26
|
Abou-Samra A, McTavish S, Whitehair R, Shildkrot YE. Hit and Run: Bilateral Massive Intraocular Lymphomatous Infiltration after CAR-T Therapy. Ocul Immunol Inflamm 2024; 32:1444-1447. [PMID: 36952531 DOI: 10.1080/09273948.2023.2191713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/25/2023]
Abstract
PURPOSE We report a case of bilateral intraocular infiltration of DLBCL after CAR-T therapy. METHODS Retrospective case report. RESULTS A 62-year-old Caucasian male with medical history of high-grade DLBCL presented with papillitis and vitritis upon completion of CAR-T therapy. Thorough infectious and diagnostic work-ups were performed. Diagnostic vitreous tap revealed intraocular lymphoma. The patient received external beam radiotherapy to both orbits with dramatic improvement in disc edema and vitritis. However, subsequent MRI showed development of intracranial metastatic disease, and the patient died within the same month. CONCLUSION Atypical intraocular metastasis of DLBCL may occur following CAR-T therapy and may indicate secondary changes in immunosurveillance within immune-privileged sites such as the eye.
Collapse
|
27
|
Khawaji ZY, Khawaji NY, Alahmadi MA, Elmoneim AA. Prediction of Response to FDA-Approved Targeted Therapy and Immunotherapy in Acute Lymphoblastic Leukemia (ALL). Curr Treat Options Oncol 2024; 25:1163-1183. [PMID: 39102166 DOI: 10.1007/s11864-024-01237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/06/2024]
Abstract
OPINION STATEMENT Acute lymphoblastic leukemia (ALL) represents the predominant cancer in pediatric populations, though its occurrence in adults is relatively rare. Pre-treatment risk stratification is crucial for predicting prognosis. Important factors for assessment include patient age, white blood cell (WBC) count at diagnosis, extramedullary involvement, immunophenotype, and cytogenetic aberrations. Minimal residual disease (MRD), primarily assessed by flow cytometry following remission, plays a substantial role in guiding management plans. Over the past decade, significant advancements in ALL outcomes have been witnessed. Conventional chemotherapy has remarkably reduced mortality rates; however, its intensive nature raises safety concerns and has led to the emergence of treatment-resistant cases with recurrence of relapses. Consequently, The U.S. Food and Drug Administration (FDA) has approved several novel treatments for relapsed/refractory ALL due to their demonstrated efficacy, as indicated by improved complete remission and survival rates. These treatments include tyrosine kinase inhibitors (TKIs), the anti-CD19 monoclonal antibody blinatumomab, anti-CD22 inotuzumab ozogamicin, anti-CD20 rituximab, and chimeric antigen receptor (CAR) T-cell therapy. Identifying the variables that influence treatment decisions is a pressing necessity for tailoring therapy based on heterogeneous patient characteristics. Key predictive factors identified in various observational studies and clinical trials include prelymphodepletion disease burden, complex genetic abnormalities, and MRD. Furthermore, the development of serious adverse events following treatment could be anticipated through predictive models, allowing for appropriate prophylactic measures to be considered. The ultimate aim is to incorporate the concept of precision medicine in the field of ALL through valid prediction platform to facilitate the selection of the most suitable treatment approach.
Collapse
|
28
|
Sarkar R, Adhikary K, Banerjee A, Ganguly K, Sarkar R, Mohanty S, Dhua R, Bhattacharya K, Ahuja D, Pal S, Maiti R. Novel targets and improved immunotherapeutic techniques with an emphasis on antimycosal drug resistance for the treatment and management of mycosis. Heliyon 2024; 10:e35835. [PMID: 39224344 PMCID: PMC11367498 DOI: 10.1016/j.heliyon.2024.e35835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Infections due to pathogenic fungi are endemic in particular area with increased morbidity and mortality. More than a thousand people are infected per year and the way of treatment is of high demand having a significant impact on the population health. Medical practitioners confront various troublesome analytic and therapeutical challenges in the administration of immunosuppressed sufferer at high danger of expanding fungal infections. An upgraded antimycosal treatment is fundamental for a fruitful result while treating intrusive mycoses. A collection of antimycosal drugs keeps on developing with their specific antifungal targets including cell membrane, mitochondria, cell wall, and deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) or protein biosynthesis. Some fundamental classes of ordinarily directed medications are the polyenes, amphotericin B, syringomycin, allylamines, honokiol, azoles, flucytosine, echinocandins etc. However, few immunotherapy processes and vaccinations are being developed to mark this need, although one presently can't seem to arrive at the conclusion. In this review article, there has been a trial to give details upgradation about the current immune therapeutic techniques and vaccination strategies against prevention or treatment of mycosis as well as the difficulties related with their turn of events. There has been also a visualization in the mentioned review paper about the various assorted drugs and their specific target analysis along with therapeutic interventions.
