26
|
Patil SS, V M, Kammakakam I, Swamy MHH, Patil KS, Lai Z, Rao H N A. Quinuclidinium-piperidinium based dual hydroxide anion exchange membranes as highly conductive and stable electrolyte materials for alkaline fuel cell applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Peters S, Cho B, Luft A, Alatorre-Alexander J, Geater S, Kim SW, Ursol G, Hussein M, Lim F, Yang CT, Araujo L, Saito H, Reinmuth N, Stewart R, Lai Z, Doake R, Krug L, Garon E, Mok T, Johnson M. OA15.04 Association Between KRAS/STK11/KEAP1 Mutations and Outcomes in POSEIDON: Durvalumab ± Tremelimumab + Chemotherapy in mNSCLC. J Thorac Oncol 2022. [DOI: 10.1016/j.jtho.2022.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Li Z, Aboalsaud AM, Liu X, Thankamony RL, Chen IC, Li Y, Lai Z. Scalable fabrication of Solvent-Free composite solid electrolyte by a continuous Thermal-Extrusion process. J Colloid Interface Sci 2022; 628:64-71. [PMID: 35908432 DOI: 10.1016/j.jcis.2022.07.099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/09/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
Composite solid-state electrolytes (CSEs) are regarded as a promising alternative for the next-generation lithium-ion batteries because they integrate the advantages of inorganic electrolytes and organic electrolytes. However, there are two issues faced by current CSEs: 1) a green and feasible approach to prepare CSEs in large scales is desired; and 2) the trace solvents, remaining from the preparation processes, lead to some serious concerns, such as safety hazard issues, electrolyte-electrode interfacial issues, and reduced durability of batteries. Here, a continuous thermal-extrusion process is presented to realize the large-scale fabrication of solvent-free CSE. A 38.7-meter CSE membrane was prepared as a demonstration in this study. Thanks to the elimination of residual solvents, the electrolyte membrane exhibited a high tensile strength of 3.85 MPa, satisfactory lithium transference number (0.495), and excellent electrochemical stability (5.15 V). Excellent long-term stability was demonstrated by operating the symmetric lithium cell at a stable current density of 0.1 mA cm-2 for over 3700 h. Solvent-free CSE lithium metal batteries showed a discharge capacity of 155.7 - 25.17 mAh g-1 at 0.1 - 2.0C, and the discharge capacity remained 78.1% after testing for 380cycles.
Collapse
|
29
|
Cao L, Chen IC, Chen C, Shinde DB, Liu X, Li Z, Zhou Z, Zhang Y, Han Y, Lai Z. Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes. J Am Chem Soc 2022; 144:12400-12409. [PMID: 35762206 DOI: 10.1021/jacs.2c04223] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nanofluidic membranes have been demonstrated as promising candidates for osmotic energy harvesting. However, it remains a long-standing challenge to fabricate high-efficiency ion-permselective membranes with well-defined channel architectures. Here, we demonstrate high-performance osmotic energy conversion membranes based on oriented two-dimensional covalent organic frameworks (COFs) with ultrashort vertically aligned nanofluidic channels that enabled efficient and selective ion transport. Experiments combined with molecular dynamics simulations revealed that exquisite control over channel orientation, charge polarity, and charge density contributed to high ion selectivity and permeability. When applied to osmotic energy conversion, a pair of 100 nm thick oppositely charged COF membranes achieved an ultrahigh output power density of 43.2 W m-2 at a 50-fold salinity gradient and up to 228.9 W m-2 for the Dead Sea and river water system. The achieved power density outperforms the state-of-the-art nanofluidic membranes, suggesting the great potential of oriented COF membranes in the fields of advanced membrane technology and energy conversion.
