26
|
Wang JH, Yang K, Zhang BZ, Zhou ZF, Wang ZR, Ge X, Wang LL, Chen YJ, Wang XJ. Effects of Er:YAG laser pre-treatment on dentin structure and bonding strength of primary teeth: an in vitro study. BMC Oral Health 2020; 20:316. [PMID: 33172456 PMCID: PMC7653740 DOI: 10.1186/s12903-020-01315-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/04/2020] [Indexed: 01/28/2023] Open
Abstract
Background To investigate the effects of Er:YAG laser pre-treatment on the dentin structure and shear bond strength of primary teeth. Methods Dentin specimens were prepared using freshly extracted intact primary molars and divided randomly into four groups based on the surface treatment applied. The control and etchant groups received no treatment and conventional acid etching treatment, respectively, while the energy and frequency groups received laser surface treatment with variable energy (50–300 mJ) and frequency (5–30 Hz) parameters. The morphology was observed using scanning electron microscopy. The surface-treated dentin slices were bonded to resin tablets, followed by thermocycle treatment. The shear strength was determined using a universal testing machine and de-bonded surfaces were observed using a stereomicroscope. Results SEM observation showed that the surface morphology of the dentin slices changed after etching as well as after Er:YAG laser pre-treatment with different energy and frequency values. The dentin tubules opened within a specific energy (50–200 mJ) and frequency (5–20 Hz) range. Beyond this range, the intertubular dentin showed cracks and structural disintegration. Shear strength tests showed no significant changes after acid etching. The shear strength increased significantly (P < 0.05) after Er:YAG laser pre-treatment compared with that of the control group. The shear strength increased within the same energy (50–200 mJ) and frequency (5–20 Hz) range as the tubule opening, but not significantly (P > 0.05). The most common mode of interface failure was adhesive (interface) failure, followed by mixed and resin cohesive failure. Conclusions Pre-treatment using Er:YAG laser opens the dentinal tubules without the formation of a smear layer and improves the bonding strength between the primary teeth dentin and the resin composites.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
21 |
27
|
Vicente Prieto M, Gomes ALC, Montero Martín J, Alvarado Lorenzo A, Seoane Mato V, Albaladejo Martínez A. The Effect of Femtosecond Laser Treatment on the Effectiveness of Resin-Zirconia Adhesive: An In Vitro Study. J Lasers Med Sci 2016; 7:214-219. [PMID: 28491255 DOI: 10.15171/jlms.2016.38] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: When aesthetics is compromised, dental ceramics are excellent materials for dental restorations; owing to their optical properties and biocompatibility, zirconia ceramics are particularly interesting. Self-adhesive resin cements are the most suitable for bonding to zirconia ceramics, but traditional adhesive chemistry is ineffective and surface treatments are required to improve the adhesive bonding between resin and zirconia. The aim of this study was to evaluate the effect of femtosecond laser treatment on the shear bond strength (SBS) of self-adhesive resin cement on zirconia surfaces and to contrast it with other different surface conditioning methods. Methods: Sixty square-shaped zirconia samples were divided randomly into four groups (n = 15) according to their surface conditioning method: the NT group - no surface treatment; the APA25 group - airborne abrasion with 25 μm alumina particles; the TSC group - tribochemical silica coating, and the FS group - femtosecond laser irradiation (800 nm, 4 mJ, 40 fs/pulse, 1 kHz). Self-adhesive resin cements were bonded at the centre of samples, and after 72 hours, they were tested for SBS with a universal testing machine at a crosshead speed of 0.5 mm/min, until fracture. Five zirconia surfaces for each group were subjected to a surface morphology analysis by scanning electron microscopy (SEM). The failure modes were noted and a third of the specimens were prepared to morphological analysis. Results: The NT group showed lower SBS values than the other groups. Femtosecond laser treatment demonstrated higher values than the control and APA25 groups and similar values to those of the TSC group. In the APA25 group, the surface conditioning method had values close to those of the TSC group, but lower than those obtained with femtosecond laser treatment. Conclusion: The treatment of zirconia with femtosecond laser irradiation created a consistent and profound surface roughness, improving the adhesive effectiveness of the zirconia-resin interface.
