26
|
Zada S, Hwang JS, Lai TH, Pham TM, Ahmed M, Elashkar O, Kim W, Kim DR. Autophagy-mediated degradation of NOTCH1 intracellular domain controls the epithelial to mesenchymal transition and cancer metastasis. Cell Biosci 2022; 12:17. [PMID: 35164848 PMCID: PMC8842742 DOI: 10.1186/s13578-022-00752-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Backgound Autophagy controls levels of cellular components during normal and stress conditions; thus, it is a pivotal process for the maintenance of cell homeostasis. In cancer, autophagy protects cells from cancerous transformations that can result from genomic instability induced by reactive oxygen species or other damaged components, but it can also promote cancer survival by providing essential nutrients during the metabolic stress condition of cancer progression. However, the molecular mechanism underlying autophagy-dependent regulation of the epithelial to mesenchymal transition (EMT) and metastasis is still elusive. Methods The intracellular level of NOTCH1 intracellular domain (NICD) in several cancer cells was studied under starvation, treatment with chloroquine or ATG7-knockdown. The autophagy activity in these cells was assessed by immunocytochemistry and molecular analyses. Cancer cell migration and invasion under modulation of autophagy were determined by in vitro scratch and Matrigel assays. Results In the study, autophagy activation stimulated degradation of NICD, a key transcriptional regulator of the EMT and cancer metastasis. We also found that NICD binds directly to LC3 and that the NICD/LC3 complex associates with SNAI1 and sequestosome 1 (SQSTM1)/p62 proteins. Furthermore, the ATG7 knockdown significantly inhibited degradation of NICD under starvation independent of SQSTM1-associated proteasomal degradation. In addition, NICD degradation by autophagy associated with the cellular level of SNAI1. Indeed, autophagy inhibited nuclear translocation of NICD protein and consequently decreased the transcriptional activity of its target genes. Autophagy activation substantially suppressed in vitro cancer cell migration and invasion. We also observed that NICD and SNAI1 levels in tissues from human cervical and lung cancer patients correlated inversely with expression of autophagy-related proteins. Conclusions These findings suggest that the cellular level of NICD is regulated by autophagy during cancer progression and that targeting autophagy-dependent NICD/SNAI1 degradation could be a strategy for the development of cancer therapeutics. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00752-3.
Collapse
|
27
|
Zhao F, Ke J, Pan W, Pan H, Shen M. Synergistic effects of ISL1 and KDM6B on non-alcoholic fatty liver disease through the regulation of SNAI1. Mol Med 2022; 28:12. [PMID: 35100965 PMCID: PMC8802528 DOI: 10.1186/s10020-021-00428-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 12/20/2021] [Indexed: 11/15/2022] Open
Abstract
Background The increasing incidence of non-alcoholic fatty liver disease (NAFLD) has been reported worldwide, which urges understanding of its pathogenesis and development of more effective therapeutical methods for this chronic disease. In this study, we aimed to investigate the effects of a LIM homeodomain transcription factor, islet1 (ISL1) on NAFLD. Methods Male C57BL/6J mice were fed with a diet high in fat content to produce NAFLD models. These models were then treated with overexpressed ISL1 (oe-ISL1), oe-Lysine-specific demethylase 6B (KDM6B), oe-SNAI1, or short hairpin RNA against SNAI1. We assessed triglyceride and cholesterol contents in the plasma and liver tissues and determined the expressions of ISL1, KDM6B and SNAI1 in liver tissues. Moreover, the in vitro model of lipid accumulation was constructed using fatty acids to explore the in vitro effect of ISL1/KDM6B/SNAI1 in NAFLD. Results The results showed that the expressions of ISL1, KDM6B, and SNAI1 where decreased, but contents of triglyceride and cholesterol increased in mice exposed to high-fat diet. ISL1 inhibited lipogenesis and promoted lipolysis and exhibited a synergizing effect with KDM6B to upregulate the expression of SNAI1. Moreover, both KDM6B and SNAI1 could inhibit lipogenesis and induce lipolysis. Importantly, the therapeutic effects of ISL1 on in vitro model of lipid accumulations was also confirmed through the modulation of KDM6B and SNAI1. Conclusions Taken together, these findings highlighted that ISL1 effectively ameliorated NAFLD by inducing the expressions of KDM6B and SNAI1, which might be a promising drug for the treatment of NAFLD. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00428-7.
Collapse
|
28
|
Guo Y, Sun P, Guo W, Yin Q, Han J, Sheng S, Liang J, Dong Z. LncRNA DDX11 antisense RNA 1 promotes EMT process of esophageal squamous cell carcinoma by sponging miR-30d-5p to regulate SNAI1/ZEB2 expression and Wnt/β-catenin pathway. Bioengineered 2021; 12:11425-11440. [PMID: 34866524 PMCID: PMC8810181 DOI: 10.1080/21655979.2021.2008759] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
LncRNA DDX11 antisense RNA 1 (DDX11-AS1) is recognized as having an imperative oncogenic role in different types of human cancer. Nevertheless, the functions, as well as the basic mechanisms of DDX11-AS1 in the EMT process of esophageal squamous cell carcinoma (ESCC), are yet to be clarified. In this research, high DDX11-AS1 expression was detected in ESCC cells as well as tissues and was linked to the poor prognosis of patients with ESCC. DDX11-AS1 promoted cell proliferation, migration, invasion ability and epithelial mesenchymal transition (EMT) process in vitro. Mechanistic analysis depicted that DDX11-AS1 may function as a ceRNA through sponging miR-30d-5p to upregulate the expression of SNAI1 and ZEB2. Meanwhile, overexpression of DDX11-AS1 might cause the activation of the Wnt/β-catenin signaling pathway via targeting miR-30d-5p. On the whole, the findings of this research illustrate that DDX11-AS1 may act as an EMT-related lncRNA to advance ESCC progression through sponging miR-30d-5p to regulate SNAI1/ZEB2 expression and activate the Wnt/β-catenin pathway, which indicates that it might serve as a probable therapeutic target for ESCC.