Collapse
|
30
|
Zhou Z, Chen IC, Rehman LM, Aboalsaud AM, Shinde DB, Cao L, Zhang Y, Lai Z. Conjugated microporous polymer membranes for light-gated ion transport. SCIENCE ADVANCES 2022; 8:eabo2929. [PMID: 35714184 PMCID: PMC9205585 DOI: 10.1126/sciadv.abo2929] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/03/2022] [Indexed: 05/28/2023]
Abstract
Inspired by the light-gated ion channels in cell membranes that play important roles in many biological activities, herein, we developed an artificial light-gated ion channel membrane out of conjugated microporous polymers. Through bottom-up design of the monomer molecular structure and by the electropolymerization method, the membrane pore size and thickness were precisely controlled on the molecular level. The obtained membrane exhibited uniform pore size and highly sensitive light-switchable response. The photoisomerization of the polymer chain resulted in a reversible "on and off" light control over the pore size and subsequently led to light-gated ion transport across the membrane for a series of ions including hydrogen, potassium, sodium, lithium, calcium, magnesium, and aluminum ions.
Collapse
|
31
|
Ogieglo W, Puspasari T, Alabdulaaly A, Nga Nguyen TP, Lai Z, Pinnau I. Gas separation performance and physical aging of tubular thin-film composite carbon molecular sieve membranes based on a polyimide of intrinsic microporosity precursor. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Lai Z, Lin L, Zhang J, Mao S. Effects of high-grain diet feeding on mucosa-associated bacterial community and gene expression of tight junction proteins and inflammatory cytokines in the small intestine of dairy cattle. J Dairy Sci 2022; 105:6601-6615. [DOI: 10.3168/jds.2021-21355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/31/2022] [Indexed: 12/27/2022]
|
33
|
Guo D, Shinde DB, Shin W, Abou-Hamad E, Emwas AH, Lai Z, Manthiram A. Foldable Solid-State Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201410. [PMID: 35332970 DOI: 10.1002/adma.202201410] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Solid-state electrolytes with high Li+ conductivity, flexibility, durability, and stability offer an attractive solution to enhance safety and energy density. However, meeting these stringent requirements poses challenges to the existing solid polymeric or ceramic electrolytes. Here, an electrolyte-mediated single-Li+ -conductive covalent organic framework (COF) is presented, which represents a new category of quality solid-state Li+ conductors. In situ solidification of a tailored liquid electrolyte boosts the charge-carrier concentration in the COF channels, decouples Li+ cations from both COF walls and molecular chains, and eliminates defects by crystal soldering. Such an altered microenvironment activates the motion of Li+ ions in a directional manner, which leads to an increase in Li+ conductivity by 100 times with a transference number of 0.85 achieved at room temperature. Moreover, the electrolyte conversion cements the ultrathin COF membrane with fortified mechanical toughness. With the COF membrane, foldable solid-state pouch cells are demonstrated.
Collapse
|
34
|
Lu D, Zhou Z, Wang Z, Ho DT, Sheng G, Chen L, Zhao Y, Li X, Cao L, Schwingenschlögl U, Ma J, Lai Z. An Ultrahigh-Flux Nanoporous Graphene Membrane for Sustainable Seawater Desalination using Low-Grade Heat. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109718. [PMID: 34990512 DOI: 10.1002/adma.202109718] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Membrane distillation has attracted great attention in the development of sustainable desalination and zero-discharge processes because of its possibility of recovering 100% water and the potential for integration with low-grade heat, such as solar energy. However, the conventional membrane structures and materials afford limited flux thus obstructing its practical application. Here, ultrathin nanoporous graphene membranes are reported by selectively forming thin graphene layers on the top edges of a highly porous anodic alumina oxide support, which creates short and fast transport pathways for water vapor but not liquid. The process avoids the challenging pore-generation and substrate-transfer processes required to prepare regular graphene membranes. In the direct-contact membrane distillation mode under a mild temperature pair of 65/25 °C, the nanoporous graphene membranes show an average water flux of 421.7 L m-2 h-1 with over 99.8% salt rejection, which is an order of magnitude higher than any reported polymeric membranes. The mechanism for high water flux is revealed by detailed characterizations and theoretical modeling. Outdoor field tests using water from the Red Sea heated under direct sunlight radiation show that the membranes have an average water flux of 86.3 L m-2 h-1 from 8 am to 8 pm, showing a great potential for real applications in seawater desalination.