Collapse
|
29
|
Zinzani PL, Muñoz J, Trotman J. Current and future therapies for follicular lymphoma. Exp Hematol Oncol 2024; 13:87. [PMID: 39175100 PMCID: PMC11340193 DOI: 10.1186/s40164-024-00551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024] Open
Abstract
Follicular lymphoma (FL) is an indolent, germinal center B cell-derived lymphoid neoplasm, for which recent advances in treatment have substantially improved patient survival. However, FL remains an incurable and heterogeneous disease, with groups of patients experiencing early disease progression, histologic transformation, or a high risk of treatment-related toxicity. Additionally, FL is a continually relapsing disease, and response rates and disease-control intervals decrease with each subsequent line of therapy. In this review, we explore the current treatment landscape for relapsed or refractory FL and promising therapies in development, highlighting the efficacy and potential risks of each treatment. We provide a real-world perspective on the unmet needs of patients with FL. Novel therapeutic approaches in development offer a wide array of options for clinicians when treating relapsed or refractory FL. A nuanced approach is required to address the needs of individual patients, taking into consideration both the risks and benefits of each treatment option, as well as patient preferences.
Collapse
|
30
|
Joshi DC, Sharma A, Prasad S, Singh K, Kumar M, Sherawat K, Tuli HS, Gupta M. Novel therapeutic agents in clinical trials: emerging approaches in cancer therapy. Discov Oncol 2024; 15:342. [PMID: 39127974 PMCID: PMC11317456 DOI: 10.1007/s12672-024-01195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Novel therapeutic agents in clinical trials offer a paradigm shift in the approach to battling this prevalent and destructive disease, and the area of cancer therapy is on the precipice of a trans formative revolution. Despite the importance of tried-and-true cancer treatments like surgery, radiation, and chemotherapy, the disease continues to evolve and adapt, making new, more potent methods necessary. The field of cancer therapy is currently witnessing the emergence of a wide range of innovative approaches. Immunotherapy, including checkpoint inhibitors, CAR-T cell treatment, and cancer vaccines, utilizes the host's immune system to selectively target and eradicate malignant cells while minimizing harm to normal tissue. The development of targeted medicines like kinase inhibitors and monoclonal antibodies has allowed for more targeted and less harmful approaches to treating cancer. With the help of genomics and molecular profiling, "precision medicine" customizes therapies to each patient's unique genetic makeup to maximize therapeutic efficacy while minimizing unwanted side effects. Epigenetic therapies, metabolic interventions, radio-pharmaceuticals, and an increasing emphasis on combination therapy with synergistic effects further broaden the therapeutic landscape. Multiple-stage clinical trials are essential for determining the safety and efficacy of these novel drugs, allowing patients to gain access to novel treatments while also furthering scientific understanding. The future of cancer therapy is rife with promise, as the integration of artificial intelligence and big data has the potential to revolutionize early detection and prevention. Collaboration among researchers, and healthcare providers, and the active involvement of patients remain the bedrock of the ongoing battle against cancer. In conclusion, the dynamic and evolving landscape of cancer therapy provides hope for improved treatment outcomes, emphasizing a patient-centered, data-driven, and ethically grounded approach as we collectively strive towards a cancer-free world.
Collapse
|
31
|
Colley A, Brauns T, Sluder AE, Poznansky MC, Gemechu Y. Immunomodulatory drugs: a promising clinical ally for cancer immunotherapy. Trends Mol Med 2024; 30:765-780. [PMID: 38821771 DOI: 10.1016/j.molmed.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 06/02/2024]
Abstract
While immunomodulatory imide drugs (IMiDs) have been authorised for treatment of haematological cancers for over two decades, the appreciation of their ability to stimulate antitumour T cell and natural killer (NK) cell responses is relatively recent. Clinical trial data increasingly show that targeted immunotherapies, such as antibodies, T cells, and vaccines, improve outcomes when delivered in combination with the IMiD derivatives lenalidomide or pomalidomide. Here, we review these clinical data to highlight the relevance of IMiDs in combinatorial immunotherapy for both haematological and solid tumours. Further research into the molecular mechanisms of IMiDs and an increased understanding of their immunomodulatory effects may refine the specific applications of IMiDs and improve the design of future clinical trials, moving IMiDs to the forefront of combinatorial cancer immunotherapy.