Collapse
|
29
|
Shen T, Yue C, Wang X, Wang Z, Wu Y, Zhao C, Chang P, Sun X, Wang W. NFATc1 promotes epithelial-mesenchymal transition and facilitates colorectal cancer metastasis by targeting SNAI1. Exp Cell Res 2021; 408:112854. [PMID: 34597678 DOI: 10.1016/j.yexcr.2021.112854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/16/2023]
Abstract
Metastatic recurrence remains a major cause of colorectal cancer (CRC) mortality. In this study, we investigated the mechanistic role of nuclear factor of activated T cells 1 (NFATc1) in CRC metastasis. First, we explored the potential role of NFATc1 in CRC using bioinformatics and hypothesized that NFATc1 might play different roles at different stages of CRC development. Then, we examined the relative expression of NFATc1 in 25 CRC tissues and adjacent normal tissues, and further analyzed the correlation between NFATc1 expression levels and clinical stages in 120 CRC patients. The role of NFATc1 in CRC metastasis and the molecular mechanisms were investigated in both in vitro and in vivo models. Our results showed that the expression of NFATc1 was increased in metastatic CRC tissues and positively associated with clinical stages (stage I vs. stage II, III or IV) of CRC. Overexpression of NFATc1 promoted CRC cell migration, invasion, and epithelial-mesenchymal transition (EMT). Moreover, SNAI1 was verified as the direct transcriptional target of NFATc1 and interacted with SLUG to promote EMT. Remarkably, our lung and liver metastasis mouse model demonstrated that NFATc1 overexpression accelerated CRC metastasis, and treatment with FK506, a calcineurin-NFAT pathway inhibitor, could suppress CRC metastasis in vivo. Taken together, our findings suggest that NFATc1 could transcriptionally activate SNAI1, which in turn interacts with SLUG to mediate EMT to promote CRC metastasis. Thus, making NFATc1 a promising therapeutic target in the treatment of metastatic CRC.
Collapse
|
30
|
Epigenetic Regulation and Post-Translational Modifications of SNAI1 in Cancer Metastasis. Int J Mol Sci 2021; 22:ijms222011062. [PMID: 34681726 PMCID: PMC8538584 DOI: 10.3390/ijms222011062] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
SNAI1, a zinc finger transcription factor, not only acts as the master regulator of epithelial-mesenchymal transition (EMT) but also functions as a driver of cancer progression, including cell invasion, survival, immune regulation, stem cell properties, and metabolic regulation. The regulation of SNAI1 occurs at the transcriptional, translational, and predominant post-translational levels including phosphorylation, acetylation, and ubiquitination. Here, we discuss the regulation and role of SNAI1 in cancer metastasis, with a particular emphasis on epigenetic regulation and post-translational modifications. Understanding how signaling networks integrate with SNAI1 in cancer progression will shed new light on the mechanism of tumor metastasis and help develop novel therapeutic strategies against cancer metastasis.
Collapse
|
31
|
Singh D, Deshmukh RK, Das A. SNAI1-mediated transcriptional regulation of epithelial-to-mesenchymal transition genes in breast cancer stem cells. Cell Signal 2021; 87:110151. [PMID: 34537302 DOI: 10.1016/j.cellsig.2021.110151] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) tumors are composed of a heterogeneous population containing both cancer cells and cancer stem cells (CSCs). These CSCs are generated through an epithelial-to-mesenchymal transition (EMT), thus making it pertinent to identify the unique EMT-molecular targets that regulate this phenomenon. METHODS AND RESULTS In the present study, we performed in silico analysis of microarray data from luminal, Her2+, and TNBC cell lines and identified 15 relatively unexplored EMT-related differentially expressed genes (DEGs) along with the markedly high expression of EMT-transcription factor (EMT-TF), SNAI1. Interestingly, stable overexpression of SNAI1 in MCF-7 induced the expression of DEGs along with increased migration, invasion, and in vitro tumorigenesis that was comparable to TNBCs. Next, stable SNAI1 overexpression led to increased expression of DEGs that was reverted with SNAI1 silencing in both breast cancer cells and CSCs sorted from various TNBC cell lines. Higher fold enrichment of SNAI1 on E-boxes in the promoter regions suggested a positive regulation of ALCAM, MMP2, MMP13, MMP14, VCAN, ANKRD1, KRT16, CTGF, TGFRIIβ, PROCR negative regulation of CDH1, DSP and DSC3B by SNAI1 leading to EMT. Furthermore, SNAI1-mediated increased migration, invasion, and tumorigenesis in these sorted cells led to the activation of signaling mediators, ERK1/2, STAT3, Src, and FAK. Finally, the SNAI1-mediated activation of breast CSC phenotypes was perturbed by inhibition of downstream target, MMPs using Ilomastat. CONCLUSION Thus, the molecular investigation for the gene regulatory framework in the present study identified MMPs, a downstream effector in the SNAI1-mediated EMT regulation.
