P, which contained 3'- and 5'-phosphoryl termini at the break site, efficiently blocked T7 RNA polymerase. A single phosphoryl group present on either the 3' or the 5' terminus of the break site did not efficiently block RNA polymerase progression, suggesting that the blockage observed with template 1/3P-4P is due to the repulsion between the two phosphoryl termini in the vicinity of the polymerase active site.
Collapse
|
|
31 |
44 |
39
|
Avery AM, Kaur B, Taylor JS, Mello JA, Essigmann JM, Doetsch PW. Substrate specificity of ultraviolet DNA endonuclease (UVDE/Uve1p) from Schizosaccharomyces pombe. Nucleic Acids Res 1999; 27:2256-64. [PMID: 10325412 PMCID: PMC148789 DOI: 10.1093/nar/27.11.2256] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Schizosaccharomyces pombe ultraviolet DNA endonuclease (UVDE or Uve1p) has been shown to cleave 5' to UV light-induced cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts (6-4PP). This endonuclease is believed to function in the initial step in an alternative excision repair pathway for the removal of DNA damage caused by exposure to UV light. An active truncated form of this protein, Delta228-Uve1p, has been successfully overexpressed, affinity purified and partially characterized. In the present study we present data from a detailed substrate specificity trial. We have determined that the substrate range of Uve1p is much greater than was originally believed. We demonstrate that this DNA damage repair protein is capable of recognizing an array of UV-induced DNA photoproducts (cis-syn-, trans-syn I- and trans-syn II CPDs, 6-4PP and Dewar isomers) that cause varying degrees of distortion in a duplex DNA molecule. We also demonstrate that Uve1p recognizes non-UV-induced DNA damage, such as platinum-DNA GG diadducts, uracil, dihydrouracil and abasic sites. This is the first time that a single DNA repair endonuclease with the ability to recognize such a diverse range of lesions has been described. This study suggests that Uve1p and the alternative excision repair pathway may participate broadly in the repair of DNA damage.
Collapse
|
research-article |
26 |
43 |
40
|
Limpose KL, Corbett AH, Doetsch PW. BERing the burden of damage: Pathway crosstalk and posttranslational modification of base excision repair proteins regulate DNA damage management. DNA Repair (Amst) 2017. [PMID: 28629773 DOI: 10.1016/j.dnarep.2017.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA base damage and non-coding apurinic/apyrimidinic (AP) sites are ubiquitous types of damage that must be efficiently repaired to prevent mutations. These damages can occur in both the nuclear and mitochondrial genomes. Base excision repair (BER) is the frontline pathway for identifying and excising damaged DNA bases in both of these cellular compartments. Recent advances demonstrate that BER does not operate as an isolated pathway but rather dynamically interacts with components of other DNA repair pathways to modulate and coordinate BER functions. We define the coordination and interaction between DNA repair pathways as pathway crosstalk. Numerous BER proteins are modified and regulated by post-translational modifications (PTMs), and PTMs could influence pathway crosstalk. Here, we present recent advances on BER/DNA repair pathway crosstalk describing specific examples and also highlight regulation of BER components through PTMs. We have organized and reported functional interactions and documented PTMs for BER proteins into a consolidated summary table. We further propose the concept of DNA repair hubs that coordinate DNA repair pathway crosstalk to identify central protein targets that could play a role in designing future drug targets.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
42 |
41
|
Chen G, Magis AT, Xu K, Park D, Yu DS, Owonikoko TK, Sica GL, Satola SW, Ramalingam SS, Curran WJ, Doetsch PW, Deng X. Targeting Mcl-1 enhances DNA replication stress sensitivity to cancer therapy. J Clin Invest 2017; 128:500-516. [PMID: 29227281 DOI: 10.1172/jci92742] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022] Open
Abstract
DNA double-strand breaks (DSBs) are mainly repaired either by homologous recombination (HR) or by nonhomologous end-joining (NHEJ) pathways. Here, we showed that myeloid cell leukemia sequence 1 (Mcl-1) acts as a functional switch in selecting between HR and NHEJ pathways. Mcl-1 was cell cycle-regulated during HR, with its expression peaking in S/G2 phase. While endogenous Mcl-1 depletion reduced HR and enhanced NHEJ, Mcl-1 overexpression resulted in a net increase in HR over NHEJ. Mcl-1 directly interacted with the dimeric Ku protein complex via its Bcl-2 homology 1 and 3 (BH1 and BH3) domains, which are required for Mcl-1 to inhibit Ku-mediated NHEJ. Mcl-1 also promoted DNA resection mediated by the Mre11 complex and HR-dependent DSB repair. Using the Mcl-1 BH1 domain as a docking site, we identified a small molecule, MI-223, that directly bound to BH1 and blocked Mcl-1-stimulated HR DNA repair, leading to sensitization of cancer cells to hydroxyurea- or olaparib-induced DNA replication stress. Combined treatment with MI-223 and hydroxyurea or olaparib exhibited a strong synergy against lung cancer in vivo. This mechanism-driven combination of agents provides a highly attractive therapeutic strategy to improve lung cancer outcomes.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