Collapse
|
32
|
Russell GC, Hamzaoui Y, Rho D, Sutrave G, Choi JS, Missan DS, Reckard GA, Gustafson MP, Kim GB. Synthetic biology approaches for enhancing safety and specificity of CAR-T cell therapies for solid cancers. Cytotherapy 2024; 26:842-857. [PMID: 38639669 DOI: 10.1016/j.jcyt.2024.03.484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
CAR-T cell therapies have been successful in treating numerous hematologic malignancies as the T cell can be engineered to target a specific antigen associated with the disease. However, translating CAR-T cell therapies for solid cancers is proving more challenging due to the lack of truly tumor-associated antigens and the high risk of off-target toxicities. To combat this, numerous synthetic biology mechanisms are being incorporated to create safer and more specific CAR-T cells that can be spatiotemporally controlled with increased precision. Here, we seek to summarize and analyze the advancements for CAR-T cell therapies with respect to clinical implementation, from the perspective of synthetic biology and immunology. This review should serve as a resource for further investigation and growth within the field of personalized cellular therapies.
Collapse
|
33
|
Brijs J, Van Ham J, Dubois B, Sinap F, Vergote V, Dierickx D, Vandenberghe P. Single center, real-world retrospective study of CAR-T cell therapy for relapsed/refractory large B-cell lymphoma beyond second line: five-year results at the University Hospitals Leuven. Acta Clin Belg 2024; 79:276-284. [PMID: 39415456 DOI: 10.1080/17843286.2024.2399365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/28/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Large B-cell lymphomas (LBCL) are the most frequently aggressive B-cell non-Hodgkin lymphomas. Anti-CD19 chimeric antigen receptor (CAR)-T cell therapy has emerged as a new, powerful treatment for relapsed or refractory (R/R) disease. Two CAR-T cell products, tisagenlecleucel (tisa-cel,) and axicabtagene ciloleucel (axi-cel), are reimbursed in Belgium for R/R LBCL beyond second line. OBJECTIVES AND METHODS We conducted a retrospective cohort study to report the outcome with tisa-cel and axi-cel for R/R LBCL beyond second line in the years 2019-2023 at the University Hospitals Leuven for 79 patients selected for apheresis and CAR-T infusion. RESULTS Eleven patients (14%) did not proceed to CAR-T cell infusion. For infused patients (n = 68), the best overall response rate (ORR)/complete response (CR) rate was 64%/49% for tisa-cel and 88%/66% for axi-cel (p = 0.04 for ORR). After a median follow-up of 13.8 months, progression-free survival (PFS) and overall survival (OS) at 1 year were 30% and 43% for tisa-cel and 48% and 62% for axi-cel. Cytokine release syndrome (CRS) (all grades/grade ≥3) occurred in 82%/9% after tisa-cel and in 97%/0% after axi-cel. Immune effector cell-associated neurotoxicity syndrome (ICANS) (all grades/grade ≥3) occurred in 24%/18% after tisa-cel and in 54%/40% after axi-cel. The non-relapse mortality in the infusion cohort was 13%. CONCLUSION Our real-world data show high and durable response rates, with a non-significant trend towards a higher efficacy and higher toxicity for axi-cel compared to tisa-cel. Our results are in line with other real-world registries except for a shorter median OS and more high-grade ICANS.
Collapse
|
34
|
S S KD, Joga R, Srivastava S, Nagpal K, Dhamija I, Grover P, Kumar S. Regulatory landscape and challenges in CAR-T cell therapy development in the US, EU, Japan, and India. Eur J Pharm Biopharm 2024; 201:114361. [PMID: 38871092 DOI: 10.1016/j.ejpb.2024.114361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Chimeric Antigen Receptor-T cell (CAR-T) therapy has evolved as a revolutionary cancer treatment modality, offering remarkable clinical responses by harnessing the power of a patient's immune system to target and eliminate cancer cells. However, the development and commercialization of CAR-T cell therapies are accompanied by complex regulatory requirements and challenges. This therapy falls under the regulatory category of advanced therapy medicinal products. The regulatory framework and approval tools of regenerative medicine, especially CAR-T cell therapies, vary globally. The present work comprehensively analyses the regulatory landscape and challenges in CAR-T cell therapy development in four key regions: the United States, the European Union, Japan, and India. This work explores the unique requirements and considerations for preclinical studies, clinical trial design, manufacturing standards, safety evaluation, and post-marketing surveillance in each jurisdiction. Due to their complex nature, developers and manufacturers face several challenges. In India, despite advancements in treatment protocols and government-sponsorships, there are still several difficulties regarding access to treatment for the increasing number of cancer patients. However, India's first indigenously developed CAR-T cell therapy, NexCAR19, for B-cell lymphoma or leukemia, approved and available at a low cost compared to other available CAR-T therapies, raises great hope in the battle against cancer. Several strategies are proposed to address the identified hurdles from global and Indian perspectives. It discusses the benefits of aligning regulatory requirements across regions, eventually facilitating international development and enabling access to this transformative therapy.
