26
|
Zhou Q, Pichlmeier S, Denz AM, Schreiner N, Straub T, Benitz S, Wolff J, Fahr L, Del Socorro Escobar Lopez M, Kleeff J, Mayerle J, Mahajan UM, Regel I. Altered histone acetylation patterns in pancreatic cancer cell lines induce subtype‑specific transcriptomic and phenotypical changes. Int J Oncol 2024; 64:26. [PMID: 38240084 PMCID: PMC10807649 DOI: 10.3892/ijo.2024.5614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/23/2023] [Indexed: 01/23/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at advanced tumor stages with chemotherapy as the only treatment option. Transcriptomic analysis has defined a classical and basal‑like PDAC subtype, which are regulated by epigenetic modification. The present study aimed to determine if drug‑induced epigenetic reprogramming of pancreatic cancer cells affects PDAC subtype identity and chemosensitivity. Classical and basal‑like PDAC cell lines PaTu‑S, Capan‑1, Capan‑2, Colo357, PaTu‑T, PANC‑1 and MIAPaCa‑2, were treated for a short (up to 96 h) and long (up to 30 weeks) period with histone acetyltransferase (HAT) and histone deacetylase (HDAC) inhibitors. The cells were analyzed using gene expression approaches, immunoblot analysis, and various cell assays to assess cell characteristics, such as proliferation, colony formation, cell migration and sensitivity to chemotherapeutic drugs. Classical and basal‑like PDAC cell lines showed pronounced epigenetic regulation of subtype‑specific genes through acetylation of lysine 27 on Histone H3 (H3K27ac). Moreover, classical cell lines revealed a significantly decreased expression of HDAC2 and increased total levels of H3K27ac in comparison with the basal‑like cell lines. Following HAT inhibitor treatment, classical cell lines exhibited a loss of epithelial marker gene expression, decreased chemotherapy response gene score and increased cell migration in vitro, indicating a tumor‑promoting phenotype. HDAC inhibitor treatment, however, exerted minimal reprogramming effects in both subtypes. Epigenetic reprogramming of classical and basal‑like tumor cells did not have a major impact on gemcitabine response, although the gemcitabine transporter gene SLC29A1 (solute carrier family 29 member 1) was epigenetically regulated.
Collapse
|
27
|
Kim D, Kim SH, Yoon C, Lee GM. Genome-wide CRISPR/Cas9 knockout screening to mitigate cell growth inhibition induced by histone deacetylase inhibitors in recombinant CHO cells. Biotechnol Bioeng 2024; 121:931-941. [PMID: 38013500 DOI: 10.1002/bit.28611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Histone deacetylase inhibitors (iHDACs) have been extensively studied as enhancers of therapeutic protein production in recombinant Chinese hamster ovary (CHO) (rCHO) cell cultures. However, the addition of iHDACs reduces the viable cell concentration (VCC) in rCHO cell cultures, thereby reducing their potential to enhance therapeutic protein production. To mitigate the negative effects of iHDACs on VCC, screening using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-based single-gene knockout (KO) library in rCHO cells was performed in the presence of CI994, a member of iHDACs, and 10 potential KO genes that enhanced the VCC of CI994-treated rCHO cells were identified. Among these, Bcor was validated as a promising KO target that improved VCC without negatively affecting the specific productivity in the presence of CI994. Bcor KO increased the VCC and therapeutic protein concentrations in both batch and fed-batch cultures in the presence of CI994. Taken together, these findings highlight the potential of the whole-genome CRISPR/Cas9-based single-gene KO cell library to identify KO target genes for the development of iHDAC-resistant rCHO cells for enhanced therapeutic protein production.
Collapse
|
28
|
Dawood WA, Fisher GM, Kinnen FJM, Anzenhofer C, Skinner-Adams T, Alves Avelar L, Asfaha Y, Kurz T, Andrews KT. Activity of alkoxyamide-based histone deacetylase inhibitors against Plasmodium falciparum malaria parasites. Exp Parasitol 2024; 258:108716. [PMID: 38340779 DOI: 10.1016/j.exppara.2024.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
There are more than 240 million cases of malaria and 600,000 associated deaths each year, most due to infection with Plasmodium falciparum parasites. While malaria treatment options exist, new drugs with novel modes of action are needed to address malaria parasite drug resistance. Protein lysine deacetylases (termed HDACs) are important epigenetic regulatory enzymes and prospective therapeutic targets for malaria. Here we report the antiplasmodial activity of a panel of 17 hydroxamate zinc binding group HDAC inhibitors with alkoxyamide linkers and different cap groups. The two most potent compounds (4a and 4b) were found to inhibit asexual P. falciparum growth with 50% inhibition concentrations (IC50's) of 0.07 μM and 0.09 μM, respectively, and demonstrated >200-fold more selectivity for P. falciparum parasites versus human neonatal foreskin fibroblasts (NFF). In situ hyperacetylation studies demonstrated that 4a, 4b and analogs caused P. falciparum histone H4 hyperacetylation, suggesting HDAC inhibition, with structure activity relationships providing information relevant to the design of new Plasmodium-specific aliphatic chain hydroxamate HDAC inhibitors.