42 |
42
|
Degtyareva NP, Heyburn L, Sterling J, Resnick MA, Gordenin DA, Doetsch PW. Oxidative stress-induced mutagenesis in single-strand DNA occurs primarily at cytosines and is DNA polymerase zeta-dependent only for adenines and guanines. Nucleic Acids Res 2013; 41:8995-9005. [PMID: 23925127 PMCID: PMC3799438 DOI: 10.1093/nar/gkt671] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Localized hyper-mutability caused by accumulation of lesions in persistent single-stranded (ss) DNA has been recently found in several types of cancers. An increase in endogenous levels of reactive oxygen species (ROS) is considered to be one of the hallmarks of cancers. Employing a yeast model system, we addressed the role of oxidative stress as a potential source of hyper-mutability in ssDNA by modulation of the endogenous ROS levels and by exposing cells to oxidative DNA-damaging agents. We report here that under oxidative stress conditions the majority of base substitution mutations in ssDNA are caused by erroneous, DNA polymerase (Pol) zeta-independent bypass of cytosines, resulting in C to T transitions. For all other DNA bases Pol zeta is essential for ROS-induced mutagenesis. The density of ROS-induced mutations in ssDNA is lower, compared to that caused by UV and MMS, which suggests that ssDNA could be actively protected from oxidative damage. These findings have important implications for understanding mechanisms of oxidative mutagenesis, and could be applied to development of anticancer therapies and cancer prevention.
Collapse
|
Research Support, N.I.H., Intramural |
12 |
41 |
43
|
Xiao W, Chow BL, Hanna M, Doetsch PW. Deletion of the MAG1 DNA glycosylase gene suppresses alkylation-induced killing and mutagenesis in yeast cells lacking AP endonucleases. Mutat Res 2001; 487:137-47. [PMID: 11738940 DOI: 10.1016/s0921-8777(01)00113-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DNA base excision repair (BER) is initiated by DNA glycosylases that recognize and remove damaged bases. The phosphate backbone adjacent to the resulting apurinic/apyrimidinic (AP) site is then cleaved by an AP endonuclease or glycosylase-associated AP lyase to invoke subsequent BER steps. We have used a genetic approach in Saccharomyces cerevisiae to address whether AP sites are blocks to DNA replication and the biological consequences if AP sites persist in the genome. We found that yeast cells deficient in the two AP endonucleases (apn1 apn2 double mutant) are extremely sensitive to killing by methyl methanesulfonate (MMS), a model DNA alkylating agent. Interestingly, this sensitivity can be reduced up to 2500-fold by deleting the MAG1 3-methyladenine DNA glycosylase gene, suggesting that Mag1 not only removes lethal base lesions, but also benign lesions and possibly normal bases, and that the resulting AP sites are highly toxic to the cells. This rescuing effect appears to be specific for DNA alkylation damage, since the mag1 mutation reduces killing effects of two other DNA alkylating agents, but does not alter the sensitivity of apn cells to killing by UV, gamma-ray or H(2)O(2). Our mutagenesis assays indicate that nearly half of spontaneous and almost all MMS-induced mutations in the AP endonuclease-deficient cells are due to Mag1 DNA glycosylase activity. Although the DNA replication apparatus appears to be incapable of replicating past AP sites, Polzeta-mediated translesion synthesis is able to bypass AP sites, and accounts for all spontaneous and MMS-induced mutagenesis in the AP endonuclease-deficient cells. These results allow us to delineate base lesion flow within the BER pathway and link AP sites to other DNA damage repair and tolerance pathways.
Collapse
|
|
24 |
39 |
44
|
Gossett J, Lee K, Cunningham RP, Doetsch PW. Yeast redoxyendonuclease, a DNA repair enzyme similar to Escherichia coli endonuclease III. Biochemistry 1988; 27:2629-34. [PMID: 2454659 DOI: 10.1021/bi00407a054] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A DNA repair endonuclease (redoxyendonuclease) was isolated from bakers' yeast (Saccharomyces cerevisiae). The enzyme has been purified by a series of column chromatography steps and cleaves OsO4-damaged, double-stranded DNA at sites of thymine glycol and heavily UV-irradiated DNA at sites of cytosine, thymine, and guanine photoproducts. The base specificity and mechanism of phosphodiester bond cleavage for the yeast redoxyendonuclease appear to be identical with those of Escherichia coli endonuclease III when thymine glycol containing, end-labeled DNA fragments of defined sequence are employed as substrates. Yeast redoxyendonuclease has an apparent molecular size of 38,000-42,000 daltons and is active in the absence of divalent metal cations. The identification of such an enzyme in yeast may be of value in the elucidation of the biochemical basis for radiation sensitivity in certain yeast mutants.