Collapse
|
35
|
Wang Y, Zhao G, Xing S, Wang S, Li N. Commentary on "Mesothelin CAR-T cells expressing tumor-targeted immunocytokine IL-12 yield durable efficacy and fewer side effects". Pharmacol Res 2024; 206:107267. [PMID: 38925463 DOI: 10.1016/j.phrs.2024.107267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
|
36
|
Gao X, Liu J, Sun R, Zhang J, Cao X, Zhang Y, Zhao M. Alliance between titans: combination strategies of CAR-T cell therapy and oncolytic virus for the treatment of hematological malignancies. Ann Hematol 2024; 103:2569-2589. [PMID: 37853078 DOI: 10.1007/s00277-023-05488-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
There have been several clinical studies using chimeric antigen receptor (CAR)-T cell therapy for different hematological malignancies. It has transformed the therapy landscape for hematologic malignancies dramatically. Nonetheless, in acute myeloid leukemia (AML) and T cell malignancies, it still has a dismal prognosis. Even in the most promising locations, recurrence with CAR-T treatment remains a big concern. Oncolytic viruses (OVs) can directly lyse tumor cells or cause immune responses, and they can be manipulated to create therapeutic proteins, increasing anticancer efficacy. Oncolytic viruses have been proven in a rising number of studies to be beneficial in hematological malignancies. There are limitations that cannot be avoided by using either treatment alone, and the combination of CAR-T cell therapy and oncolytic virus therapy may complement the disadvantages of individual application, enhance the advantages of their respective treatment methods and improve the treatment effect. The alternatives for combining two therapies in hematological malignancies are discussed in this article.
Collapse
|
37
|
Garg P, Singhal S, Kulkarni P, Horne D, Malhotra J, Salgia R, Singhal SS. Advances in Non-Small Cell Lung Cancer: Current Insights and Future Directions. J Clin Med 2024; 13:4189. [PMID: 39064229 PMCID: PMC11278207 DOI: 10.3390/jcm13144189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The leading cause of cancer deaths worldwide is attributed to non-small cell lung cancer (NSCLC), necessitating a continual focus on improving the diagnosis and treatment of this disease. In this review, the latest breakthroughs and emerging trends in managing NSCLC are highlighted. Major advancements in diagnostic methods, including better imaging technologies and the utilization of molecular biomarkers, are discussed. These advancements have greatly enhanced early detection and personalized treatment plans. Significant improvements in patient outcomes have been achieved by new targeted therapies and immunotherapies, providing new hope for individuals with advanced NSCLC. This review discusses the persistent challenges in accessing advanced treatments and their associated costs despite recent progress. Promising research into new therapies, such as CAR-T cell therapy and oncolytic viruses, which could further revolutionize NSCLC treatment, is also highlighted. This review aims to inform and inspire continued efforts to improve outcomes for NSCLC patients globally, by offering a comprehensive overview of the current state of NSCLC treatment and future possibilities.
Collapse
|
38
|
Asghar K, Zafar M, Holland E, Abduljabbar AB, Albagoush SA, Asghar N, Sood A, Dufani JM, Thirumalaredy J, DeVrieze B, Tauseef A, Husnain M. A systematic review and meta-analysis on utilizing anti-CD19 chimeric antigen receptor T-cell therapy as a second-line treatment for relapsed and refractory diffuse large B-cell lymphoma. Front Oncol 2024; 14:1407001. [PMID: 39091918 PMCID: PMC11291309 DOI: 10.3389/fonc.2024.1407001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/20/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Inconsistent results observed in recent phase III trials assessing chimeric antigenic receptor T (CAR-T) cell therapy as a second-line treatment compared to standard of care (SOC) in patients with relapsed/refractory diffuse large B-cell lymphoma (R/R DLBCL) prompted a meta-analysis to assess the effectiveness of CAR-T cell therapy in this setting. Methods Random-effects meta-analysis was conducted to pool effect estimates for comparison between CAR-T cell therapy and SOC. Mixed treatment comparisons were made using a frequentist network meta-analysis approach. Results Meta-analysis of three trials with 865 patients showed significant improvement in event-free survival (EFS: HR: 0.51; 95% CI: 0.27-0.97; I2: 92%), progression-free survival (PFS: HR: 0.47; 95% CI: 0.37-0.60; I2: 0%) with CAR-T cell therapy compared to SOC. Although there was a signal of potential overall survival (OS) improvement with CAR-T cell therapy, the difference was not statistically significant between the two groups (HR 0.76; 95% CI: 0.56 to 1.03; I2: 29%). Mixed treatment comparisons showed significant EFS benefit with liso-cel (HR: 0.37; 95% CI: 0.22-0.61) and axi-cel (HR: 0.42; 95% CI: 0.29-0.61) compared to tisa-cel. Discussion CAR-T cell therapy, as a second-line treatment, appears to be effective in achieving higher response rates and delaying the disease progression compared to SOC in R/R DLBCL.