Collapse
|
32
|
Razmara E, Bitaraf A, Karimi B, Babashah S. Functions of the SNAI family in chondrocyte-to-osteocyte development. Ann N Y Acad Sci 2021; 1503:5-22. [PMID: 34403146 DOI: 10.1111/nyas.14668] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Different cellular mechanisms contribute to osteocyte development. And while critical roles for members of the zinc finger protein SNAI family (SNAIs) have been discussed in cancer-related models, there are few reviews summarizing their importance for chondrocyte-to-osteocyte development. To help fill this gap, we review the roles of SNAIs in the development of mature osteocytes from chondrocytes, including the regulation of chondro- and osteogenesis through different signaling pathways and in programmed cell death. We also discuss how epigenetic factors-including DNA methylation, histone methylation and acetylation, and noncoding RNAs-contribute differently to both chondrocyte and osteocyte development. To better grasp the important roles of SNAIs in bone development, we also review genotype-phenotype correlations in different animal models. We end with comments about the possible importance of the SNAI family in cartilage/bone development and the potential applications for therapeutic goals.
Collapse
|
33
|
Kamioka H, Edaki K, Kasahara H, Tomono T, Yano K, Ogihara T. Drug resistance via radixin-mediated increase of P-glycoprotein membrane expression during SNAI1-induced epithelial-mesenchymal transition in HepG2 cells. J Pharm Pharmacol 2021; 73:1609-1616. [PMID: 34313784 DOI: 10.1093/jpp/rgab051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/20/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Epithelial-mesenchymal transition (EMT) plays a role in cancer metastasis as well as in drug resistance through various mechanisms, including increased drug efflux mediated by P-glycoprotein (P-gp). In this study, we investigated the activation mechanism of P-gp, including its regulatory factors, during EMT in hepatoblastoma-derived HepG2 cells. METHODS HepG2 cells were transfected with SNAI1 using human adenovirus serotype 5 vector. We quantified mRNA and protein expression levels using qRT-PCR and western blot analysis, respectively. P-gp activity was evaluated by uptake assay, and cell viability was assessed by an MTT assay. KEY FINDINGS P-gp protein expression on plasma membrane was higher in SNAI1-transfected cells than in Mock cells, although there was no difference in P-gp protein level in whole cells. Among the scaffold proteins such as ezrin, radixin and moesin (ERM), only radixin was increased in SNAI1-transfected cells. Uptake of both Rho123 and paclitaxel was decreased in SNAI1-transfected cells, and this decrease was blocked by verapamil, a P-gp inhibitor. The reduced susceptibility of SNAI1-transfected cells to paclitaxel was reversed by elacridar, another P-gp inhibitor. CONCLUSIONS Increased expression of radixin during SNAI1-induced EMT leads to increased P-gp membrane expression in HepG2 cells, enhancing P-gp function and thereby increasing drug resistance.
Collapse
|
34
|
Cui H, Wang Y, Chen L, Qian M, Zhang L, Zheng X, Yang X, Chen L, Zhao Y, Chen Q, Wang J. Chemotherapeutic potency stimulated by SNAI1-knockdown based on multifaceted nanomedicine. J Control Release 2021; 337:343-355. [PMID: 34324894 DOI: 10.1016/j.jconrel.2021.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/04/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Molecular insights into tumorigenesis have uncovered intimate correlation of SNAI1 with tumor malignancy. Herein, to explore merits of SNAI1-knockdown in tumor therapy, we harnessed RNA interference tool (shSNAI1), together with chemotherapeutic doxorubicin. Owing to abundant hydroxyl groups, pullulan was attempted to be covalently conjugated with a multiple of functional moieties, including positively-charged oligoethylenimine components for electrostatic entrapment of polyanionic shSNAI1 and hydrophobic components for entrapment of lipophilic doxorubicin. Notably, the aforementioned covalent conjugations were tailored to be detachable in response to intracellular reducing microenvironment owing to redox disulfide linkage, thereby accounting for selective intracellular liberation of the therapeutic payloads. Moreover, the surface of nanomedicine was modified with hyaluronic acid, endowing not only excellent biocompatibilities but active tumor-targeting function due to its receptors (CD44) overexpressed on tumor cells. Subsequent investigations approved appreciably targeted co-delivery of shSNAI1 and doxorubicin into solid lung tumors via systemic administration and demonstrated critical contribution of SNAI1-knockdown in amplifying chemotherapeutic potencies.
Collapse
|
35
|
Serum levels of cytoskeleton remodeling proteins and their mRNA expression in tumor tissue of metastatic laryngeal and hypopharyngeal cancers. Mol Biol Rep 2021; 48:5135-5142. [PMID: 34231097 DOI: 10.1007/s11033-021-06510-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/21/2021] [Indexed: 12/09/2022]
Abstract
Actin-binding proteins (ABPs) and various signaling systems are involved in the process of squamous cell carcinoma of the larynx and hypopharynx (SCCLH) metastasis. The clinical significance of these proteins has not yet been determined. We analyzed the relationship between the mRNA levels of cofilin 1 (CFL1), profilin 1 (PFN1), adenylyl cyclase-associated protein 1 (CAP1), SNAI1 and RND3 and SCCLH metastasis. The serum levels of the above ABPs were estimated and the relationship between them and their mRNA expressions was analyzed. The expression levels of ABP mRNAs were measured by real-time RT-PCR in paired tissue samples taken from 54 patients with SCCLH (T1-4N0-1M0). Expression analysis was performed using the 2-ΔΔCT method. The levels of ABPs in the blood serum were measured by ELISA. Statistical analysis was carried out using the SPSS Statistica 20.0 software package. No significant difference in the mRNA gene expression in tumor tissue of patients with T1-3N0M0 SCCLH and patients with T2-4N1-2M0 SCCLH was found. High expression of RND3 mRNA was accompanied by an increase in mRNA expression of all studied ABPs. In the blood serum of T2-4N1-2M0 patients, the level of PFN1 was lower by 21% and the level of CAP1 was higher by 75% than those observed in T1-4N0M0 patients. The data obtained showed that RND3 is involved in the regulation of molecular cascades of SCCLH metastasis. PFN1 and CAP1 serum levels can be good classifiers of metastases in patients with SCCLH.