Collapse
|
Comparative Study |
37 |
38 |
45
|
Liu J, Zhou W, Doetsch PW. RNA polymerase bypass at sites of dihydrouracil: implications for transcriptional mutagenesis. Mol Cell Biol 1995; 15:6729-35. [PMID: 8524238 PMCID: PMC230926 DOI: 10.1128/mcb.15.12.6729] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Dihydrouracil (DHU) is a major base damage product formed from cytosine following exposure of DNA to ionizing radiation under anoxic conditions. To gain insight into the DNA lesion structural requirements for RNA polymerase arrest or bypass at various DNA damages located on the transcribed strand during elongation, DHU was placed onto promoter-containing DNA templates 20 nucleotides downstream from the transcription start site. In vitro, single-round transcription experiments carried out with SP6 and T7 RNA polymerases revealed that following a brief pause at the DHU site, both enzymes efficiently bypass this lesion with subsequent rapid generation of full-length runoff transcripts. Direct sequence analysis of these transcripts indicated that both RNA polymerases insert primarily adenine opposite to the DHU site, resulting in a G-to-A transition mutation in the lesion bypass product. Such bypass and insertion events at DHU sites (or other types of DNA damages), if they occur in vivo, have a number of important implications for both the repair of such lesions and the DNA damage-induced production of mutant proteins at the level of transcription (transcriptional mutagenesis).
Collapse
|
research-article |
30 |
37 |
46
|
Zastawny TH, Doetsch PW, Dizdaroglu M. A novel activity of E. coli uracil DNA N-glycosylase excision of isodialuric acid (5,6-dihydroxyuracil), a major product of oxidative DNA damage, from DNA. FEBS Lett 1995; 364:255-8. [PMID: 7758578 DOI: 10.1016/0014-5793(95)00400-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We describe a novel activity of E. coli uracil DNA N-glycosylase (UNG) that excises isodialuric acid from DNA. Isodialuric acid is formed in DNA as a major oxidative product of cytosine. DNA substrates, which were prepared by gamma-irradiation, were incubated with UNG. Following precipitation of DNA, analyses of pellets and supernatant fractions by gas chromatography/mass spectrometry showed an efficient excision of isodialuric acid from DNA by UNG. None of the other 15 identified DNA base lesions was excised. The excision of isodialuric acid indicates that the non-aromaticity of a substrate may not be a limiting factor for UNG.
Collapse
|
|
30 |
37 |
47
|
Limpose KL, Trego KS, Li Z, Leung SW, Sarker AH, Shah JA, Ramalingam SS, Werner EM, Dynan WS, Cooper PK, Corbett AH, Doetsch PW. Overexpression of the base excision repair NTHL1 glycosylase causes genomic instability and early cellular hallmarks of cancer. Nucleic Acids Res 2018; 46:4515-4532. [PMID: 29522130 PMCID: PMC5961185 DOI: 10.1093/nar/gky162] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
Base excision repair (BER), which is initiated by DNA N-glycosylase proteins, is the frontline for repairing potentially mutagenic DNA base damage. The NTHL1 glycosylase, which excises DNA base damage caused by reactive oxygen species, is thought to be a tumor suppressor. However, in addition to NTHL1 loss-of-function mutations, our analysis of cancer genomic datasets reveals that NTHL1 frequently undergoes amplification or upregulation in some cancers. Whether NTHL1 overexpression could contribute to cancer phenotypes has not yet been explored. To address the functional consequences of NTHL1 overexpression, we employed transient overexpression. Both NTHL1 and a catalytically-dead NTHL1 (CATmut) induce DNA damage and genomic instability in non-transformed human bronchial epithelial cells (HBEC) when overexpressed. Strikingly, overexpression of either NTHL1 or CATmut causes replication stress signaling and a decrease in homologous recombination (HR). HBEC cells that overexpress NTHL1 or CATmut acquire the ability to grow in soft agar and exhibit loss of contact inhibition, suggesting that a mechanism independent of NTHL1 catalytic activity contributes to acquisition of cancer-related cellular phenotypes. We provide evidence that NTHL1 interacts with the multifunctional DNA repair protein XPG suggesting that interference with HR is a possible mechanism that contributes to acquisition of early cellular hallmarks of cancer.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
36 |
48
|
Hanna M, Chow BL, Morey NJ, Jinks-Robertson S, Doetsch PW, Xiao W. Involvement of two endonuclease III homologs in the base excision repair pathway for the processing of DNA alkylation damage in Saccharomyces cerevisiae. DNA Repair (Amst) 2004; 3:51-9. [PMID: 14697759 DOI: 10.1016/j.dnarep.2003.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