Collapse
|
39
|
Chen Q, Sun Y, Li H. Application of CAR-T cell therapy targeting mesothelin in solid tumor treatment. Discov Oncol 2024; 15:289. [PMID: 39023820 PMCID: PMC11258118 DOI: 10.1007/s12672-024-01159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy is one of the most effective immunotherapies. CAR-T-cell therapy has achieved great success in the treatment of hematological malignancies. However, due to the characteristics of solid malignant tumors, such as on-target effects, off-tumor toxicity, an immunosuppressive tumor microenvironment (TME), and insufficient trafficking, CAR-T-cell therapy for solid tumors is still in the exploration stage. Mesothelin (MSLN) is a molecule expressed on the surface of various solid malignant tumor cells that is suitable as a target of tumor cells with high MSLN expression for CAR-T-cell therapy. This paper briefly described the development of CAR-T cell therapy and the structural features of MSLN, and especially summarized the strategies of structure optimization of MSLN-targeting CAR-T-cells and the enhancement methods of MSLN-targeting CAR-T cell anti-tumor efficacy by summarizing some preclinical experiment and clinical trials. When considering MSLN-targeting CAR-T-cell therapy as an example, this paper summarizes the efforts made by researchers in CAR-T-cell therapy for solid tumors and summarizes feasible treatment plans by integrating the existing research results.
Collapse
|
40
|
Stewart MD, Kalos M, Coutinho V, Better M, Jazayeri J, Yohrling J, Jadlowsky J, Fuchs M, Gidwani S, Goessl C, Hanley PJ, Healy J, Liu W, McKelvey BA, Pearce L, Pilon-Thomas S, Andrews HS, Veldman M, Vong J, Weinbach SP, Allen JD. Accelerating the development of genetically engineered cellular therapies: a framework for extrapolating data across related products. Cytotherapy 2024; 26:778-784. [PMID: 38583170 DOI: 10.1016/j.jcyt.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Significant advancements have been made in the field of cellular therapy as anti-cancer treatments, with the approval of chimeric antigen receptor (CAR)-T cell therapies and the development of other genetically engineered cellular therapies. CAR-T cell therapies have demonstrated remarkable clinical outcomes in various hematological malignancies, establishing their potential to change the current cancer treatment paradigm. Due to the increasing importance of genetically engineered cellular therapies in the oncology treatment landscape, implementing strategies to expedite development and evidence generation for the next generation of cellular therapy products can have a positive impact on patients. METHODS We outline a risk-based methodology and assessment aid for the data extrapolation approach across related genetically engineered cellular therapy products. This systematic data extrapolation approach has applicability beyond CAR-T cells and can influence clinical development strategies for a variety of immune therapies such as T cell receptor (TCR) or genetically engineered and other cell-based therapies (e.g., tumor infiltrating lymphocytes, natural killer cells and macrophages). RESULTS By analyzing commonalities in manufacturing processes, clinical trial designs, and regulatory considerations, key learnings were identified. These insights support optimization of the development and regulatory approval of novel cellular therapies. CONCLUSIONS The field of cellular therapy holds immense promise in safely and effectively treating cancer. The ability to extrapolate data across related products presents opportunities to streamline the development process and accelerate the delivery of novel therapies to patients.
Collapse
|
41
|
Chawla SP, VAN Tine B, Federman N, Schwab J, Jones R, Subbiah V, Chawla NS, Afshar N, Hoos W, Feldman N, Spencer HT, Swaney W, Gordon EM. Proceedings of the Think Tank for Osteosarcoma Medical Advisory Board. Anticancer Res 2024; 44:2765-2768. [PMID: 38925853 DOI: 10.21873/anticanres.17139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
A "Think Tank for Osteosarcoma" medical advisory board meeting was held in Santa Monica, CA, USA on February 2-3, 2024. The goal was to develop a strategic approach to prevent recurrence of osteosarcoma. Osteosarcoma metabolism and the genomic instability of osteosarcoma, immunotherapy for osteosarcoma, CAR-T cell therapy, DeltaRex-G tumor-targeted gene therapy, repurposed drugs, alternative medicines, and personalized medicine were discussed. Only DeltaRex-G was voted on. The conclusions were the following: No intervention has been demonstrated to improve survival in a clinical trial. Additionally, the consensus (10/12 in favor) was that DeltaRex-G without immunotherapy may be administered for up to one year. Phase 2/3 randomized studies of DeltaRex-G should be performed to determine whether the incidence of recurrence could be reduced in high-risk individuals. Furthermore, a personalized approach using drugs with minimal toxicity could be attempted with the acknowledgement that there are no efficacy data to base this on. Repurposed drugs and alternative therapies should be tested in mouse models of osteosarcoma. Moreover, unmodified IL-2 primed Gamma Delta (NK) cell therapy may be used to prevent recurrence. Lastly, rapid development of CAR-T cell therapy is recommended, and an institute dedicated to the study of osteosarcoma is needed.