Collapse
|
36
|
Wang T, Liu W, Li C, Si G, Liang Z, Yin J. Mist1 promoted inflammation in colitis model via K+-ATPase NLRP3 inflammasome by SNAI1. Pathol Res Pract 2021; 224:153511. [PMID: 34214845 DOI: 10.1016/j.prp.2021.153511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/26/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory intestinal disease. Genetic susceptibility, gut microbiota and mucosal immune dysfunction play important roles in the pathogenesis and development of UC. We investigate the effect of Mist1 in model of colitis and its underlying mechanism. The expressions of Mist1 in patients with colitis tissue were up-regulated. Meanwhile, Mist1 mRNA and protein expressions in DSS-induced colitis mice model were also induced and Mist1 mRNA and protein expressions of LPS induced THP-1 cell were also up-regulated. we found Mist1 human protein promoted inflammation in DSS-induced colitis mice by NLRP3. So, we up-regulated Mist1 expression and over-expression of Mist1 promoted IL-1β and NLRP3 protein expression levels in vitro model. However, down-regulation of Mist1 suppressed IL-1β and NLRP3 protein expression levels in vitro model. Next, SNAI1 is a shooting point of Mist1 in the effects of Mist1 in colitis. The inhibition of SNAI1 reduced the effects of Mist1 on NLRP3 inflammasome in vitro model. Activation of SNAI1 induced the effects of Mist1 on NLRP3 inflammasome in vitro model. Lastly, anti-SNAI1 human protein lowered the effects of Mist1 human protein on NLRP3 inflammasome in DSS-induced colitis mice. We demonstrated that Mist1 promoted inflammation in colitis model via NLRP3 inflammasome by SNAI1, whereas the absence of these macrophages led to a significant improvement in colitis treatment.
Collapse
|
37
|
Qiu Z, Dong B, Guo W, Piotr R, Longmore G, Yang X, Yu Z, Deng J, Evers BM, Wu Y. STK39 promotes breast cancer invasion and metastasis by increasing SNAI1 activity upon phosphorylation. Theranostics 2021; 11:7658-7670. [PMID: 34335956 PMCID: PMC8315073 DOI: 10.7150/thno.62406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
SNAI1 is widely regarded as a master driver of epithelial-mesenchymal transition (EMT) and associated with breast cancer progression and metastasis. This pro-malignant role is strongly linked to posttranslational modification, especially phosphorylation, which controls its protein levels and subcellular localization. While multiple kinases are implicated in regulation of SNAI1 stability, the precise mechanism by which SNAI1 is stabilized in tumors remains to be fully elucidated. Methods: A series of in vitro and in vivo experiments were conducted to reveal the regulation of SNAI1 by Serine/Threonine Kinase 39 (STK39) and the role of STK39 in breast cancer metastasis. Results: We identified STK39, a member of Stem 20-like serine/threonine kinase family, as a novel posttranslational regulator that enhances the stability of SNAI1. Inhibition of STK39 via knockdown or use of a specific inhibitor resulted in SNAI1 destabilization. Mechanistically, STK39 interacted with and phosphorylated SNAI1 at T203, which is critical for its nuclear retention. Functionally, STK39 inhibition markedly impaired the EMT phenotype and decreased tumor cell migration, invasion, and metastasis both in vitro and in vivo. These effects were rescued by ectopic SNAI1 expression. In addition, depletion of STK39 dramatically enhanced sensitivity to chemotherapeutic agents. Conclusions: Our study demonstrated that STK39 is a key mediator of SNAI1 stability and is associated with the pro-metastatic cellular process, highlighting the STK39-SNAI1 signaling axis as promising therapeutic targets for treatments of metastatic breast cancer.
Collapse
|
38
|
Acetate promotes SNAI1 expression by ACSS2-mediated histone acetylation under glucose limitation in renal cell carcinoma cell. Biosci Rep 2021; 40:225015. [PMID: 32458971 PMCID: PMC7295626 DOI: 10.1042/bsr20200382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/26/2022] Open
Abstract
Metastasis is the main cause of cancer-associated deaths, yet this complex process is still not well understood. Many studies have shown that acetate is involved in cancer metastasis, but the molecular mechanisms remain to be elucidated. In the present study, we first measured the effect of acetate on zinc finger transcriptional repressor SNAI1 and acetyl-CoA synthetase 2 (ACSS2) under glucose limitation in renal cell carcinoma cell lines, 786-O and ACHN. Then, RNA interference and overexpression of ACSS2 were used to detect the role of acetate on SNAI1 expression and cell migration. Finally, chromatin immunoprecipitation assay (ChIP) was used to investigate the regulatory mechanism of acetate on SNAI1 expression. The results showed that acetate increased the expressions of SNAI1 and ACSS2 under glucose limitation. ACSS2 knockdown significantly decreased acetate-induced SNAI1 expression and cell migration, whereas overexpression of ACSS2 increased SNAI1 level and histone H3K27 acetylation (H3K27ac). ChIP results revealed that acetate increased H3K27ac levels in regulatory region of SNAI1, but did not increase ACSS2-binding ability. Our study identified a novel inducer, acetate, which can promote SNAI1 expression by ACSS2-mediated histone acetylation in partly. This finding has important implication in treatment of metastatic cancers.