Collapse
|
Journal Article |
9 |
21 |
28
|
Lee JJ, Kang CK, Oh JW, Seo JM, Park JM. Evaluation of shear bond strength between dual cure resin cement and zirconia ceramic after thermocycling treatment. J Adv Prosthodont 2015; 7:1-7. [PMID: 25722830 PMCID: PMC4341180 DOI: 10.4047/jap.2015.7.1.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/12/2014] [Accepted: 12/23/2014] [Indexed: 11/08/2022] Open
Abstract
PURPOSE This study was performed to evaluate shear bond strength (SBS) between three dual-cured resin cements and silica coated zirconia, before and after thermocycling treatment. MATERIALS AND METHODS Sixty specimens were cut in 15 × 2.75 mm discs using zirconia. After air blasting of 50 µm alumina, samples were prepared by tribochemical silica coating with Rocatec™ plus. The specimens were divided into three groups according to the dual-cure resin cement used: (1) Calibra silane+Calibra®, (2) Monobond S+Multilink® N and (3) ESPN sil+RelyX™ Unicem Clicker. After the resin cement was bonded to the zirconia using a Teflon mold, photopolymerization was carried out. Only 10 specimens in each group were thermocycled 6,000 times. Depending on thermocycling treatment, each group was divided into two subgroups (n=10) and SBS was measured by applying force at the speed of 1 mm/min using a universal testing machine. To find out the differences in SBS according to the types of cements and thermocycling using the SPSS, two-way ANOVA was conducted and post-hoc analysis was performed by Turkey's test. RESULTS In non-thermal aged groups, SBS of Multilink group (M1) was higher than that of Calibra (C1) and Unicem (U1) group (P<.05). Moreover, even after thermocycling treatment, SBS of Multilink group (M2) was higher than the other groups (C2 and U2). All three cements showed lower SBS after the thermocycling than before the treatments. But Multilink and Unicem had a significant difference (P<.05). CONCLUSION In this experiment, Multilink showed the highest SBS before and after thermocycling. Also, bond strengths of all three cements decreased after thermocycling.
Collapse
|
Journal Article |
10 |
18 |
29
|
Yoo JY, Yoon HI, Park JM, Park EJ. Porcelain repair - Influence of different systems and surface treatments on resin bond strength. J Adv Prosthodont 2015; 7:343-8. [PMID: 26576249 PMCID: PMC4644774 DOI: 10.4047/jap.2015.7.5.343] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 11/29/2022] Open
Abstract
PURPOSE The purpose of this study was to evaluate the bond strength of composite resin on the fracture surface of metal-ceramic depending on the repair systems and surface roughening methods. MATERIALS AND METHODS A total of 30 disk specimens were fabricated, 15 of each were made from feldspathic porcelain and nickel-chromium base metal alloy. Each substrate was divided into three groups according to the repair method: a) application of repair system I (Intraoral Repair Kit) with diamond bur roughening (Group DP and DM), b) application of repair system I with airborne-particle abrasion (Group SP and SM), and c) application of repair system II (CoJet Intraoral Repair System, Group CP and CM). All specimens were thermocycled, and the shear bond strength was measured. The data were analyzed using the Kruskal-Wallis analysis and the Mann-Whitney test with a significance level of 0.05. RESULTS For the porcelain specimens, group SP showed the highest shear bond strength (25.85 ± 3.51 MPa) and group DP and CP were not significantly different. In metal specimens, group CM showed superior values of bond strength (13.81 ± 3.45 MPa) compared to groups DM or SM. CONCLUSION Airborne-particle abrasion and application of repair system I can be recommended in the case of a fracture localized to the porcelain. If the fracture extends to metal surface, the repair system II is worthy of consideration.