Collapse
|
35
|
Wei R, Liu X, Zhou Z, Chen C, Yuan Y, Li Z, Li X, Dong X, Lu D, Han Y, Lai Z. Carbon nanotube supported oriented metal organic framework membrane for effective ethylene/ethane separation. SCIENCE ADVANCES 2022; 8:eabm6741. [PMID: 35171662 PMCID: PMC8849294 DOI: 10.1126/sciadv.abm6741] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/23/2021] [Indexed: 05/20/2023]
Abstract
Zeolitic imidazolate framework 8 (ZIF-8) is effective for C3H6/C3H8 separation because of the "sieving effect" of a six-membered (6-M) window. Here, we demonstrate that ZIF-8 is a versatile material that could effectively separate C2H4 from C2H6 via its 4-M window along the <100> direction. We established a facile and environmentally friendly carbon nanotube (CNT)-induced oriented membrane (CNT-OM) approach to fabricate a {100}-oriented ZIF-8 membrane (100-M). In this approach, 2-methyimidazole was anchored onto the CNT surface followed by 3-hour in situ growth in aqueous solution at room temperature. The obtained 100-M, whose 4-M window is aligned along the transport pathway, showed ~3 times higher C2H4/C2H6 selectivity than a randomly oriented membrane. Thus, this work demonstrates that the membrane orientation plays an important role in tuning selectivity toward different gas pairs. Furthermore, 100-M exhibited excellent mechanical stability that could sustain the separation performance after bending at a curvature of ~109 m-1.
Collapse
|
36
|
Cao L, Liu X, Shinde DB, Chen C, Chen I, Li Z, Zhou Z, Yang Z, Han Y, Lai Z. Oriented Two‐Dimensional Covalent Organic Framework Membranes with High Ion Flux and Smart Gating Nanofluidic Transport. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Abdul Hamid MR, Qian Y, Wei R, Li Z, Pan Y, Lai Z, Jeong HK. Polycrystalline metal-organic framework (MOF) membranes for molecular separations: Engineering prospects and challenges. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119802] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Cao L, Liu X, Shinde DB, Chen C, Chen IC, Li Z, Zhou Z, Yang Z, Han Y, Lai Z. Oriented Two-Dimensional Covalent Organic Framework Membranes with High Ion Flux and Smart Gating Nanofluidic Transport. Angew Chem Int Ed Engl 2021; 61:e202113141. [PMID: 34816574 DOI: 10.1002/anie.202113141] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 11/09/2022]
Abstract
Nanofluidic ion transport holds high promise in bio-sensing and energy conversion applications. However, smart nanofluidic devices with high ion flux and modulable ion transport capabilities remain to be realised. Herein, we demonstrate smart nanofluidic devices based on oriented two-dimensional covalent organic framework (2D COF) membranes with vertically aligned nanochannel arrays that achieved a 2-3 orders of magnitude higher ion flux compared with that of conventional single-channel nanofluidic devices. The surface-charge-governed ion conductance is dominant for electrolyte concentration up to 0.01 M. Moreover, owing to the customisable pH-responsivity of imine and phenol hydroxyl groups, the COF-DT membranes attained an actively modulable ion transport with a high pH-gating on/off ratio of ≈100. The customisable structure and rich chemistry of COF materials will offer a promising platform for manufacturing nanofluidic devices with modifiable ion/molecular transport features.