Collapse
|
39
|
Wang Y, Liu Y, Zhang L, Bai L, Chen S, Wu H, Sun L, Wang X. miR-30b-5p modulate renal epithelial-mesenchymal transition in diabetic nephropathy by directly targeting SNAI1. Biochem Biophys Res Commun 2020; 535:12-18. [PMID: 33383483 DOI: 10.1016/j.bbrc.2020.10.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
OBJECT Renal tubulointerstitial fibrosis plays a significant role in the development of diabetic nephropathy (DN). SNAI1 is a main activator of epithelial-to-mesenchymal transition (EMT) in the process of fibrosis. This study aimed to investigate the effect of miR-30b-5p targeting SNAI1 on the EMT in DN. METHODS Bioinformatics and miRNAs microarray analyses were used to predict the candidate miRNA targeting SNAI1, that is miR-30b-5p. The db/db mice was as DN animal model and renal tissues of mice were stained with PAS. The miR-30b-5p expression in mouse and human renal tissue were examined by quantitative RT-PCR (qRT-PCR) and fluorescence in situ hybridization (FISH), while SNAI1 expression was determined by qRT-PCR and immunohistochemistry. Luciferase reporter gene assay was used to confirm miR-30b-5p directly target 3'-UTR of the SNAI1 mRNA. In vitro, HK-2 cells were treated with high glucose to establish hyperglycemia cell model and transfected with miR-30b-5p mimics to overexpress miR-30b-5p. Expression of miR-30b-5p, SNAI1 and EMT related indicators (E-cadherin, a-SMA and Vimentin) in HK-2 cells under different treatments were determined by qRT-PCR and/or western-blot. In addition, immunofluorescence was performed to evaluate a-SMA expression in HK-2 cells under different treatments. RESULTS Bioinformatics analyses revealed miR-30b-5p had complementary sequences with SNAI1 mRNA and the seed region of miR-30b-5p was conserved in human and a variety of animals, including mice. Microarray analysis showed miR-30b expression decreased in DN mice, which was further verified in db/db mice by qRT-PCR and in human DN by FISH. Contrary to miR-30b-5p, SNAI1 expression level was upregulated in db/db mice. Correlation analysis suggested SNAI1 mRNA level was negatively with miR-30b-5p level in renal tissue of db/db mice. Luciferase reporter gene assay confirmed miR-30b-5p directly targeted SNAI1 mRNA. In high glucose induced HK-2 cells, expression levels of miR-30b-5p and E-cadherin were decreased, while SNAI1, a-SMA and Vimentin were increased. Overexpression miR-30b-5p in high glucose induced HK-2 cells could reverse that phenomenon to some extent. CONCLUSION These findings suggest that miR-30b-5p play a protective role by targeting SNAI1 in renal EMT in DN.
Collapse
|
40
|
Wang H, Wang M, Wen Y, Xu C, Chen X, Wu D, Su P, Zhou W, Cheng T, Shi L, Zhou J. Biphasic Regulation of Mesenchymal Genes Controls Fate Switches During Hematopoietic Differentiation of Human Pluripotent Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001019. [PMID: 33101849 PMCID: PMC7578858 DOI: 10.1002/advs.202001019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Indexed: 05/03/2023]
Abstract
Epithelial-mesenchymal transition (EMT) or its reverse process mesenchymal-epithelial transition (MET) occurs in multiple physiological and pathological processes. However, whether an entire EMT-MET process exists and the potential function during human hematopoiesis remain largely elusive. Utilizing human pluripotent stem cell (hPSC)-based systems, it is discovered that while EMT occurs at the onset of human hematopoietic differentiation, MET is not detected subsequently during differentiation. Instead, a biphasic activation of mesenchymal genes during hematopoietic differentiation of hPSCs is observed. The expression of mesenchymal genes is upregulated during the fate switch from pluripotency to the mesoderm, sustained at the hemogenic endothelium (HE) stage, and attenuated during hemogenic endothelial cell (HEP) differentiation to hematopoietic progenitor cells (HPCs). A similar expression pattern of mesenchymal genes is also observed during human and murine hematopoietic development in vivo. Wnt signaling and its downstream gene SNAI1 mediate the up-regulation of mesenchymal genes and initiation of mesoderm induction from pluripotency. Inhibition of transforming growth factor-β (TGF-β) signaling and downregulation of HAND1, a downstream gene of TGF-β, are required for the downregulation of mesenchymal genes and the capacity of HEPs to generate HPCs. These results suggest that the biphasic regulation of mesenchymal genes is an essential mechanism during human hematopoiesis.