Collapse
|
Journal Article |
10 |
18 |
30
|
Abbassy MA, Bakry AS, Almoabady EH, Almusally SM, Hassan AH. Characterization of a novel enamel sealer for bioactive remineralization of white spot lesions. J Dent 2021; 109:103663. [PMID: 33857545 DOI: 10.1016/j.jdent.2021.103663] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES 45S5 Bioglass is a bioactive glass capable of releasing ions that can interact with dental hard tissues. The current study aimed at examining the effectiveness of 45S5 Bioglass in remineralizing enamel white spot lesion (WSL) as well as its effect on the bond strength of orthodontic brackets bonded to demineralized enamel. MATERIALS AND METHODS WSLs were induced in the buccal surfaces of 135 human extracted teeth by storage in acid solution pH 4.5 for four days. The specimens were then equally divided into three groups; Demineralized group, Bioglass group (BG), and control group (intact enamel). The groups were chemically analyzed using (FTIR/ATR) Fourier-transform infrared spectroscopy/attenuated total reflectance, (XRD) X-ray diffraction, and (SEM/EDS) scanning electron microscope equipped with electron-dispersive-spectroscopy. Moreover, 10 specimens from each group were tested using Transverse Micro Radiography (TMR) technique, and 15 specimens from each group were bonded with metal orthodontic brackets and tested for shear bond strength test (SBS). The data were analyzed statistically using One way ANOVA p < 0.05. RESULTS TMR study showed that bioglass group samples recorded lesion depth of 70.19 ± 29.21 μm and Δ Z (mineral loss) 732.15 ± 210.16 vol% μm which was significantly lower than the demineralized specimens having lesion depth of 115.75 ± 19.98 μm and Δ Z (mineral loss) 3472.69 ± 738.38 vol%μm, moreover, bioglass specimens recorded 14.15 ± 2.35 Mpa which was significantly higher than demineralized specimens 6.82+1.83 Mpa but less than the control specimens 20.5 + 6.1 MPa (p < 0.05). FTIR/ATR, XRD, and SEM/EDS tests showed that bioglass paste formed a layer of brushite crystals onto the treated enamel surface. CONCLUSION 45S5 bioglass paste may serve as an effective remineralizing agent for demineralized enamel.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
18 |
31
|
Choi YS, Cho IH. An effect of immediate dentin sealing on the shear bond strength of resin cement to porcelain restoration. J Adv Prosthodont 2010; 2:39-45. [PMID: 21165186 PMCID: PMC2984522 DOI: 10.4047/jap.2010.2.2.39] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/31/2010] [Accepted: 06/17/2010] [Indexed: 11/18/2022] Open
Abstract
PURPOSE The aim of this study was to determine differences in shear bond strength to human dentin using immediate dentin sealing (IDS) technique compared to delayed dentin sealing (DDS). MATERIALS AND METHODS Forty extracted human molars were divided into 4 groups with 10 teeth each. The control group was light-cured after application of dentin bonding agent (Excite® DSC) and cemented with Variolink® II resin cement. IDS/SE (immediate dentin sealing, Clearfil™ SE Bond) and IDS/SB (immediate dentin sealing, AdapterTM Single Bond 2) were light-cured after application of dentin bonding agent (Clearfil™ SE Bond and Adapter™ Sing Bond 2, respectively), whereas DDS specimens were not treated with any dentin bonding agent. Specimens were cemented with Variolink® II resin cement. Dentin bonding agent (Excite® DSC) was left unpolymerized until the application of porcelain restoration. Shear strength was measured using a universal testing machine at a speed of 5 mm/min and evaluated of fracture using an optical microscope. RESULTS The mean shear bond strengths of control group and IDS/SE group were not statistically different from another at 14.86 and 11.18 MPa. Bond strength of IDS/SE group had a significantly higher mean than DDS group (3.14 MPa) (P < .05). There were no significance in the mean shear bond strength between IDS/SB (4.11 MPa) and DDS group. Evaluation of failure patterns indicates that most failures in the control group and IDS/SE groups were mixed, whereas failures in the DDS were interfacial. CONCLUSION When preparing teeth for indirect ceramic restoration, IDS with Clearfil™ SE Bond results in improved shear bond strength compared with DDS.