Collapse
|
29
|
Kumari B, Kumari U, Singh DK, Husain GM, Patel DK, Shakya A, Singh RB, Modi GP, Singh GK. Molecular Targets of Valeric Acid: A Bioactive Natural Product for Endocrine, Metabolic, and Immunological Disorders. Endocr Metab Immune Disord Drug Targets 2024; 24:EMIDDT-EPUB-138582. [PMID: 38375842 DOI: 10.2174/0118715303262653231120043819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 10/06/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUNDS Postbiotics produced by gut microbiota have exhibited diverse pharmacological activities. Valeric acid, a postbiotic material produced by gut microbiota and some plant species like valerian, has been explored to have diverse pharmacological activities. METHODS This narrative review aims to summarise the beneficial role of valeric acid for different health conditions along with its underlying mechanism. In order to get ample scientific evidence, various databases like Science Direct, PubMed, Scopus, Google Scholar and Google were exhaustively explored to collect relevant information. Collected data were arranged and analyzed to reach meaningful a conclusion regarding the bioactivity profiling of valeric acid, its mechanism, and future prospects. RESULTS Valeric acid belongs to short-chain fatty acids (SCFAs) compounds like acetate, propionate, butyrate, pentanoic (valeric) acid, and hexanoic (caproic) acid. Valeric acid has been identified as one of the potent histone deacetylase (HDAC) inhibitors. In different preclinical in -vitro and in-vivo studies, valeric acid has been found to have anti-cancer, anti-diabetic, antihypertensive, anti-inflammatory, and immunomodulatory activity and affects molecular pathways of different diseases like Alzheimer's, Parkinson's, and epilepsy. CONCLUSION These findings highlight the role of valeric acid as a potential novel therapeutic agent for endocrine, metabolic and immunity-related health conditions, and it must be tested under clinical conditions to develop as a promising drug.
Collapse
|
30
|
Yue K, Sun S, Liu E, Liu J, Hou B, Qi K, Chou CJ, Jiang Y, Li X. HDAC/NAMPT dual inhibitors overcome initial drug-resistance in p53-null leukemia cells. Eur J Med Chem 2024; 266:116127. [PMID: 38224650 DOI: 10.1016/j.ejmech.2024.116127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024]
Abstract
The occurrence of cancer is closely related to metabolism and epigenetics. Histone deacetylases (HDACs) play a crucial role in the regulation of gene expression as epigenetic regulators, while nicotinamide phosphoribosyltransferase (NAMPT) is significantly involved in maintaining cellular metabolism. In this study, we rationally designed a series of novel HDAC/NAMPT dual inhibitors based on the structural similarity between HDAC and NAMPT inhibitors. The representative compounds 39a and 39h exhibit significant selective inhibitory activity on HDAC1-3 with IC50 values of 0.71-25.1 nM, while displaying modest activity against NAMPT. Compound 39h did not exhibit inhibitory activity against 370 kinases, demonstrating its target specificity. These two compounds exhibit potent anti-proliferative activity in multiple leukemia cell lines with low nanomolar IC50s. It is worth noticing that the dual inhibitors 39a and 39h overcome the primary resistance of HDAC or NAMPT single target inhibitor in p53-null AML cell lines, with the induction of apoptosis-related cell death. NMN recovers the cell death induced by HDAC/NAMPT dual inhibitors, which indicates the lethal effects are caused by the inhibition of NAD biosynthesis pathway as well as HDAC. This research provides an effective strategy to overcome the limitations of HDAC inhibitors in treating p53-null leukemia.
Collapse
|
31
|
Shao R, Suzuki T, Suyama M, Tsukada Y. The impact of selective HDAC inhibitors on the transcriptome of early mouse embryos. BMC Genomics 2024; 25:143. [PMID: 38317092 PMCID: PMC10840191 DOI: 10.1186/s12864-024-10029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Histone acetylation, which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), plays a crucial role in the control of gene expression. HDAC inhibitors (HDACi) have shown potential in cancer therapy; however, the specific roles of HDACs in early embryos remain unclear. Moreover, although some pan-HDACi have been used to maintain cellular undifferentiated states in early embryos, the specific mechanisms underlying their effects remain unknown. Thus, there remains a significant knowledge gap regarding the application of selective HDACi in early embryos. RESULTS To address this gap, we treated early embryos with two selective HDACi (MGCD0103 and T247). Subsequently, we collected and analyzed their transcriptome data at different developmental stages. Our findings unveiled a significant effect of HDACi treatment during the crucial 2-cell stage of zygotes, leading to a delay in embryonic development after T247 and an arrest at 2-cell stage after MGCD0103 administration. Furthermore, we elucidated the regulatory targets underlying this arrested embryonic development, which pinpointed the G2/M phase as the potential period of embryonic development arrest caused by MGCD0103. Moreover, our investigation provided a comprehensive profile of the biological processes that are affected by HDACi, with their main effects being predominantly localized in four aspects of zygotic gene activation (ZGA): RNA splicing, cell cycle regulation, autophagy, and transcription factor regulation. By exploring the transcriptional regulation and epigenetic features of the genes affected by HDACi, we made inferences regarding the potential main pathways via which HDACs affect gene expression in early embryos. Notably, Hdac7 exhibited a distinct response, highlighting its potential as a key player in early embryonic development. CONCLUSIONS Our study conducted a comprehensive analysis of the effects of HDACi on early embryonic development at the transcriptional level. The results demonstrated that HDACi significantly affected ZGA in embryos, elucidated the distinct actions of various selective HDACi, and identified specific biological pathways and mechanisms via which these inhibitors modulated early embryonic development.