Collapse
|
42
|
Wolf EB, Imperial R, Jiang L, Agarwal AK, Tun HW. Clinical and Genomic Profile of Primary Cranial Neurolymphomatosis. J Blood Med 2024; 15:291-303. [PMID: 38947230 PMCID: PMC11212808 DOI: 10.2147/jbm.s459123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Primary cranial neurolymphomatosis (PCNL) is a rare subtype of primary CNS lymphoma (PCNSL) in which infiltrative lymphomatous involvement is confined to cranial nerves. Here, we report a case of PCNL with successful genomic profiling. A 57-year-old male had a lengthy prediagnostic phase spanning approximately 30 months, characterized by multiple episodes of cranial neuropathies managed by steroids. At the time of diagnosis, the patient had right-sided cranial neuropathies involving cranial nerves (CN) V, VI, and VII. Pathological findings of the right cavernous lesion biopsy were consistent with large B-cell lymphoma-infiltrating nerve fibers. The clinical course was aggressive and refractory, characterized by relentless progression with the development of cervical spinal neurolymphomatosis, cerebrospinal fluid involvement, and ependymal and intraparenchymal cerebral involvement, despite multiple lines of therapy, including chemoimmunotherapy, Bruton's tyrosine kinase inhibitor, radiation, autologous stem cell transplant, chimeric antigen receptor T-cell therapy (CAR-T), and whole-brain radiation. The patient survived for 22 months from the time of the initial diagnosis and 52 months after the first episode of cranial neuropathy. Next-generation sequencing identified mutations (MYD88, CD79b, and PIM1) that are frequently observed in PCNSL. The unusual findings included a total of 22 mutations involving PIM1, indicating a highly active aberrant somatic hypermutation and two missense CXCR4 mutations. CXCR4 mutations have never been described in PCNSL and may have implications for disease biology and therapeutic interventions. We provide a literature review to further elucidate PCNL.
Collapse
|
43
|
Szlasa W, Dybko J. Current status of bispecific antibodies and CAR-T therapies in multiple myeloma. Int Immunopharmacol 2024; 134:112043. [PMID: 38733817 DOI: 10.1016/j.intimp.2024.112043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/13/2024]
Abstract
Multiple myeloma (MM), a malignancy of plasma cells, is an incurable disease that is characterized by the neoplastic proliferation of plasma cells leading to extensive skeletal destruction. This includes osteolytic lesions, osteopenia, and pathologic fractures. MM is clinically manifested through bone pain, renal insufficiency, hypercalcemia, anemia, and recurrent infections. Its prevalence and the need for effective treatment underscore the importance of this research. Recent advancements in MM therapy have been significant, particularly with the integration of daratumumab into first-line treatments. The use of daratumumab in regimens such as DRD (Daratumumab, Revlimid, Dexamethasone) and D-RVd (Daratumumab, Lenalidomide, Bortezomib, Dexamethasone) represents a paradigm shift in the treatment landscape. GRIFFIN and CASSIOPEIA trials have highlighted the efficacy of these regimens, particularly in prolonging progression-free survival and deepening patient responses. The shift from older regimens like MPV (Melphalan, Prednisone, Velcade) to more effective ones like DRD and RVD has been pivotal in treatment strategies. This review also focuses on the potential of Chimeric Antigen Receptor T-cell therapy and bispecific antibodies in MM. CAR-T therapy, which has shown success in other hematological malignancies, is being explored for its ability to specifically target MM cells. The latest clinical trials and research findings are analyzed to evaluate the efficacy and challenges of CAR-T therapy in MM. Additionally, the role of bispecific antibodies, which are designed to bind both cancer cells and T cells, is explored. These antibodies offer a unique mechanism that could complement the effects of CAR-T therapy.
Collapse
|
44
|
Zhong N, Ma Q, Gong S, Shi Y, Zhao L, Wang D, Zhou H, Liu N, Ye Y, Wang J, Liu L, Guo Z. Rapid response in relapsed follicular lymphoma to novel anti-CD19 CAR-T therapy with pseudo-progression and cytomegalovirus infection: A case report. Int Immunopharmacol 2024; 134:112174. [PMID: 38703571 DOI: 10.1016/j.intimp.2024.112174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/28/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
CD19-directed chimeric antigen receptor (CAR) T cell therapy has been shown to achieve a considerably durable response in patients with refractory or relapsed B cell non-Hodgkin lymphomas. Most of these CARs were generated by lentivirus. With the exception of Yescarta and Tecartus, few patients with relapsed-/refractory- lymphoma have been treated clinically with a CARs using retroviral vector (RV). Here, we reported a relapsed/refractory grade 2 follicular lymphoma patient with multiple chemotherapy failures, and was treated with a novel CD19 CAR-T cell manufactured from a RV. After tumor burden was reduced with Obinutuzumab and Duvelisib, the patient was infused novel CD19 CAR-T cells at a dose of 3 × 106 cells/ kg. Then he experienced a rapid response and achieved almost complete remission by day 26. Only grade 2 CRS, bilateral submaxillary lymph node enlargement and cytomegalovirus (CMV) infection occurred without neurotoxicity, and the patient's condition improved after a series of symptomatic treatments. In addition, CAR copy number peaked at 532,350 copies/μg on day 15 and continued to expand for 5 months. This may be the first case report of RV preparation of novel CD19 CAR-T cells for direct treatment of recurrent follicular lymphoma. We will observe its long-term efficacy and conduct trials in more patients in the future.