Collapse
|
Journal Article |
15 |
17 |
32
|
Koppolu M, Gogala D, Mathew VB, Thangala V, Deepthi M, Sasidhar N. Effect of saliva and blood contamination on the bond strength of self-etching adhesive system- An in vitro study. J Conserv Dent 2012; 15:270-3. [PMID: 22876017 PMCID: PMC3410340 DOI: 10.4103/0972-0707.97956] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/19/2012] [Accepted: 03/28/2012] [Indexed: 11/17/2022] Open
Abstract
Aim: The aims of this study were to determine the effect of saliva and blood contamination on the shear bond strength of self-etching adhesive to enamel and dentin; and, to compare the difference in bond strength due to contamination beforeand after application of the self-etch adhesive. Materials and Methods: 40 human mandibular molars were wet ground on both buccal and lingual surfaces to prepare flat superficial enamel and dentin surfaces. They were randomly divided into two groups (n = 40) based on the substrate (enamel and dentin). Each group was further divided into five subgroups (n = 8) based on the type of contamination it was subjected to, and the step in the bonding sequence when the contamination occurred (before or after adhesive application). Fresh saliva and fresh human blood were applied either before or after the application of Xeno III® self-etching adhesive system (SES). Composite resin was applied as inverted, truncated cured cones that were subjected to shear bond strength test. Statistical Analysis: One-way analysis of variance (ANOVA) and Tukey's Honestly Significant Difference (HSD) test were used. Results: Statistically significant reduction in the bond strength was shown after both saliva and blood contamination before and after Xeno III® application (P< 0.05). Bond strength is significantly reduced after contamination with blood as compared to saliva. Conclusions: When self-etching adhesive systems are used, saliva and blood contamination significantly decrease the bond strength of the adhesive to enamel and dentin of the tooth.
Collapse
|
Journal Article |
13 |
17 |
33
|
Labriaga W, Song SY, Park JH, Ryu JJ, Lee JY, Shin SW. Effect of non-thermal plasma on the shear bond strength of resin cements to Polyetherketoneketone (PEKK). J Adv Prosthodont 2018; 10:408-414. [PMID: 30584469 PMCID: PMC6302079 DOI: 10.4047/jap.2018.10.6.408] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 10/22/2018] [Accepted: 12/03/2018] [Indexed: 11/08/2022] Open
Abstract
PURPOSE This study aimed to assess the effect of non-thermal plasma on the shear bond strength of resin cements to polyetherketoneketone (PEKK) in comparison to other surface treatment methods. MATERIALS AND METHODS Eighty PEKK discs were subjected to different surface treatments: (1) Untreated (UT); (2) Non-thermal plasma (NTP); (3) Sandblasting with 50 µm Al2O3 particles (SB); and (4) Sandblasting + Non-thermal plasma (SB+NTP). After each surface treatment, the contact angle was measured. Surface conditioning with Visio.Link was applied in all groups after pre-treatment. RelyX Unicem resin cement was bonded onto the PEKK specimens. After fabrication of the specimens, half of each group (n=10) was initially tested, while the other half was subjected to thermocycling (5℃ to 55℃ at 10,000 cycles). Shear bond strength (SBS) testing was performed using a universal testing machine, and failure modes were assessed using stereomicroscopy. The SBS results were analyzed statistically using one-way ANOVA followed by Tukey's post hoc test. Independent t-test was used to examine the effect of thermocycling (P<.05). RESULTS The highest SBS values with or without thermocycling were observed with PEKK specimens that were treated with SB+NTP followed by the SB group. The lowest SBS results were observed in the UT groups. CONCLUSION The shear bond strength between PEKK and resin cements was improved using non-thermal plasma treatment in combination with sandblasting.