Collapse
|
32
|
Nakatake M, Kurosaki H, Nakamura T. Histone deacetylase inhibitor boosts anticancer potential of fusogenic oncolytic vaccinia virus by enhancing cell-cell fusion. Cancer Sci 2024; 115:600-610. [PMID: 38037288 PMCID: PMC10859623 DOI: 10.1111/cas.16032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Oncolytic viruses have two anticancer functions: direct oncolysis and elicitation of antitumor immunity. We previously developed a novel fusogenic oncolytic vaccinia virus (FUVAC) from a non-fusogenic vaccinia virus (VV) and, by remodeling the tumor immune microenvironment, we demonstrated that FUVAC induced stronger oncolysis and antitumor immune responses compared with non-fusogenic VV. These functions depend strongly on cell-cell fusion induction. However, FUVAC tends to have decreased fusion activity in cells with low virus replication efficacy. Therefore, another combination strategy was required to increase cell-cell fusion in these cells. Histone deacetylase (HDAC) inhibitors suppress the host virus defense response and promote viral replication. Therefore, in this study, we selected an HDAC inhibitor, trichostatin A (TSA), as the combination agent for FUVAC to enhance its fusion-based antitumor potential. TSA was added prior to FUVAC treatment of murine tumor B16-F10 and CT26 cells. TSA increased the replication of both FUVAC and parental non-fusogenic VV. Moreover, TSA enhanced cell-cell fusion and FUVAC cytotoxicity in these tumor cells in a dose-dependent manner. Transcriptome analysis revealed that TSA-treated tumors showed altered expression of cellular component-related genes, which may affect fusion tolerance. In a bilateral tumor-bearing mouse model, combination treatment of TSA and FUVAC significantly prolonged mouse survival compared with either treatment alone or in combination with non-fusogenic VV. Our findings demonstrate that TSA is a potent enhancer of cell-cell fusion efficacy of FUVAC.
Collapse
|
33
|
Ishii D, Shindo Y, Arai W, Konno T, Kohno T, Honda K, Miyajima M, Watanabe A, Kojima T. The Roles and Regulatory Mechanisms of Tight Junction Protein Cingulin and Transcription Factor Forkhead Box Protein O1 in Human Lung Adenocarcinoma A549 Cells and Normal Lung Epithelial Cells. Int J Mol Sci 2024; 25:1411. [PMID: 38338691 PMCID: PMC10855320 DOI: 10.3390/ijms25031411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Tight junction (TJ) protein cingulin (CGN) and transcription factor forkhead box protein O1 (FOXO1) contribute to the development of various cancers. Histone deacetylase (HDAC) inhibitors have a potential therapeutic role for some cancers. HDAC inhibitors affect the expression of both CGN and FOXO1. However, the roles and regulatory mechanisms of CGN and FOXO1 are unknown in non-small cell lung cancer (NSCLC) and normal human lung epithelial (HLE) cells. In the present study, to investigate the effects of CGN and FOXO1 on the malignancy of NSCLC, we used A549 cells as human lung adenocarcinoma and primary human lung epithelial (HLE) cells as normal lung tissues and performed the knockdown of CGN and FOXO1 by siRNAs. Furthermore, to investigate the detailed mechanisms in the antitumor effects of HDAC inhibitors for NSCLC via CGN and FOXO1, A549 cells and HLE cells were treated with the HDAC inhibitors trichostatin A (TSA) and Quisinostat (JNJ-2648158). In A549 cells, the knockdown of CGN increased bicellular TJ protein claudin-2 (CLDN-2) via mitogen-activated protein kinase/adenosine monophosphate-activated protein kinase (MAPK/AMPK) pathways and induced cell migration, while the knockdown of FOXO1 increased claudin-4 (CLDN-4), decreased CGN, and induced cell proliferation. The knockdown of CGN and FOXO1 induced cell metabolism in A549 cells. TSA and Quisinostat increased CGN and tricellular TJ protein angulin-1/lipolysis-stimulated lipoprotein receptor (LSR) in A549. In normal HLE cells, the knockdown of CGN and FOXO1 increased CLDN-4, while HDAC inhibitors increased CGN and CLDN-4. In conclusion, the knockdown of CGN via FOXO1 contributes to the malignancy of NSCLC. Both HDAC inhibitors, TSA and Quisinostat, may have potential for use in therapy for lung adenocarcinoma via changes in the expression of CGN and FOXO1.
Collapse
|
34
|
Valdez BC, Yuan B, Murray D, Ramdial JL, Nieto Y, Popat U, Tang X, Andersson BS. Synergistic cytotoxicity of fludarabine, clofarabine, busulfan, vorinostat and olaparib in AML cells. Front Oncol 2023; 13:1287444. [PMID: 38074694 PMCID: PMC10701888 DOI: 10.3389/fonc.2023.1287444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/08/2023] [Indexed: 02/12/2024] Open
Abstract
Combinations of nucleoside analog(s) and DNA alkylating agent(s) are used for cancer treatment as components of pre-transplant regimens used in hematopoietic stem cell transplantation. Their efficacies are enhanced by combining drugs with different mechanisms of action, which also allows a reduction in the individual drug dosages and thus potentially in toxicity to the patient. We hypothesized that addition of SAHA and olaparib, an HDAC- and a PARP-inhibitor, respectively, to the established combination of fludarabine, clofarabine and busulfan would enhance AML cell cytotoxicity. Exposure of the AML cell lines KBM3/Bu2506, MV4-11, MOLM14 and OCI-AML3 to the 5-drug combination resulted in synergistic cytotoxicity with combination indexes < 1. Increased protein acetylation and decreased poly(ADP-ribosyl)ation were observed, as expected. Activation of apoptosis was suggested by cleavage of Caspase 3 and PARP1, DNA fragmentation, increased reactive oxygen species, and decreased mitochondrial membrane potential. The reduction in poly(ADP-ribosyl)ation was independent of caspase activation. Several proteins involved in DNA damage response and repair were downregulated, which may be contributing factors for the observed synergism. The increased phosphorylation of DNAPKcs suggests inhibition of its kinase activity and diminution of its role in DNA repair. A similar synergism was observed in patient-derived cell samples. These findings will be important in designing clinical trials using these drug combinations as pre-transplant conditioning regimens for AML patients.