Collapse
|
45
|
Kasuya H, Zhang H, Ito Y, Yoshikawa T, Nakashima T, Li Y, Matsukawa T, Inoue S, Kagoya Y. High CD62L expression predicts the generation of chimeric antigen receptor T cells with potent effector functions. Int Immunol 2024; 36:353-364. [PMID: 38517027 DOI: 10.1093/intimm/dxae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/20/2024] [Indexed: 03/23/2024] Open
Abstract
The efficient generation of chimeric antigen receptor (CAR) T cells is highly influenced by the quality of apheresed T cells. Healthy donor-derived T cells usually proliferate better than patients-derived T cells and are precious resources to generate off-the-shelf CAR-T cells. However, relatively little is known about the determinants that affect the efficient generation of CAR-T cells from healthy donor-derived peripheral blood mononuclear cells (PBMCs) compared with those from the patients' own PBMCs. We here examined the efficiency of CAR-T cell generation from multiple healthy donor samples and analyzed its association with the phenotypic features of the starting peripheral blood T cells. We found that CD62L expression levels within CD8+ T cells were significantly correlated with CAR-T cell expansion. Moreover, high CD62L expression within naïve T cells was associated with the efficient expansion of T cells with a stem cell-like memory phenotype, an indicator of high-quality infusion products. Intriguingly, genetic disruption of CD62L significantly impaired CAR-T cell proliferation and cytokine production upon antigen stimulation. Conversely, ectopic expression of a shedding-resistant CD62L mutant augmented CAR-T cell effector functions compared to unmodified CAR-T cells, resulting in improved antitumor activity in vivo. Collectively, we identified the surface expression of CD62L as a concise indicator of potent T-cell proliferation. CD62L expression is also associated with the functional properties of CAR-T cells. These findings are potentially applicable to selecting optimal donors to massively generate CAR-T cell products.
Collapse
|
46
|
Sun Z, Wang C, Zhao Y, Ling Q. CAR-T cell therapy in advanced thyroid cancer: from basic to clinical. Front Immunol 2024; 15:1411300. [PMID: 38911868 PMCID: PMC11190081 DOI: 10.3389/fimmu.2024.1411300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
The majority of patients with thyroid cancer can attain a favorable prognosis with a comprehensive treatment program based on surgical treatment. However, the current treatment options for advanced thyroid cancer are still limited. In recent years, chimeric antigen receptor-modified T-cell (CAR-T) therapy has received widespread attention in the field of oncology treatment. It has achieved remarkable results in the treatment of hematologic tumors. However, due to the constraints of multiple factors, the therapeutic efficacy of CAR-T therapy for solid tumors, including thyroid cancer, has not yet met expectations. This review outlines the fundamental structure and treatment strategies of CAR-T cells, provides an overview of the advancements in both preclinical investigations and clinical trials focusing on targets associated with CAR-T cell therapy in treating thyroid cancer, and discusses the challenges and solutions to CAR-T cell therapy for thyroid cancer. In conclusion, CAR-T cell therapy is a promising therapeutic approach for thyroid cancer, and we hope that our review will provide a timely and updated study of CAR-T cell therapy for thyroid cancer to advance the field.