Collapse
|
Journal Article |
7 |
16 |
34
|
Henriques B, Fabris D, Souza JCM, Silva FS, Carvalho Ó, Fredel MC, Mesquita-Guimarães J. Bond strength enhancement of zirconia-porcelain interfaces via Nd:YAG laser surface structuring. J Mech Behav Biomed Mater 2018. [PMID: 29524754 DOI: 10.1016/j.jmbbm.2018.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the effect of laser surface structuring on the bond strength of feldspar-based porcelain to zirconia, as compared to conventional sandblasting treatment. MATERIALS AND METHODS Thirty cylindrical zirconia substrates, previously sintered, were divided in three groups according to the type of surface conditioning: 1) sandblasting with 50 µm Al2O3; 2) laser structuring (Ø25 µm holes); and 3) laser structuring (Ø50 µm holes). Porcelain was injected onto the zirconia substrates. X-ray diffractometry (XRD) was used to evaluate the influence of the laser treatment on zirconia crystallographic phases. Shear bond strength test was performed. Micrographs using SEM were used to evaluate the zirconia surface after each surface treatment and to evaluate the fracture surface after the shear test. RESULTS The laser-structured groups presented the highest shear bond strength (65 ± 16 MPa and 65 ± 11 MPa, for the 25 µm and 50 µm holes, respectively). The sandblasting samples presented shear bond strength of 37 ± 16 MPa. XRD analysis showed that there was no phase transformation on the thermally affected surface due to laser action. Microcracks were created at some holes due to the high temperature gradient generated by laser. SIGNIFICANCE Laser structuring significantly increased (up to 75%) the shear bond strength of zirconia to veneering porcelain as compared to conventional sandblasting treatment. Therefore, laser structuring arises as a surface conditioning method for producing stronger and long lasting zirconia-porcelain interfaces.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
16 |
35
|
Okutan Y, Yucel MT, Gezer T, Donmez MB. Effect of airborne particle abrasion and sintering order on the surface roughness and shear bond strength between Y-TZP ceramic and resin cement. Dent Mater J 2018; 38:241-249. [PMID: 30541993 DOI: 10.4012/dmj.2018-051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study examined the surface roughness (Ra) and shear bond strength (SBS) of Yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramic after airborne particle abrasion at different pressures and particle sizes, pre- and post-sintering. Ninety specimens, prepared from Y-TZP ceramic blocks (Vita In-Ceram YZ, Vita Zahnfabrik), were divided into nine subgroups: control, and 50 and 110 µm Al2O3 airborne particle abrasion at 3 and 4 bar pressure, before and after sintering, respectively. According to the sintering order, before and after surface treatments, Ra values were measured using a profilometer. SBS to Y-TZP was assessed after thermocycling, using self-adhesive resin cement (Rely X U200, 3M ESPE). Scanning electron microscopy (SEM) and X-ray diffractometry (XRD) were performed on one specimen per group. All surface-treated samples were rougher than the controls. ABS50-4 (50 µm Al2O3 airborne particle abrasion at 4 bar pressure before sintering), ABS110-3, and ABS110-4 showed the highest Ra values, among all cohorts. The controls displayed lower SBS values than the treated groups (p<0.05), which had statistically similar results to each other. Airborne particle abrasion of pre-sintered Y-TZP, followed by sintering, increased the tetragonal structure contents.
Collapse
|
Journal Article |
7 |
16 |
36
|
Khamverdi Z, Rezaei-Soufi L, Kasraei S, Ronasi N, Rostami S. Effect of Epigallocatechin Gallate on shear bond strength of composite resin to bleached enamel: an in vitro study. Restor Dent Endod 2013; 38:241-7. [PMID: 24303360 PMCID: PMC3843036 DOI: 10.5395/rde.2013.38.4.241] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/24/2013] [Accepted: 09/27/2013] [Indexed: 11/22/2022] Open
Abstract
Objectives The aim of this study was to determine the effect of epigallocatechin gallate (EGCG) on the shear bond strength of composite resin to bleached enamel. Materials and Methods Ninety enamel surfaces of maxillary incisors were randomly divided into 9 groups as follows: G1: control (no bleaching); G2: bleaching; G3: bleaching and storage for seven days; G4 - 6: bleaching and application of 600, 800 and 1,000 µmol of EGCG-containing solution for 10 minutes, respectively; G7 - 9: bleaching and application of 600, 800 and 1,000 µmol of EGCG-containing solution for 20 minutes, respectively. The specimens were bleached with 30% hydrogen peroxide gel and a composite resin cylinder was bonded on each specimen using a bonding agent. Shear bond strength of the samples were measured in MPa. Data was analyzed using the two-way ANOVA and Tukey HSD tests (α = 0.05). Results The maximum and minimum mean shear bond strength values were observed in G1 and G2, respectively. Time and concentration of EGCG showed no significant effects on bond strength of the groups (p > 0.05). Multiple comparison of groups did not reveal any significant differences between the groups except for G2 and all the other groups (p < 0.05). Conclusions There is a significant decrease in bond strength of composite resin to enamel immediately after bleaching. A delay of one week before bonding and the use of EGCG increased bond strength of composite resin to bleached enamel.