Collapse
|
41
|
Zhao H, Ling J, Huang Y, Chang A, Zhuo X. The expression and clinical significance of an Epithelial-Mesenchymal Transition inducer, SNAI1, in head and neck carcinoma. J Oral Pathol Med 2020; 50:145-154. [PMID: 32945534 DOI: 10.1111/jop.13111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/11/2020] [Accepted: 09/06/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND SNAI1 is an epithelial-mesenchymal transition (EMT) inducer, which has been indicated to play a role in the progression of cancers. We aimed to evaluate the expression and prognostic roles of SNAI1 in head and neck carcinoma (HNC). METHODS The study involved two major phases. In the in silico phase, the SNAI1 expression and its association with clinical features as well as its prognostic values were assessed; then, the target genes of SNAI1 were predicted and the relationship between SNAI1 expression and immune cell infiltration was evaluated. In the validation phase, a cohort of a tissue microarray (47 cases) and a cohort of HNC patients (68 cases) were enrolled. SNAI1 was detected by using an immunochemistry assay. RESULTS The in silico analysis showed that overexpression of SNAI1 in HNC tissues may be correlated with metastatic lymph node numbers and may predict poor outcomes. Six genes, including CREB3L1, MITF, KLF9, RARA, KLF7, and ETV1, were predicted to be the target genes of SNAI1. The expression of SNAI1 was negatively correlated with tumor purity of HNC, while it was positively correlated with the infiltration of diverse immune cells, such as B cells and macrophages. In the validation phase, the relationships of SNAI1 expression with lymph node metastasis and poor prognosis were verified. CONCLUSION Overexpression of SNAI1 might promote lymph node metastasis through complex molecular mechanisms and act as a prognostic indicator in HNC. SNAI1 expression may have a correlation with immune cell infiltrates. Future studies are needed to address these points.
Collapse
|
42
|
Santarelli R, Arteni AMB, Gilardini Montani MS, Romeo MA, Gaeta A, Gonnella R, Faggioni A, Cirone M. KSHV dysregulates bulk macroautophagy, mitophagy and UPR to promote endothelial to mesenchymal transition and CCL2 release, key events in viral-driven sarcomagenesis. Int J Cancer 2020; 147:3500-3510. [PMID: 32559816 DOI: 10.1002/ijc.33163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 12/21/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of KS, an aggressive neoplasm that mainly occurs in immune-compromised patients. Spindle cells represent the main feature of this aggressive malignancy and arise from KSHV-infected endothelial cells undergoing endothelial to mesenchymal transition (EndMT), which changes their cytoskeletal composition and organization. As in epithelial to mesenchymal transition (EMT), EndMT is driven by transcription factors such as SNAI1 and ZEB1 and implies a cellular reprogramming mechanism regulated by several molecular pathways, particularly PI3K/AKT/MTOR. Here we found that KSHV activated MTOR and its targets 4EBP1 and ULK1 and reduced bulk macroautophagy and mitophagy to promote EndMT, activate ER stress/unfolded protein response (UPR), and increase the release of the pro-angiogenic and pro-inflammatory chemokine CCL2 by HUVEC cells. Our study suggests that the manipulation of macroautophagy, mitophagy and UPR and the interplay between the three could be a promising strategy to counteract EndMT, angiogenesis and inflammation, the key events of KSHV-driven sarcomagenesis.
Collapse
|
43
|
Yang T, Chen WC, Shi PC, Liu MR, Jiang T, Song H, Wang JQ, Fan RZ, Pei DS, Song J. Long noncoding RNA MAPKAPK5-AS1 promotes colorectal cancer progression by cis-regulating the nearby gene MK5 and acting as a let-7f-1-3p sponge. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:139. [PMID: 32690100 PMCID: PMC7370515 DOI: 10.1186/s13046-020-01633-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are considered critical regulators in cancers; however, the clinical significance and mechanisms of MAPKAPK5-AS1 (hereinafter referred to as MK5-AS1) in colorectal cancer (CRC) remain mostly unknown. METHODS In this study, quantitative real-time PCR (qPCR) and western blotting were utilized to detect the levels of MK5-AS1, let-7f-1-3p and MK5 (MAPK activated protein kinase 5) in CRC tissues and cell lines. The biological functions of MK5-AS1, let-7f-1-3p and MK5 in CRC cells were explored using Cell Counting Kit-8 (CCK8), colony formation and transwell assays. The potential mechanisms of MK5-AS1 were evaluated by RNA pull-down, RNA immunoprecipitation (RIP), dual luciferase reporter assay, chromatin immunoprecipitation (ChIP) and bioinformatics analysis. The effects of MK5-AS1 and MK5 on CRC were investigated by a xenotransplantation model. RESULTS We confirmed that MK5-AS1 was significantly increased in CRC tissues. Knockdown of MK5-AS1 suppressed cell migration and invasion in vitro and inhibited lung metastasis in mice. Mechanistically, MK5-AS1 regulated SNAI1 expression by sponging let-7f-1-3p and cis-regulated the adjacent gene MK5. Moreover, MK5-AS1 recruited RBM4 and eIF4A1 to promote the translation of MK5. Our study verified that MK5 promoted the phosphorylation of c-Jun, which activated the transcription of SNAI1 by directly binding to its promoter. CONCLUSIONS MK5-AS1 cis-regulated the nearby gene MK5 and acted as a let-7f-1-3p sponge, playing a vital role in CRC tumorigenesis. This study could provide novel insights into molecular therapeutic targets of CRC.