Collapse
|
35
|
Jia G, Qi K, Hou B, Yue K, Xu T, Jiang Y, Li X. Design, synthesis, and biological evaluation of novel HDAC/CD13 dual inhibitors for the treatment of cancer. Eur J Med Chem 2023; 260:115752. [PMID: 37647727 DOI: 10.1016/j.ejmech.2023.115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Aminopeptidase N (APN/CD13) plays a role in tumors progression, but its inhibitor lacks cytotoxicity and is used as an adjuvant drug in cancer treatment. Histone deacetylases (HDACs) are a type of epigenetic targets, and HDAC inhibitors are cytotoxic and exhibit synergistic effects with other anticancer agents. Herein, a novel series of HDAC/CD13 dual inhibitors were rationally designed and synthesized to combine the anti-metastasis and anti-invasion of CD13 inhibitor with the cytotoxic of HDAC inhibitor. The representative compound 12 exhibited more potent inhibitory activity against human CD13, HDAC1-3, and antiproliferative activity than positive controls bestatin and SAHA. Compound 12 effectively induced apoptosis in MV4-11 cells, while arresting A549 cells in G2/M phase. Moreover, 12 exhibited significantly better anti-metastasis and anti-invasion effects than mono-inhibitors 32 and 38, indicating that it is a promising anti-cancer agent for further investigation.
Collapse
|
36
|
Chen Z, Yang X, Chen Z, Li M, Wang W, Yang R, Wang Z, Ma Y, Xu Y, Ao S, Liang L, Cai C, Wang C, Deng T, Gu D, Zhou H, Zeng G. A new histone deacetylase inhibitor remodels the tumor microenvironment by deletion of polymorphonuclear myeloid-derived suppressor cells and sensitizes prostate cancer to immunotherapy. BMC Med 2023; 21:402. [PMID: 37880708 PMCID: PMC10601128 DOI: 10.1186/s12916-023-03094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the most common malignancy diagnosed in men. Immune checkpoint blockade (ICB) alone showed disappointing results in PCa. It is partly due to the formation of immunosuppressive tumor microenvironment (TME) could not be reversed effectively by ICB alone. METHODS We used PCa cell lines to evaluate the combined effects of CN133 and anti-PD-1 in the subcutaneous and osseous PCa mice models, as well as the underlying mechanisms. RESULTS We found that CN133 could reduce the infiltration of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), and CN133 combination with anti-PD-1 could augment antitumor effects in the subcutaneous PCa of allograft models. However, anti-PD-1 combination with CN133 failed to elicit an anti-tumor response to the bone metastatic PCa mice. Mechanistically, CN133 could inhibit the infiltration of PMN-MDSCs in the TME of soft tissues by downregulation gene expression of PMN-MDSC recruitment but not change the gene expression involved in PMN-MDSC activation in the CN133 and anti-PD-1 co-treatment group relative to the anti-PD-1 alone in the bone metastatic mice model. CONCLUSIONS Taken together, our work firstly demonstrated that combination of CN133 with anti-PD-1 therapy may increase the therapeutic efficacy to PCa by reactivation of the positive immune microenvironment in the TME of soft tissue PCa.
Collapse
|
37
|
Krauze AV, Zhao Y, Li MC, Shih J, Jiang W, Tasci E, Cooley Zgela T, Sproull M, Mackey M, Shankavaram U, Tofilon P, Camphausen K. Revisiting Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients with Glioblastoma-Proteomic Alteration and Comparison Analysis with the Standard-of-Care Chemoirradiation. Biomolecules 2023; 13:1499. [PMID: 37892181 PMCID: PMC10604983 DOI: 10.3390/biom13101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common brain tumor with an overall survival (OS) of less than 30% at two years. Valproic acid (VPA) demonstrated survival benefits documented in retrospective and prospective trials, when used in combination with chemo-radiotherapy (CRT). PURPOSE The primary goal of this study was to examine if the differential alteration in proteomic expression pre vs. post-completion of concurrent chemoirradiation (CRT) is present with the addition of VPA as compared to standard-of-care CRT. The second goal was to explore the associations between the proteomic alterations in response to VPA/RT/TMZ correlated to patient outcomes. The third goal was to use the proteomic profile to determine the mechanism of action of VPA in this setting. MATERIALS AND METHODS Serum obtained pre- and post-CRT was analyzed using an aptamer-based SOMAScan® proteomic assay. Twenty-nine patients received CRT plus VPA, and 53 patients received CRT alone. Clinical data were obtained via a database and chart review. Tests for differences in protein expression changes between radiation therapy (RT) with or without VPA were conducted for individual proteins using two-sided t-tests, considering p-values of <0.05 as significant. Adjustment for age, sex, and other clinical covariates and hierarchical clustering of significant differentially expressed proteins was carried out, and Gene Set Enrichment analyses were performed using the Hallmark gene sets. Univariate Cox proportional hazards models were used to test the individual protein expression changes for an association with survival. The lasso Cox regression method and 10-fold cross-validation were employed to test the combinations of expression changes of proteins that could predict survival. Predictiveness curves were plotted for significant proteins for VPA response (p-value < 0.005) to show the survival probability vs. the protein expression percentiles. RESULTS A total of 124 proteins were identified pre- vs. post-CRT that were differentially expressed between the cohorts who received CRT plus VPA and those who received CRT alone. Clinical factors did not confound the results, and distinct proteomic clustering in the VPA-treated population was identified. Time-dependent ROC curves for OS and PFS for landmark times of 20 months and 6 months, respectively, revealed AUC of 0.531, 0.756, 0.774 for OS and 0.535, 0.723, 0.806 for PFS for protein expression, clinical factors, and the combination of protein expression and clinical factors, respectively, indicating that the proteome can provide additional survival risk discrimination to that already provided by the standard clinical factors with a greater impact on PFS. Several proteins of interest were identified. Alterations in GALNT14 (increased) and CCL17 (decreased) (p = 0.003 and 0.003, respectively, FDR 0.198 for both) were associated with an improvement in both OS and PFS. The pre-CRT protein expression revealed 480 proteins predictive for OS and 212 for PFS (p < 0.05), of which 112 overlapped between OS and PFS. However, FDR-adjusted p values were high, with OS (the smallest p value of 0.586) and PFS (the smallest p value of 0.998). The protein PLCD3 had the lowest p-value (p = 0.002 and 0.0004 for OS and PFS, respectively), and its elevation prior to CRT predicted superior OS and PFS with VPA administration. Cancer hallmark genesets associated with proteomic alteration observed with the administration of VPA aligned with known signal transduction pathways of this agent in malignancy and non-malignancy settings, and GBM signaling, and included epithelial-mesenchymal transition, hedgehog signaling, Il6/JAK/STAT3, coagulation, NOTCH, apical junction, xenobiotic metabolism, and complement signaling. CONCLUSIONS Differential alteration in proteomic expression pre- vs. post-completion of concurrent chemoirradiation (CRT) is present with the addition of VPA. Using pre- vs. post-data, prognostic proteins emerged in the analysis. Using pre-CRT data, potentially predictive proteins were identified. The protein signals and hallmark gene sets associated with the alteration in the proteome identified between patients who received VPA and those who did not, align with known biological mechanisms of action of VPA and may allow for the identification of novel biomarkers associated with outcomes that can help advance the study of VPA in future prospective trials.