Collapse
|
Journal Article |
12 |
16 |
37
|
Shear bond, wettability and AFM evaluations on CO 2 laser-irradiated CAD/CAM ceramic surfaces. Lasers Med Sci 2017; 32:779-785. [PMID: 28280997 DOI: 10.1007/s10103-017-2171-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
Abstract
The purpose of this study is to determine the CO2 laser irradiation in comparison with sandblasting (Sb), hydrofluoric acid (Hf) and silane coupling agent (Si) on shear bond strength (SBS), roughness (Rg) and wettability (Wt) of resin cement to CAD/CAM ceramics. Sixty (CAD/CAM) ceramic discs were prepared and distributed into six different groups: group A, control lithium disilicate (Li); group B, control zirconia (Zr); group C, Li: CO2/HF/Si; group D, Li: HF/Si; group E, Zr: CO2/Sb/Si; group F, Zr: Sb/Si. Result showed significant difference between irradiated and non-irradiated in terms of shear bond strength for zirconia ceramics (p value = 0.014). Moreover, partial surface wettability for irradiated and non-irradiated ceramics. Irradiated surface demonstrated more rough surface in lithium disilicate than zirconia ceramics. CO2 irradiation could increase shear bond strength, surface roughness and wettability for both CAD/CAM ceramics.
Collapse
|
Journal Article |
8 |
16 |
38
|
Doozandeh M, Firouzmandi M, Mirmohammadi M. The Simultaneous Effect of Extended Etching Time and Casein Phosphopeptide-Amorphous Calcium Phosphate containing Paste Application on Shear Bond Strength of Etch-and-rinse Adhesive to Caries-affected Dentin. J Contemp Dent Pract 2015; 16:794-9. [PMID: 26581459 DOI: 10.5005/jp-journals-10024-1759] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIM This study evaluated the simultaneous effect of extended etching time and casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) containing paste application on shear bond strength (SBS) of etch-and-rinse adhesive to caries-affected-dentin (CAD). MATERIALS AND METHODS Fifty human third molars were used; 10 normal in group 1 and 40 caries-affected teeth in groups 2 to 5. In the CAD groups, teeth were randomly assigned into four groups (n = 10). In groups 2 and 4, phosphoric acid etching for 15 and 45 seconds was used and in groups 3 and 5, after 15 or 45 seconds etching respectively, CPP-ACP containing paste (MI paste) was applied for 3 minutes. After rinsing, single bond adhesive system and Z250 composite were used for resin composite build-up in all groups. After storage, SBS test was measured at cross head speed of 0.5 mm/min. Data were analyzed using one/two-way ANOVA and Tukey HSD test (α = 0.05). RESULTS Normal dentin groups showed the highest SBS among different groups. There was a statistically significant difference between different etching times in CAD groups (p < 0.05), but there were no significant differences between SBS of SB adhesive to CAD with or without CPP-ACP pretreated in both etching times. Most of the failure modes were adhesive except in groups 1 and 5 which cohesive failure in composite was also observed. CONCLUSION The results of our study indicated that extended etching time up to 45 seconds could enhance the SBS of CAD and approach nearly to SBS of normal dentin. Moreover, MI paste pretreatment had not significant effect on SBS of etch-and-rinse adhesive in CAD. CLINICAL SIGNIFICANCE Simultaneous application of extended etching time and CPP-ACP containing paste may be a suggested method in increasing the SBS of adhesive to CAD.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
15 |
39
|