Collapse
|
44
|
Piao HY, Guo S, Wang Y, Zhang J. Exosome-transmitted lncRNA PCGEM1 promotes invasive and metastasis in gastric cancer by maintaining the stability of SNAI1. Clin Transl Oncol 2020; 23:246-256. [PMID: 32519176 DOI: 10.1007/s12094-020-02412-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Clinically, hypoxia is associated with increased distant metastasis and poor survival in gastric cancer (GC). In this study, we set out from the cellular interaction to further explain the molecular mechanism of invasion in GC cells under hypoxic conditions. METHODS Gastric cancer cells were cultured under 1% O2 (hypoxia-cultured gastric cancer cells, HGC) and 20% O2 condition (normoxic-cultured gastric cancer cells, NGC). NGC was co-cultured with HGC-medium. Scrape and Transwell were used to evaluate invasion and migration. Exosomes from GC were extracted by ultracentrifugation. Electron microscopy images, western-blot used to analyze the size distributions and the number of exosomes. RESULTS HGC-medium induced NGC dissociated. Long non-coding RNA (lncRNA) prostate cancer gene expression marker 1 (PCGEM1) was specifically expressed in HGC exosomes. HGC-derived PCGEM1-riched exosomes could promote the invasion and migration of NGC. On the mechanism, PCGEM1 maintained stability and reduced the degradation of SNAI1, which could induce the epithelial-mesenchymal transition of GC. CONCLUSION LncRNA PCGEM1 was overexpressed in GC cells. And part of the PCGEM1 can be encapsulated into exosomes. These exosomes promoted invasion and migration of other GC cells. We considered PCGEM1 might act as a "scaffold" combined with SNAI1 and prompt the invasion and migration of GC.
Collapse
|
45
|
Wu XJ, Chen YY, Guo WW, Li T, Dong HB, Wang W, Xie M, Ma GL, Pei DS. HMGB1 regulates SNAI1 during NSCLC metastasis, both directly, through transcriptional activation, and indirectly, in a RSF1-IT2-dependent manner. Mol Oncol 2020; 14:1348-1364. [PMID: 32306523 PMCID: PMC7266277 DOI: 10.1002/1878-0261.12691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/16/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
High-mobility group protein B1 (HMGB1) has important functions in cancer cell proliferation and metastasis. However, the mechanisms of HMGB1 function in non-small-cell lung cancer (NSCLC) remain unclear. This study aimed to investigate the underlying mechanism of HMGB1-dependent tumor cell proliferation and NSCLC metastasis. Firstly, we found high HMGB1 expression in NSCLC and showed that HMBG1 promoted proliferation, migration, and invasion of NSCLC cells. HMGB1 could bind to SNAI1 promoter and activate the expression of SNAI1. In addition, HMGB1 could transcriptionally regulate the lncRNA RSF1-IT2. RSF1-IT2 was found to function as ceRNA, sponging miR-129-5p, which targets SNAI1. Notably, HMGB1 was also identified as a target of miR-129-5p, which indicates the establishment of a positive feedback loop. Consequently, high expression of RSF1-IT2 and SNAI1 was found to closely correlate with tumor progression in both HMGB1-overexpressing xenograft nude mice and patients with NSCLC. Taken together, our findings provide new insights into molecular mechanisms of HMGB1-dependent tumor metastasis. Components of the HMGB1-RSF1-IT2-miR-129-5p-SNAI1 pathway may have a potential as prognostic and therapeutic targets in NSCLC.
Collapse
|
46
|
Chen S, Wang G, Tao K, Cai K, Wu K, Ye L, Bai J, Yin Y, Wang J, Shuai X, Gao J, Pu J, Li H. Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 cooperates with enhancer of zeste homolog 2 to promote hepatocellular carcinoma development by modulating the microRNA-22/Snail family transcriptional repressor 1 axis. Cancer Sci 2020; 111:1582-1595. [PMID: 32129914 PMCID: PMC7226208 DOI: 10.1111/cas.14372] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Metastasis‐associated lung adenocarcinoma transcript 1 (MALAT1) is an oncogenic long noncoding RNA that has been found to promote carcinogenesis and metastasis in many tumors. However, the underlying role of MALAT1 in the progression and metastasis of hepatocellular carcinoma (HCC) remains unclear. In this study, aberrantly elevated levels of MALAT1 were detected in both HCC specimens and cell lines. We found that knockdown of MALAT1 caused retardation in proliferation, migration, and invasion both in vivo and in vitro. Mechanistic investigations showed that Snail family transcriptional repressor 1 (SNAI1) is a direct target of microRNA (miR)‐22 and that MALAT1 modulates SNAI1 expression by acting as a competing endogenous RNA for miR‐22. Inhibition of miR‐22 restored SNAI1 expression suppressed by MALAT1 knockdown. Furthermore, MALAT1 facilitated the enrichment of enhancer of zeste homolog 2 (EZH2) at the promoter region of miR‐22 and E‐cadherin, which was repressed by MALAT1 knockdown. Cooperating with EZH2, MALAT1 positively regulated SNAI1 by repressing miR‐22 and inhibiting E‐cadherin expression, playing a vital role in epithelial to mesenchymal transition. In conclusion, our results reveal a mechanism by which MALAT1 promotes HCC progression and provides a potential target for HCC therapy.
Collapse
|
47
|
Gai X, Zhou P, Xu M, Liu Z, Zheng X, Liu Q. Hyperactivation of IL-6/STAT3 pathway leaded to the poor prognosis of post-TACE HCCs by HIF-1α/ SNAI1 axis-induced epithelial to mesenchymal transition. J Cancer 2020; 11:570-582. [PMID: 31942180 PMCID: PMC6959052 DOI: 10.7150/jca.35631] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/18/2019] [Indexed: 02/07/2023] Open
Abstract
Transarterial chemoembolization (TACE) has been considered the standard treatment for intermediate-stage hepatocellular carcinoma according to BCLC algorithm. However, it has been unclear about the TACE-related predictive bio-markers and underlying molecular mechanisms. This investigation revealed that HCCs with higher HIF-1α suffered from unfavorable OS after TACE. mRNA expression microarray revealed that HIF-1α was potential target of p-STAT3 which was verified by ChIP and immunoblotting assay. Activation of IL-6/STAT3/HIF-1α signaling was found to promote EMT and chemoresistance to Doxorubicin in vitro and in vivo by regulating SNAI1. Hypoxia did not enhance HIF-1α expression and influence cell growth and chemoresistence to Doxorubicin in HCC cells when STAT3 expression was abolished. Taken together, HIF-1α overexpression in HCC tissues predicted the unfavorable outcome of HCCs after TACE and IL-6/STAT3 pathway resulted in EMT induced-metastases and chemoresistance of HCC after TACE through HIF-1α/SNAI1 axis.