Collapse
|
39
|
Garassino M, Shrestha Y, Xie M, Lai Z, Spencer S, Dalvi T, Paz-Ares L. MA16.06 Durvalumab ± Tremelimumab + Platinum-Etoposide in 1L ES-SCLC: Exploratory Analysis of HLA Genotype and Survival in CASPIAN. J Thorac Oncol 2021. [DOI: 10.1016/j.jtho.2021.08.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Hodgson D, Lai Z, Dearden S, Barrett JC, Harrington EA, Timms K, Lanchbury J, Wu W, Allen A, Senkus E, Domchek SM, Robson M. Analysis of mutation status and homologous recombination deficiency in tumors of patients with germline BRCA1 or BRCA2 mutations and metastatic breast cancer: OlympiAD. Ann Oncol 2021; 32:1582-1589. [PMID: 34500047 DOI: 10.1016/j.annonc.2021.08.2154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Presence of a germline BRCA1 and/or BRCA2 mutation (gBRCAm) may sensitize tumors to poly(ADP-ribose) polymerase (PARP) inhibition via inactivation of the second allele, resulting in gene-specific loss of heterozygosity (gsLOH) and homologous recombination deficiency (HRD). Here we explore whether tissue sample testing provides an additional route to germline testing to inform treatment selection for PARP inhibition. PATIENTS AND METHODS In this prespecified exploratory analysis, BRCA1 and/or BRCA2 mutations in blood samples (gBRCAm) and tumor tissue (tBRCAm) were analyzed from patients with human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer and known gBRCAm, enrolled in the phase III OlympiAD trial. The frequency and nature of tBRCAm, HRD score status [HRD-positive (score ≥42) versus HRD-negative (score <42) using the Myriad myChoice® CDx test] and rates of gsLOH were determined, and their impact on clinical efficacy (objective response rate and progression-free survival) was explored. RESULTS Tissue samples from 161/302 patients yielded tBRCAm, HRD and gsLOH data for 143 (47%), 129 (43%) and 125 (41%) patients, respectively. Concordance between gBRCAm and tBRCAm was 99%. gsLOH was observed in 118/125 (94%) patients [BRCA1m, 73/76 (96%); BRCA2m, 45/49 (92%)]. A second mutation event was recorded for two of the three BRCA1m patients without gsLOH. The incidence of HRD-negative was 16% (21/129) and was more common for BRCA2m (versus BRCA1m) and/or for hormone receptor-positive (versus triple-negative) disease. Olaparib antitumor activity was observed irrespective of HRD score. CONCLUSIONS gBRCAm identified in patients with HER2-negative metastatic breast cancer by germline testing in blood was also identified by tumor tissue testing. gsLOH was common, indicating a high rate of biallelic inactivation in metastatic breast cancer. Olaparib activity was seen regardless of gsLOH status or HRD score. Thus, additional tumor testing to inform PARP inhibitor treatment selection may not be supported for these patients.
Collapse
|
41
|
Peters S, Rizvi N, Kuziora M, Lai Z, Shrestha Y, Dey A, Barrett J, Scheuring U, Poole L, Abbosh C, Raja R, Hellmann M. 1264P Early circulating tumour DNA (ctDNA) dynamics for predicting and monitoring response to immunotherapy (IO) vs chemotherapy (CT) in patients with 1L metastatic (m) NSCLC: Analyses from the phase III MYSTIC trial. Ann Oncol 2021. [DOI: 10.1016/j.annonc.2021.08.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
42
|
Lo KL, Leung D, Lai Z, Li C, Ma SF, Wong J, Yuen KK, Li J, Chiu P, Mak SK, Wong J, Ng CF. Picture-in-picture video demonstration of systematic transperineal prostate biopsy. Hong Kong Med J 2021; 27:304-305. [PMID: 34413262 DOI: 10.12809/hkmj208864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
43
|
Gao S, Li Z, Yang Y, Wang Z, Wang Y, Luo S, Yao K, Qiu J, Wang H, Cao L, Lai Z, Wang J. The Ionic Liquid-H 2O Interface: A New Platform for the Synthesis of Highly Crystalline and Molecular Sieving Covalent Organic Framework Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36507-36516. [PMID: 34309368 DOI: 10.1021/acsami.1c08789] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Covalent organic frameworks (COFs) are highly porous crystalline polymers with uniform pores and large surface areas. Combined with their modular design principle and excellent properties, COFs are an ideal candidate for separation membranes. Liquid-liquid interfacial polymerization is a well-known approach to synthesize membranes by reacting two monomers at the interface. However, volatile organic solvents are usually used, which may disturb the liquid-liquid interface and affect the COF membrane crystallinity due to solvent evaporation. Simultaneously, the domain size of the organic solvent-water interface, named the reaction zone, can hardly be regulated, and the diffusion control of monomers for favorable crystallinity is only achieved in the water phase. These drawbacks may limit the widespread applications of liquid-liquid interfacial polymerization to synthesize diverse COF membranes with different functionalities. Here, we report a facile strategy to synthesize a series of imine-linked freestanding COF membranes with different thicknesses and morphologies at tunable ionic liquid (IL)-H2O interfaces. Due to the H-bonding of the catalysts with amine monomers and the high viscosity of the ILs, the diffusion of the monomers was simultaneously controlled in water and in ILs. This resulted in the exceptionally high crystallinity of freestanding COF membranes with a Brunauer-Emmett-Teller (BET) surface area up to 4.3 times of that synthesized at a dichloromethane-H2O interface. By varying the alkyl chain length of cations in the ILs, the interfacial region size and interfacial tension could be regulated to further improve the crystallinity of the COF membranes. As a result, the as-fabricated COF membranes exhibited ultrahigh permeance toward water and organic solvents and excellent selective rejection of dyes.