Aglarci C, Demir N, Aksakalli S, Dilber E, Sozer OA, Kilic HS. Bond strengths of brackets bonded to enamel surfaces conditioned with femtosecond and Er:YAG laser systems. Lasers Med Sci 2016; 31:1177-83. [PMID: 27225386 DOI: 10.1007/s10103-016-1961-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/09/2016] [Indexed: 11/29/2022]
Abstract
The aim of this study was to compare femtosecond and Er:YAG laser systems with regard to enamel demineralization and bracket bond strength. Human-extracted premolars were randomized to three groups (n = 17) depending on the conditioning treatment used for the buccal surfaces: 37 % orthophosphoric acid, Er:YAG laser etching (MSP mode 120 mJ, 10 Hz, 1.2 W), and femtosecond laser etching (0.4 W, 800 nm, 90 fs/pulse, 1 kHz). Metal brackets were bonded with Transbond XT to the conditioned surfaces and light cured for 20 s. The samples were thermocycled (5000 cycles, 5-55 °C) and subjected to shear bond strength (SBS) testing using a universal testing machine. Failure types were analyzed under an optical stereomicroscope and SEM. The adhesive remnant index (ARI) was evaluated to assess residual adhesive on the enamel surface. The results revealed no significant differences in SBS between the Er:YAG laser (7.2 ± 3.3 MPa) and acid etching groups (7.3 ± 2.7 MPa; p < 0.05), whereas a significant difference was observed between the femtosecond laser etching group (3.3 ± 1.2 MPa) and the other two groups (p < 0.01). ARI scores were significantly different among the three groups. The results of our study suggest that laser conditioning with an Er:YAG system results in successful etching, similar to that obtained with acid. The sole use of a femtosecond laser system may not provide an adequate bond strength at the bracket-enamel interface.
Collapse
|
Journal Article |
9 |
15 |
40
|
da Rocha JM, Gravina MA, Campos MJDS, Quintão CCA, Elias CN, Vitral RWF. Shear bond resistance and enamel surface comparison after the bonding and debonding of ceramic and metallic brackets. Dental Press J Orthod 2014; 19:77-85. [PMID: 24713563 PMCID: PMC4299420 DOI: 10.1590/2176-9451.19.1.077-085.oar] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 11/28/2011] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To evaluate, in vitro, the shear bond strength presented by three brands of polycrystalline ceramic brackets and one brand of metallic bracket; verify the adhesive remnant index (ARI) after the tests, and analyze, through scanning electron microscopy (SEM) the enamel surface topography after debonding, detecting the release of mineral particles. METHODS Sixty bovine lower incisors were used. Three ceramic brackets (Allure®, InVu®, and Clarity®) and one metallic bracket (Geneus®) were bonded with Transbond XT®. Kruskal-Wallis's test (significance level set at 5%) was applied to the results of shear bond and ARI. Mann Whitney's test was performed to compare the pairs of brackets in relation to their ARI. Brown-Forsythe's test (significance level set at 5%) was applied to the results of enamel chemical composition. Comparisons between groups were made with Games-Howell's and the Post-hoc tests. RESULTS No statistically significant difference was observed in relation to the shear bond strength loads. Clarity® brackets were the most affected in relation to the surface topography and to the release of mineral particles of enamel (calcium ions). CONCLUSIONS With regard to the ARI, there was a prevalence of score 4 (40.4%). As for enamel surface topography, the Geneus® bracket was the only one which did not show superficial tissue loss. The InVu® and Clarity® ones showed cohesive fractures in 33.3% and the Allure® in 50%, the latter being the one that presented most fractures during removal.