Collapse
|
38
|
Mendonza JJ, Reddy ST, Dutta H, Makani VKK, Uppuluri VM, Jain N, Bhadra MP. Retinoic acid and evernyl-based menadione-triazole hybrid cooperate to induce differentiation of neuroblastoma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2651-2665. [PMID: 37097334 DOI: 10.1007/s00210-023-02489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Neuroblastoma arises when immature neural precursor cells do not mature into specialized cells. Although retinoic acid (RA), a pro-differentiation agent, improves the survival of low-grade neuroblastoma, resistance to retinoic acid is found in high-grade neuroblastoma patients. Histone deacetylases (HDAC) inhibitors induce differentiation and arrest the growth of cancer cells; however, HDAC inhibitors are FDA-approved mostly for liquid tumors. Therefore, combining histone deacetylase (HDAC) inhibitors and retinoic acid can be explored as a strategy to trigger the differentiation of neuroblastoma cells and to overcome resistance to retinoic acid. Based on this rationale, in this study, we linked evernyl group and menadione-triazole motifs to synthesize evernyl-based menadione-triazole hybrids and asked if the hybrids cooperate with retinoic acid to trigger the differentiation of neuroblastoma cells. To answer this question, we treated neuroblastoma cells using evernyl-based menadione-triazole hybrids (6a-6i) or RA or both and examined the differentiation of neuroblastoma cells. Among the hybrids, we found that compound 6b inhibits class-I HDAC activity, induces differentiation, and RA co-treatments increase 6b-induced differentiation of neuroblastoma cells. In addition, 6b reduces cell proliferation, induces expression of differentiation-specific microRNAs leading to N-Myc downregulation, and RA co-treatments enhance the 6b-induced effects. We observed that 6b and RA trigger a switch from glycolysis to oxidative phosphorylation, maintain mitochondrial polarization, and increase oxygen consumption rate. We conclude that in evernyl-based menadione-triazole hybrid, 6b cooperates with RA to induce differentiation of neuroblastoma cells. Based on our results, we suggest that combining RA and 6b can be pursued as therapy for neuroblastoma. Schematic representation of RA and 6b in inducing differentiation of neuroblastoma cells.
Collapse
|
39
|
Liang XL, Ouyang L, Yu NN, Sun ZH, Gui ZK, Niu YL, He QY, Zhang J, Wang Y. Histone deacetylase inhibitor pracinostat suppresses colorectal cancer by inducing CDK5-Drp1 signaling-mediated peripheral mitofission. J Pharm Anal 2023; 13:1168-1182. [PMID: 38024857 PMCID: PMC10657975 DOI: 10.1016/j.jpha.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 12/01/2023] Open
Abstract
Divisions at the periphery and midzone of mitochondria are two fission signatures that determine the fate of mitochondria and cells. Pharmacological induction of excessively asymmetric mitofission-associated cell death (MFAD) by switching the scission position from the mitochondrial midzone to the periphery represents a promising strategy for anticancer therapy. By screening a series of pan-inhibitors, we identified pracinostat, a pan-histone deacetylase (HDAC) inhibitor, as a novel MFAD inducer, that exhibited a significant anticancer effect on colorectal cancer (CRC) in vivo and in vitro. Pracinostat increased the expression of cyclin-dependent kinase 5 (CDK5) and induced its acetylation at residue lysine 33, accelerating the formation of complex CDK5/CDK5 regulatory subunit 1 and dynamin-related protein 1 (Drp1)-mediated mitochondrial peripheral fission. CRC cells with high level of CDK5 (CDK5-high) displayed midzone mitochondrial division that was associated with oncogenic phenotype, but treatment with pracinostat led to a lethal increase in the already-elevated level of CDK5 in the CRC cells. Mechanistically, pracinostat switched the scission position from the mitochondrial midzone to the periphery by improving the binding of Drp1 from mitochondrial fission factor (MFF) to mitochondrial fission 1 protein (FIS1). Thus, our results revealed the anticancer mechanism of HDACi pracinostat in CRC via activating CDK5-Drp1 signaling to cause selective MFAD of those CDK5-high tumor cells, which implicates a new paradigm to develop potential therapeutic strategies for CRC treatment.