Collapse
|
48
|
Xiao Z, Chang L, Kim J, Zhang P, Hang Q, Yap S, Guo Y, Zhou Z, Zeng L, Hu X, Siverly A, Sun Y, Ma L. USP37 is a SNAI1 deubiquitinase. Am J Cancer Res 2019; 9:2749-2759. [PMID: 31911859 PMCID: PMC6943346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023] Open
Abstract
SNAI1, an epithelial-mesenchymal transition (EMT)-inducing transcription factor, promotes tumor metastasis and resistance to apoptosis and chemotherapy. SNAI1 protein levels are tightly regulated by proteolytic ubiquitination. Here, we identified USP37 as a SNAI1 deubiquitinase that removes the polyubiquitination chain from SNAI1 and prevents its proteasomal degradation. USP37 directly binds, deubiquitinates, and stabilizes SNAI1. Overexpression of wild-type USP37, but not its catalytically inactive mutant C350S, promotes cancer cell migration. Importantly, depletion of USP37 downregulates endogenous SNAI1 protein and suppresses cell migration, which can be reversed by re-expression of SNAI1. Taken together, our findings suggest that USP37 is a SNAI1 deubiquitinase and a potential therapeutic target to inhibit tumor metastasis.
Collapse
|
49
|
Wang C, Dou C, Wang Y, Liu Z, Roberts L, Zheng X. TLX3 repressed SNAI1-induced epithelial-mesenchymal transition by directly constraining STAT3 phosphorylation and functionally sensitized 5-FU chemotherapy in hepatocellular carcinoma. Int J Biol Sci 2019; 15:1696-1711. [PMID: 31360112 PMCID: PMC6643223 DOI: 10.7150/ijbs.33844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/30/2019] [Indexed: 01/05/2023] Open
Abstract
TLX3 has an established role as a sequence-specific transcription factor with vital functions in the nervous system. Although several studies have shown that TLX3 is aberrantly up-regulated in leukemia, its expression and function in hepatocellular carcinoma (HCC) remain unknown. We found that TLX3 expression was decreased in 68/100 (68%) HCC cases and negatively correlated with the expression of p-STAT3, SNAI1, and Vimentin, while it was positively associated with E-cadherin expression. ITRAQ proteomic profiling revealed significantly less TLX3 expression in primary HCC tumors than in portal vein tumor thrombi. Comparison of Kaplan-Meier curves showed that down-regulation of TLX3 in HCC was associated with poor post-surgical survival. TLX3 over-expression inhibited HCC cell viability, proliferation, migration, invasion and enhanced 5-FU treatment, whereas silencing TLX3 produced the opposite results. Further experiments showed that TLX3 attenuated the EMT phenotype. In vivo experiments showed that knockdown of TLX3 promoted the growth of HCC xenografts and attenuated the anti-tumor effects of 5-FU treatment. Gene expression microarray analysis revealed that TLX3 inhibited IL-6/STAT3 signaling. In additional mechanistic studies TLX3 reversed the EMT phenotype of HCC cells by binding to STAT3, inhibiting STAT3 phosphorylation, and down-regulating SNAI1 expression. Taken together, loss of expression of TLX3 induces EMT by enhancing IL-6/STAT3/SNAI1 signaling, and accelerates HCC progression while also attenuated the effect of 5-FU on HCCs.
Collapse
|
50
|
Shousha WG, Ramadan SS, El-Saiid AS, Abdelmoneim AE, Abbas MA. Expression and clinical significance of SNAI1 and ZEB1 genes in acute myeloid leukemia patients. Mol Biol Rep 2019; 46:4625-4630. [PMID: 31055699 DOI: 10.1007/s11033-019-04839-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/25/2019] [Indexed: 12/31/2022]
Abstract
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults, it represents nearly 32% of all new cases of leukemia. This study aimed to evaluate the SNAI1 and ZEB1 genes expression in AML patients and determine their diagnostic and prognostic significance. We determined the expression of SNAI1 and ZEB1 genes and serum E-cadherin levels in early diagnosed patients with AML. Sixty early diagnosed AML patients and 20 healthy subjects were enrolled in this study, SNAI1 and ZEB1 genes expression was determined by Real-time PCR while E-Cadherin serum levels were determined by ELISA. The results of this study demonstrated that, all AML patients positively expressed the SNAI1 gene with fold change 2.6. While, the ZEB1 expression was positive in 56.7% of the patients with fold change 1.8. SNAI1 and ZEB1 genes were highly expressed in M5 subtype (FC = 13.8 and 9.3, respectively). On the other hand, serum E-cadherin concentrations of the AML patients showed decrease when compared with those of the control but the decrease was not reach to the significance level. The findings of this study suggest inclusion of SNAI1 and ZEB1 genes expression in the cluster of potential genetic biomarkers to be studied in AML cases as diagnostic and prognostic markers.
Collapse
|