Collapse
|
47
|
Kisielewski D, Naegele M. Advanced Practice Nursing and CAR-T Cell Therapy: Opportunities, Challenges and Future Directions. Semin Oncol Nurs 2024; 40:151628. [PMID: 38594105 DOI: 10.1016/j.soncn.2024.151628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
OBJECTIVES Chimeric antigen receptor (CAR)-T cell therapy is a new treatment for patients with myeloma and other B cell malignancies where advanced practice nurses (APN) can make a great contribution. The aim of this review is to identify key aspects of current literature relevant to APNs working with this population. METHODS Discussion of selected peer-reviewed literature and best practice guidelines found through electronic database searches (CINAHL, MEDLINE). RESULTS Although few APN roles in CAR-T cell therapy have been published to date, recent research suggests that the APN is central to the care of these patients. They are essential for continuity of care and navigation through the treatment process, providing an important and consistent point of contact for patients' and carers' anxieties and uncertainties. APNs play a central role in symptom management, as they constantly incorporate new experience and scientific findings into the refinement of existing protocols. The continuum of care extends far beyond the inpatient stay and addresses symptoms that may persist long after cytokine release syndrome and neurotoxicity have resolved. The APN may therefore make a relevant contribution to patients' health-related quality of life, given its likely correlation with the dynamics and intensity of treatment-related symptoms. The APN also takes on a leadership role in the treatment team. CONCLUSIONS APNs use all core competencies to sustainably support and empower patients and caregivers. This is achieved through counseling and education, in addition to identifying, developing, and implementing evidence-based symptom management. They play pivotal roles in introducing new CAR-T cell products, educating teams, and advancing their role through APN networks. Finally, APNs are integral members of multiprofessional teams, supporting colleagues in ethically challenging patient situations. IMPLICATIONS FOR NURSING PRACTICE APNs in the field of CAR-T cell therapy make an important contribution to the continuous care of patients, caregivers, and treatment teams.
Collapse
|
48
|
Utkarsh K, Srivastava N, Kumar S, Khan A, Dagar G, Kumar M, Singh M, Haque S. CAR-T cell therapy: a game-changer in cancer treatment and beyond. Clin Transl Oncol 2024; 26:1300-1318. [PMID: 38244129 DOI: 10.1007/s12094-023-03368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024]
Abstract
In recent years, cancer has become one of the primary causes of mortality, approximately 10 million deaths worldwide each year. The most advanced, chimeric antigen receptor (CAR) T cell immunotherapy has turned out as a promising treatment for cancer. CAR-T cell therapy involves the genetic modification of T cells obtained from the patient's blood, and infusion back to the patients. CAR-T cell immunotherapy has led to a significant improvement in the remission rates of hematological cancers. CAR-T cell therapy presently limited to hematological cancers, there are ongoing efforts to develop additional CAR constructs such as bispecific CAR, tandem CAR, inhibitory CAR, combined antigens, CRISPR gene-editing, and nanoparticle delivery. With these advancements, CAR-T cell therapy holds promise concerning potential to improve upon traditional cancer treatments such as chemotherapy and radiation while reducing associated toxicities. This review covers recent advances and advantages of CAR-T cell immunotherapy.
Collapse
|
49
|
Hübel K. Optimizing Real-World Outcomes in High-Risk Relapsed/Refractory (r/r) FL with CAR-T Cell Therapy: A Vodcast and Case Example. Oncol Ther 2024; 12:217-221. [PMID: 38512599 PMCID: PMC11187031 DOI: 10.1007/s40487-024-00269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024] Open
Abstract
Follicular lymphoma (FL) is often considered a chronic disease with frequent relapses, shortening both response duration and survival after every relapse. Selecting the most appropriate therapy at the right time within the treatment timeline is key to optimize outcomes. The aim of this vodcast, featuring Dr. Kai Hübel, is to outline the severity of FL by referring to a patient case as well as highlight chimeric antigen receptor (CAR)-T cells as an effective therapy in relapsed/refractory (r/r) FL. The patient was in their early 50s, diagnosed with FL in the early 2010s and presented with a third relapse. The patient complained of night sweats and fatigue but was still capable of self-care (Eastern Cooperative Oncology Group Performance Status Scale 2). The patient received eight cycles of rituximab-cyclophosphamide-doxorubicin-vincristine-prednisolone (R-CHOP), followed by irradiation and rituximab maintenance (first-line) and then received rituximab 4 × weekly, followed by rituximab maintenance (second-line). The patient relapsed during rituximab maintenance; the patient was rituximab refractory. The patient received six cycles of bendamustine/obinutuzumab followed by obinutuzumab maintenance. The patient relapsed during obinutuzumab maintenance, achieved a partial remission after irradiation and was switched to R/lenalidomide. Due to several high-risk features, CAR-T cell therapy was initiated. Dr. Hubel underlines how earlier treatment with CAR-T cell therapy would have been beneficial for this patient. Results of the ELARA trial as well as comparative studies have shown tisagenlecleucel to be more effective than standard of care in extensively pretreated r/r FL, including high-risk patients. In conclusion, CAR-T cell therapy is a promising therapy option for patients with multiply r/r FL. A vodcast feature is available for this article.
Collapse
|
50
|
Wang Y, Zhao G, Xing S, Wang S, Li N. Breaking through the treatment desert of conventional mesothelin-targeted CAR-T cell therapy for malignant mesothelioma: A glimpse into the future. Pharmacol Res 2024; 204:107220. [PMID: 38768670 DOI: 10.1016/j.phrs.2024.107220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
|