Collapse
|
40
|
Baek SY, Lee J, Kim T, Lee H, Choi HS, Park H, Koh M, Kim E, Jung ME, Iliopoulos D, Lee JY, Kim J, Lee S. Development of a novel histone deacetylase inhibitor unveils the role of HDAC11 in alleviating depression by inhibition of microglial activation. Biomed Pharmacother 2023; 166:115312. [PMID: 37567072 DOI: 10.1016/j.biopha.2023.115312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
Histone deacetylases (HDACs) are key epigenetic regulators and classified into four subtypes. Despite the various roles of each HDAC isoform, the lack of selective HDAC inhibitors has limited the elucidation of their roles in biological systems. HDAC11, the sole class-IV HDAC, is highly expressed in the brain, however, the role of HDAC11 in microglia is not fully understood. Based on the modification of MC1568, we developed a novel HDAC inhibitor, 5. Interestingly, 5 suppresses lipopolysaccharide-induced microglial activation by the initiation of autophagy and subsequent inhibition of nitric oxide production. Furthermore, we demonstrated that 5 significantly alleviates depression-like behavior by inhibiting microglial activation in mouse brain. Our discovery reveals that specific pharmacological regulation of HDAC11 induces autophagy and reactive nitrogen species balance in microglia for the first time, which makes HDAC11 a new therapeutic target for depressive disorder.
Collapse
|
41
|
Han R, Ling C, Wang Y, Lu L. Enhancing HCC Treatment: innovatively combining HDAC2 inhibitor with PD-1/PD-L1 inhibition. Cancer Cell Int 2023; 23:203. [PMID: 37716965 PMCID: PMC10504701 DOI: 10.1186/s12935-023-03051-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/03/2023] [Indexed: 09/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy with high morbidity and mortality but lacks effective treatments thus far. Although the emergence of immune checkpoint inhibitors in recent years has shed light on the treatment of HCC, a considerable number of patients are still unable to achieve durable and ideal clinical benefits. Therefore, refining the combination of immune checkpoint inhibitors (ICIs) to enhance the therapeutic effect has become a global research hotspot. Several histone deacetylase 2 inhibitors have shown advantages in ICIs in many solid cancers, except for HCC. Additionally, the latest evidence has shown that histone deacetylase 2 inhibition can regulate PD-L1 acetylation, thereby blocking the nuclear translocation of PD-L1 and consequently enhancing the efficacy of PD-1/PD-L1 inhibitors and improving anti-cancer immunity. Moreover, our team has recently discovered a novel HDAC2 inhibitor (HDAC2i), valetric acid (VA), that possesses great potential in HCC treatment as a monotherapy. Thus, a new combination strategy, combining HDAC2 inhibitors with ICIs, has emerged with significant development value. This perspective aims to ignite enthusiasm for exploring the application of ideal HDAC2 inhibitors with solid anti-tumor efficacy in combination with immunotherapy for HCC.
Collapse
|
42
|
Lee DY, Sudhandiran G, Sharma SD. Editorial: Reviews in radiation oncology. Front Oncol 2023; 13:1283431. [PMID: 37746255 PMCID: PMC10512018 DOI: 10.3389/fonc.2023.1283431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
|
43
|
Merati A, Kotian S, Acton A, Placzek W, Smithberger E, Shelton AK, Miller CR, Stern JL. Glioma Stem Cells Are Sensitized to BCL-2 Family Inhibition by Compromising Histone Deacetylases. Int J Mol Sci 2023; 24:13688. [PMID: 37761989 PMCID: PMC10530722 DOI: 10.3390/ijms241813688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastoma (GBM) remains an incurable disease with an extremely high five-year recurrence rate. We studied apoptosis in glioma stem cells (GSCs) in response to HDAC inhibition (HDACi) combined with MEK1/2 inhibition (MEKi) or BCL-2 family inhibitors. MEKi effectively combined with HDACi to suppress growth, induce cell cycle defects, and apoptosis, as well as to rescue the expression of the pro-apoptotic BH3-only proteins BIM and BMF. A RNAseq analysis of GSCs revealed that HDACi repressed the pro-survival BCL-2 family genes MCL1 and BCL-XL. We therefore replaced MEKi with BCL-2 family inhibitors and observed enhanced apoptosis. Conversely, a ligand for the cancer stem cell receptor CD44 led to reductions in BMF, BIM, and apoptosis. Our data strongly support further testing of HDACi in combination with MEKi or BCL-2 family inhibitors in glioma.
Collapse
|
44
|
Dennison J, Mendez A, Szeto A, Lohse I, Wahlestedt C, Volmar CH. Low-Dose Chidamide Treatment Displays Sex-Specific Differences in the 3xTg-AD Mouse. Biomolecules 2023; 13:1324. [PMID: 37759724 PMCID: PMC10526199 DOI: 10.3390/biom13091324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetic compounds have become attractive small molecules for targeting the multifaceted aspects of Alzheimer's disease (AD). Although AD disproportionately affects women, most of the current literature investigating epigenetic compounds for the treatment of AD do not report sex-specific results. This is remarkable because there is rising evidence that epigenetic compounds intrinsically affect males and females differently. This manuscript explores the sexual dimorphism observed after chronic, low-dose administration of a clinically relevant histone deacetylase inhibitor, chidamide (Tucidinostat), in the 3xTg-AD mouse model. We found that chidamide treatment significantly improves glucose tolerance and increases expression of glucose transporters in the brain of males. We also report a decrease in total tau in chidamide-treated mice. Differentially expressed genes in chidamide-treated mice were much greater in males than females. Genes involved in the neuroinflammatory pathway and amyloid processing pathway were mostly upregulated in chidamide-treated males while downregulated in chidamide-treated females. This work highlights the need for drug discovery projects to consider sex as a biological variable to facilitate translation.