Collapse
|
44
|
Li Y, He S, Shu C, Li X, Liu B, Zhou R, Lai Z. A facile approach to synthesize SSZ-13 membranes with ultrahigh N2 permeances for efficient N2/CH4 separations. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119349] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Zhou Z, Guo D, Shinde DB, Cao L, Li Z, Li X, Lu D, Lai Z. Precise Sub-Angstrom Ion Separation Using Conjugated Microporous Polymer Membranes. ACS NANO 2021; 15:11970-11980. [PMID: 34185517 DOI: 10.1021/acsnano.1c03194] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polymer membranes typically possess a broad pore-size distribution that leads to much lower selectivity in ion separation when compared to membranes made of crystalline porous materials; however, they are highly desirable because of their easy processability and low cost. Herein, we demonstrate the fabrication of ion-sieving membranes based on a polycarbazole-type conjugated microporous polymer using an easy to scale-up electropolymerization strategy. The membranes exhibited high uniform sub-nanometer pores and a precisely tunable membrane thickness, yielding a high ion-sieving performance with a sub-1 Å size precision. Both experimental results and molecular simulations suggested that the impressive ion-sieving performance of the CMP membranes originates from their uniform and narrow pore-size distribution.
Collapse
|
46
|
Li Y, Wang Y, Guo M, Liu B, Zhou R, Lai Z. High-performance 7-channel monolith supported SSZ-13 membranes for high-pressure CO2/CH4 separations. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119277] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Yang X, Wang Y, Wang W, Hu X, Zhou M, Weng J, Zhang L, Lu P, Lai Z, Wang S, Feng Q, Lu L. Tongxin formula protects H9c2 cardiomyocytes from cobalt chloride-induced hypoxic injury via inhibition of apoptosis. JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY : AN OFFICIAL JOURNAL OF THE POLISH PHYSIOLOGICAL SOCIETY 2021; 72. [PMID: 34810288 DOI: 10.26402/jpp.2021.3.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
In this study, the effect of the Tongxin formula (TXF) on the apoptosis of H9c2 cardiomyocytes induced by cobalt chloride (CoCl2) was investigated, and the potential mechanism was explored. A hypoxic injury model of H9c2 cardiomyocytes was established using CoCl2. The cell viability was measured using a Cell Counting Kit-8 assay. The lactate dehydrogenase (LDH) release and caspase-3 activity were measured using spectrophotometry. The apoptosis was measured via Annexin V-FITC/PI staining and flow cytometry. The changes in the mitochondrial membrane potential were examined using immunofluorescence microscopy following the loading of JC-1 probes. The expressions of apoptosis-related proteins and key proteins in the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway were examined via immunoblotting. The different TXF concentrations studied significantly improved the percentage of viability of cardiomyocytes with hypoxic injury, and the LDH release, apoptotic rate, caspase-3 activity, and levels of cleaved caspase-3 protein were reduced in the injured cells. Additionally, the TXF group had increased mitochondrial membrane potential, upregulated expression of Bcl-2 and p-Akt proteins, and significantly reduced expression of cleaved caspase-3 protein in the cells with hypoxic injury. Moreover, in the TXF group, the treatment significantly reduced the BAX protein expression, but the difference was not statistically significant compared with the CoCl2 group. In this study, TXF regulated the expression of apoptosis-related proteins, inhibited apoptosis, increased the mitochondrial membrane potential, and alleviated damage to the mitochondrial membrane, thereby protecting the cardiomyocytes from hypoxic injury. The underlying mechanism could be related to activation of the PI3K/Akt signaling pathway and upregulation of the Bcl-2 protein.