DNA base excision repair (BER) is initiated by DNA glycosylases that recognize and remove damaged bases. The phosphate backbone adjacent to the resulting apurinic/apyrimidinic (AP) site is then cleaved by an AP endonuclease or glycosylase-associated AP lyase to invoke subsequent BER steps. We have used a genetic approach in Saccharomyces cerevisiae to determine whether or not AP sites are blocks to DNA replication and the biological consequences if AP sites persist in the genome. We previously reported that yeast cells deficient in the two AP endonucleases (apn1 apn2 double mutant) are extremely sensitive to killing by a model DNA alkylating agent methyl methanesulfonate (MMS) and that this sensitivity can be reduced by deleting the MAG1 3-methyladenine DNA glycosylase gene. Here we report that in the absence of the AP endonucleases, deletion of two Escherichia coli endonuclease III homologs, NTG1 and NTG2, partially suppresses MMS-induced killing, which indicates that the AP lyase products are deleterious unless they are further processed by an AP endonuclease. The severe MMS sensitivity seen in AP endonuclease deficient strains can also be rescued by treatment of cells with the AP lyase inhibitor methoxyamine, which suggests that the product of AP lyase action on an AP site is indeed an extremely toxic lesion. In addition to the AP endonuclease interactions, deletion of NTG1 and NTG2 enhances the mag1 mutant sensitivity to MMS, whereas overexpression of MAG1 in either the ntg1 or ntg2 mutant severely affects cell growth. These results help to delineate alkylation base lesion flow within the BER pathway.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
36 |
49
|
Liu J, Doetsch PW. Template strand gap bypass is a general property of prokaryotic RNA polymerases: implications for elongation mechanisms. Biochemistry 1996; 35:14999-5008. [PMID: 8942666 DOI: 10.1021/bi961455x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It has previously been shown that T7 RNA polymerase is capable of bypassing gaps on the template strand ranging in size from 1 to 24 nucleotides. This as well as other observations suggested a role for the nontemplate strand during elongation. To establish the generality of this gap bypassing event, we have extended these studies to SP6 and Escherichia coli RNA polymerases. SP6 RNA polymerase bypasses template gaps from 1 to 19 nucleotides in size with various degrees of efficiency and produces runoff transcripts of decreasing length corresponding to increasing gap size. RNA sequence analysis of the resulting runoff transcripts revealed that SP6 RNA polymerase faithfully transcribed both parts of the template strand flanking the gapped region. Similar experiments were carried out with E. coli RNA polymerase (a multiple subunit enzyme) and indicate that it is also capable of gap bypass albeit with reduced efficiency compared to T7 and SP6 RNA polymerases. It appears that the ability to bypass gaps present on the DNA template strand is a general property of prokaryotic RNA polymerases. These results have implications with respect to the mechanism of elongation and the role of the nontemplate strand in transcription.
Collapse
|
|
29 |
36 |
50
|
Meadows KL, Song B, Doetsch PW. Characterization of AP lyase activities of Saccharomyces cerevisiae Ntg1p and Ntg2p: implications for biological function. Nucleic Acids Res 2003; 31:5560-7. [PMID: 14500818 PMCID: PMC206450 DOI: 10.1093/nar/gkg749] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Saccharomyces cerevisiae possesses two Escherichia coli endonuclease III homologs, NTG1 and NTG2, whose gene products function in the base excision repair pathway and initiate removal of a variety of oxidized pyrimidines from DNA. Although the glycosylase activity of these proteins has been well studied, the in vivo importance of the AP lyase activity has not been determined. Previous genetic studies have suggested that the AP lyase activities of Ntg1p and Ntg2p may be major contributors in the initial processing of abasic sites. We conducted a biochemical characterization of the AP lyase activities of Ntg1p and Ntg2p via a series of kinetic experiments. Such studies were designed to determine if Ntg1p and Ntg2p prefer specific bases located opposite abasic sites and whether these lesions are processed with a catalytic efficiency similar to Apn1p, the major hydrolytic AP endonuclease of yeast. Our results indicate that Ntg1p and Ntg2p are equally effective in processing four types of abasic site-containing substrates. Certain abasic site substrates were processed with greater catalytic efficiency than others, a situation similar to Apn1p processing of such substrates. These biochemical studies strongly support an important biological role for Ntg1p and Ntg2p in the initial processing of abasic sites and maintenance of genomic stability.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
22 |
35 |