Collapse
|
45
|
Ricciardi NR, Modarresi F, Lohse I, Andrade NS, Newman IR, Brown JM, Borja C, Marples B, Wahlestedt CR, Volmar CH. Investigating the Synergistic Potential of Low-Dose HDAC3 Inhibition and Radiotherapy in Alzheimer's Disease Models. Mol Neurobiol 2023; 60:4811-4827. [PMID: 37171575 PMCID: PMC10293392 DOI: 10.1007/s12035-023-03373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
We have previously shown that histone deacetylase (HDAC) inhibition and cranial radiotherapy (RT) independently improve molecular and behavioral Alzheimer's disease (AD)-like phenotypes. In the present study, we investigate the synergistic potential of using both RT and HDACi as a low-dose combination therapy (LDCT) to maximize disease modification (reduce neuroinflammation and amyloidogenic APP processing, increase neurotrophic gene expression) while minimizing the potential for treatment-associated side effects.LDCT consisted of daily administration of the HDAC3 inhibitor RGFP966 and/or bi-weekly cranial x-irradiation. Amyloid-beta precursor protein (APP) processing and innate immune response to LDCT were assessed in vitro and in vivo using human and murine cell models and 3xTg-AD mice. After 2 months of LDCT in mice, behavioral analyses as well as expression and modification of key AD-related targets (Aβ, tau, Csf1r, Bdnf, etc.) were assessed in the hippocampus (HIP) and prefrontal cortex (PFC).LDCT induced a tolerant, anti-inflammatory innate immune response in microglia and increased non-amyloidogenic APP processing in vitro. Both RT and LDCT improved the rate of learning and spatial memory in the Barnes maze test. LDCT induced a unique anti-AD HIP gene expression profile that included upregulation of neurotrophic genes and downregulation of inflammation-related genes. RT lowered HIP Aβ42/40 ratio and Bace1 protein, while LDCT lowered PFC p-tau181 and HIP Bace1 levels.Our study supports the rationale for combining complementary therapeutic approaches at low doses to target multifactorial AD pathology synergistically. Namely, LDCT with RGFP966 and cranial RT shows disease-modifying potential against a wide range of AD-related hallmarks.
Collapse
|
46
|
Peter RM, Sarwar MS, Mostafa SZ, Wang Y, Su X, Kong AN. Histone deacetylase inhibitor belinostat regulates metabolic reprogramming in killing KRAS-mutant human lung cancer cells. Mol Carcinog 2023; 62:1136-1146. [PMID: 37144836 PMCID: PMC10524423 DOI: 10.1002/mc.23551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Kirsten rat sarcoma virus (KRAS) oncogene, found in 20%-25% of lung cancer patients, potentially regulates metabolic reprogramming and redox status during tumorigenesis. Histone deacetylase (HDAC) inhibitors have been investigated for treating KRAS-mutant lung cancer. In the current study, we investigate the effect of HDAC inhibitor (HDACi) belinostat at clinically relevant concentration on nuclear factor erythroid 2-related factor 2 (NRF2) and mitochondrial metabolism for the treatment of KRAS-mutant human lung cancer. LC-MS metabolomic study of belinostat on mitochondrial metabolism was performed in G12C KRAS-mutant H358 non-small cell lung cancer cells. Furthermore, l-methionine (methyl-13 C) isotope tracer was used to explore the effect of belinostat on one-carbon metabolism. Bioinformatic analyses of metabolomic data were performed to identify the pattern of significantly regulated metabolites. To study the effect of belinostat on redox signaling ARE-NRF2 pathway, luciferase reporter activity assay was done in stably transfected HepG2-C8 cells (containing pARE-TI-luciferase construct), followed by qPCR analysis of NRF2 and its target gene in H358 cells, which was further confirmed in G12S KRAS-mutant A549 cells. Metabolomic study reveals significantly altered metabolites related to redox homeostasis, including tricarboxylic acid (TCA) cycle metabolites (citrate, aconitate, fumarate, malate, and α-ketoglutarate); urea cycle metabolites (Arginine, ornithine, argino-succinate, aspartate, and fumarate); and antioxidative glutathione metabolism pathway (GSH/GSSG and NAD/NADH ratio) after belinostat treatment. 13 C stable isotope labeling data indicates potential role of belinostat in creatine biosynthesis via methylation of guanidinoacetate. Moreover, belinostat downregulated the expression of NRF2 and its target gene NAD(P)H:quinone oxidoreductase 1 (NQO1), indicating anticancer effect of belinostat is mediated, potentially via Nrf2-regulated glutathione pathway. Another HDACi panobinostat also showed potential anticancer effect in both H358 and A549 cells via Nrf2 pathway. In summary, belinostat is effective in killing KRAS-mutant human lung cancer cells by regulating mitochondrial metabolism which could be used as biomarkers for preclinical and clinical studies.
Collapse
|
47
|
Giordano D, Scafuri B, De Masi L, Capasso L, Maresca V, Altucci L, Nebbioso A, Facchiano A, Bontempo P. Sirtuin Inhibitor Cambinol Induces Cell Differentiation and Differently Interferes with SIRT1 and 2 at the Substrate Binding Site. Biomedicines 2023; 11:1624. [PMID: 37371719 DOI: 10.3390/biomedicines11061624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Epigenetic mechanisms finely regulate gene expression and represent potential therapeutic targets. Cambinol is a synthetic heterocyclic compound that inhibits class III histone deacetylases known as sirtuins (SIRTs). The acetylating action that results could be crucial in modulating cellular functions via epigenetic regulations. The main aim of this research was to investigate the effects of cambinol, and its underlying mechanisms, on cell differentiation by combining wet experiments with bioinformatics analyses and molecular docking simulations. Our in vitro study evidenced the ability of cambinol to induce the differentiation in MCF-7, NB4, and 3T3-L1 cell lines. Interestingly, focusing on the latter that accumulated cytoplasmic lipid droplets, the first promising results related to the action mechanisms of cambinol have shown the induction of cell cycle-related proteins (such as p16 and p27) and modulation of the expression of Rb protein and nuclear receptors related to cell differentiation. Moreover, we explored the inhibitory mechanism of cambinol on human SIRT1 and 2 performing in silico molecular simulations by protein-ligand docking. Cambinol, unlike from other sirtuin inhibitors, is able to better interact with the substrate binding site of SIRT1 than with the inhibition site. Additionally, for SIRT2, cambinol partially interacts with the substrate binding site, although the inhibition site is preferred. Overall, our findings suggest that cambinol might contribute to the development of an alternative to the existing epigenetic therapies that modulate SIRTs.