Collapse
|
48
|
Huang SB, Thapa D, Munoz AR, Hussain SS, Yang X, Bedolla RG, Osmulski P, Gaczynska ME, Lai Z, Chiu YC, Wang LJ, Chen Y, Rivas P, Shudde C, Reddick RL, Miyamoto H, Ghosh R, Kumar AP. Androgen deprivation-induced elevated nuclear SIRT1 promotes prostate tumor cell survival by reactivation of AR signaling. Cancer Lett 2021; 505:24-36. [PMID: 33617947 DOI: 10.1016/j.canlet.2021.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
The NAD+-dependent deacetylase, Sirtuin 1 (SIRT1) is involved in prostate cancer pathogenesis. However, the actual contribution is unclear as some reports propose a protective role while others suggest it is harmful. We provide evidence for a contextual role for SIRT1 in prostate cancer. Our data show that (i) mice orthotopically implanted with SIRT1-silenced LNCaP cells produced smaller tumors; (ii) SIRT1 suppression mimicked AR inhibitory effects in hormone responsive LNCaP cells; and (iii) caused significant reduction in gene signatures associated with E2F and MYC targets in AR-null PC-3 and E2F and mTORC1 signaling in castrate-resistant ARv7 positive 22Rv1 cells. Our findings further show increased nuclear SIRT1 (nSIRT1) protein under androgen-depleted relative to androgen-replete conditions in prostate cancer cell lines. Silencing SIRT1 resulted in decreased recruitment of AR to PSA enhancer selectively under androgen-deprivation conditions. Prostate cancer outcome data show that patients with higher levels of nSIRT1 progress to advanced disease relative to patients with low nSIRT1 levels. Collectively, we demonstrate that lowering SIRT1 levels potentially provides new avenues to effectively prevent prostate cancer recurrence.
Collapse
|
49
|
Wang L, Zhao Z, Shinde DB, Lai Z, Wang D. Modulation of destructive quantum interference by bridge groups in truxene-based single-molecule junctions. Chem Commun (Camb) 2021; 57:667-670. [PMID: 33346271 DOI: 10.1039/d0cc07438a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron transport properties of polycyclic truxene derivatives have been investigated by the single molecule conductance measurement technique and theoretical study. Molecules with nitrogen and carbonyl substituents at the bridge sites exhibit higher single-molecule conductances by almost one order of magnitude compared with non-substituted analogues. It can be ascribed that the anti-resonance feature produced by destructive quantum interference (DQI) is alleviated and pushed away from the Fermi energy. These findings provide an effective chemical strategy for manipulating the DQI behavior in single molecular devices.
Collapse
|
50
|
Guo D, Li X, Wahyudi W, Li C, Emwas AH, Hedhili MN, Li Y, Lai Z. Electropolymerized Conjugated Microporous Nanoskin Regulating Polysulfide and Electrolyte for High-Energy Li-S Batteries. ACS NANO 2020; 14:17163-17173. [PMID: 33166116 DOI: 10.1021/acsnano.0c06944] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A popular practice in Li-S battery research is to utilize highly nanostructured hosts and excessive electrolytes to enhance sulfur-specific capacities. However, from the perspective of commercialization, this is a less meaningful approach in the pursuit of high-energy Li-S batteries. Herein, we report the fabrication of a nanoskin composed of a conjugated microporous polymer by electropolymerization to create a closed system for a sulfur cathode. The nanoskin is ultrathin, conductive, continuous, and contains uniform micropores of approximately 0.8 nm. The nanoskin sealing prevents the shuttling of polysulfide species without using the absorption effect, enhances the utilization of electrolytes, and allows a fast transport of lithium ions. As a result, the Li-S batteries comprising the cathode with nanoskin exhibit superior stability (∼86% capacity retention) under lean electrolyte conditions and a prolonged lifetime (1000 cycles). At a low electrolyte/sulfur ratio of 4 μL mg-1, the designed cathode delivered a practical energy density of over 300 Wh kg-1 without using any sophisticated hosts.
Collapse
|