Collapse
|
48
|
Camus V, Etancelin P, Drieux F, Veresezan E, Picquenot J, Penther D, Viennot M, Ruminy P, Contentin N, Lemasle E, Leprêtre S, Dubois S, Penichoux J, Stamatoullas A, Zduniak A, Lanic H, Jardin F. Complete hematologic response after belinostat treatment and allogeneic stem cell transplantation for multiple relapsed/refractory angioimmunoblastic T-cell lymphoma: A case report. Clin Case Rep 2023; 11:e7623. [PMID: 37361652 PMCID: PMC10290197 DOI: 10.1002/ccr3.7623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/03/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Key Clinical Message This case report highlights the potential of belinostat for the treatment of relapsed/refractory peripheral T-cell lymphomas, for which effective therapies are still scarce. Abstract Peripheral T-cell lymphomas have an aggressive disease course associated with poor outcomes. We report a young patient with highly pretreated relapsed/refractory nodal follicular helper T-cell lymphoma (angioimmunoblastic-type [nTFHL-AI]), who successfully received an allogeneic stem cell transplantation following belinostat therapy. The complete hematologic response achieved has lasted more than 2 years.
Collapse
|
49
|
Sawai T, Yamanegi K, Nishiura H, Futani H, Tachibana T. Sodium Valproate Enhances Semaphorin 3A-mediated Anti-angiogenesis and Tumor Growth Inhibition in Human Osteosarcoma Cells. Anticancer Res 2023; 43:2539-2550. [PMID: 37247909 DOI: 10.21873/anticanres.16421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 04/04/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND/AIM Class 3 semaphorins, including semaphorin 3A (SEMA3A), are known endogenous angiogenesis inhibitors associated with endothelial cell migration and proliferation, and have been identified in many cancer cells. SEMA3A suppresses tumor angiogenesis by competing with VEGF, but tumors are known to have active angiogenesis, suggesting that expression of SEMA3A and its receptors is epigenetically restrained. To overcome this condition, we aimed to use histone deacetylase (HDAC) inhibitors to enhance the SEMA3A expression in osteosarcoma (OS) cells, thereby suppressing angiogenesis and inhibiting their proliferation and metastasis. MATERIALS AND METHODS OS cell lines and human microvascular endothelial (HMVE) cells were treated with HDAC inhibitors such as sodium valproate (VPA) and Trichostatin A (TSA). Changes in the SEMA3A expression and its related receptors at the mRNA and protein levels, as well as the inhibitory effects on tumor angiogenesis, were investigated. RESULTS VPA and TSA increased the expression of SEMA3A and its receptor NRP1, without inducing PLXNA1 in OS cells. Similarly, SEMA3A and NRP1 expression was increased in HMVE cells, but no growth inhibition was observed. Furthermore, SEMA3A induced by VPA in OS cell culture medium inhibited vascular tube formation of HMVE cells, and overexpression of SEMA3A enhanced OS cell growth inhibition. This growth-inhibitory effect of SEMA3A induced G1/S cell cycle arrest in OS cells. CONCLUSION HDAC inhibitors have anti-angiogenic and anti-tumor activities that may be, in part, mediated via the SEMA3A/NRP1/PLXNA1 autocrine and paracrine pathways.
Collapse
|
50
|
Celesia A, Franzò M, Di Liberto D, Lauricella M, Carlisi D, D'Anneo A, Notaro A, Allegra M, Giuliano M, Emanuele S. Oncogenic BRAF and p53 Interplay in Melanoma Cells and the Effects of the HDAC Inhibitor ITF2357 (Givinostat). Int J Mol Sci 2023; 24:ijms24119148. [PMID: 37298104 DOI: 10.3390/ijms24119148] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Oncogenic BRAF mutations have been widely described in melanomas and promote tumour progression and chemoresistance. We previously provided evidence that the HDAC inhibitor ITF2357 (Givinostat) targets oncogenic BRAF in SK-MEL-28 and A375 melanoma cells. Here, we show that oncogenic BRAF localises to the nucleus of these cells, and the compound decreases BRAF levels in both the nuclear and cytosolic compartments. Although mutations in the tumour suppressor p53 gene are not equally frequent in melanomas compared to BRAF, the functional impairment of the p53 pathway may also contribute to melanoma development and aggressiveness. To understand whether oncogenic BRAF and p53 may cooperate, a possible interplay was considered in the two cell lines displaying a different p53 status, being p53 mutated into an oncogenic form in SK-MEL-28 and wild-type in A375 cells. Immunoprecipitation revealed that BRAF seems to preferentially interact with oncogenic p53. Interestingly, ITF2357 not only reduced BRAF levels but also oncogenic p53 levels in SK-MEL-28 cells. ITF2357 also targeted BRAF in A375 cells but not wild-type p53, which increased, most likely favouring apoptosis. Silencing experiments confirmed that the response to ITF2357 in BRAF-mutated cells depends on p53 status, thus providing a rationale for melanoma-targeted therapy.
Collapse
|