Collapse
|
Comparative Study |
11 |
15 |
41
|
Cho JH, Kim SJ, Shim JS, Lee KW. Effect of zirconia surface treatment using nitric acid-hydrofluoric acid on the shear bond strengths of resin cements. J Adv Prosthodont 2017; 9:77-84. [PMID: 28435615 PMCID: PMC5397592 DOI: 10.4047/jap.2017.9.2.77] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 11/01/2016] [Accepted: 01/10/2017] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The aim of this study was to compare the surface roughness of zirconia when using Zircos E etching system (ZSAT), applying a nitric acid-hydrofluoric acid compound as a pretreatment agent, and also to compare the shear bonding strength according to different resin cements. MATERIALS AND METHODS ZSAT, air abrasion, and tribochemical silicacoating were applied on prepared 120 zirconia specimens (10 mm in diameter, 7 mm in height) using CAD/CAM. Each 12 specimens with 4 different resin cements (Panavia F 2.0, Rely X Unicem, Superbond C&B, and Hot bond) were applied to test interfacial bond strength. The statistical analysis was performed using SAS 9.1 (SAS Institute Inc., Cary, NC, USA). The results are as follows: after application of the ZSAT on the zirconia specimens, surface roughness value after 2-hour etching was higher than those after 1- and 3-hour etching on SEM images. RESULTS For Superbond C&B and Rely X Unicem, the specimens treated with ZSAT showed higher shear bond strength values than those treated with air abrasion and tribochemical silicacoating system. Regarding the failure mode of interface over cement and zirconia surface, Rely X Unicem and Hot bond showed cohesive failures and Panavia F 2.0 and Superbond C&B showed mixed failures. CONCLUSION Zircos E etching system in zirconia restoration could increase its shear bond strength. However, its long term success rate and clinical application should be further evaluated.
Collapse
|
|
8 |
15 |
42
|
An HS, Park JM, Park EJ. Evaluation of shear bond strengths of gingiva-colored composite resin to porcelain, metal and zirconia substrates. J Adv Prosthodont 2011; 3:166-71. [PMID: 22053249 PMCID: PMC3204454 DOI: 10.4047/jap.2011.3.3.166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/07/2011] [Accepted: 09/09/2011] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The purpose of this study is to evaluate and compare the shear bond strength of the gingiva-colored composite resin and the tooth-colored composite resin to porcelain, metal and zirconia. MATERIALS AND METHODS Sixty cylindrical specimens were fabricated and divided into the following 6 groups (Group 1-W: tooth-colored composite bonded to porcelain, Group 1-P: gingiva-colored composite bonded to porcelain, Group 2-W: tooth-colored composite bonded to base metal, Group 2-P: gingiva-colored composite bonded to base metal, Group 3-W: toothcolored composite bonded to zirconia, Group 3-P: gingiva-colored composite bonded to zirconia). The shear bond strength was measured with a universal testing machine after thermocycling and the failure mode was noted. All data were analyzed using the two-way analysis of variance test and the Bonferroni post-hoc test at a significance level of 0.05. RESULTS The mean shear bond strength values in MPa were 12.39, 13.42, 8.78, 7.98, 4.64 and 3.74 for Group 1-W, 1-P, 2-W, 2-P, 3-W and 3-P, respectively. The difference between the two kinds of composite resin was not significant. The shear bond strength of Group 1 was the highest and that of Group 3 was the lowest. The differences among Group 1, 2 and 3 were all significant (P<.05). CONCLUSION The shear bond strength of the gingiva-colored composite was not less than that of the tooth-colored composite. Thus, repairing or fabricating ceramic restorations using the gingiva-colored composite resin can be regarded as a practical method. Especially, the prognosis would be fine when applied on porcelain surfaces.
Collapse
|
Journal Article |
14 |
14 |
43
|
Lee SJ, Cheong CW, Wright RF, Chang BM. Bond strength of the porcelain repair system to all-ceramic copings and porcelain. J Prosthodont 2013; 23:112-6. [PMID: 23725343 DOI: 10.1111/jopr.12064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2013] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the shear bond strength of the porcelain repair system on alumina and zirconia core ceramics, comparing this strength with that of veneering porcelain. MATERIALS AND METHODS Veneering ceramic (n = 12), alumina core (n = 24), and zirconia core (n = 24) blocks measuring 10 × 5 × 5 mm(3) were fabricated. Veneering ceramic blocks were used as the control. Alumina and zirconia core blocks were divided into 2 groups (n = 12 each), and a slot (2 × 2 × 4 mm(3)) filled with veneering ceramics was prepared into one of the alumina and zirconia core groups (n = 12). Followed by surface treatments of micro-abrasion with 30 μm alumina particles, etching with 35% phosphoric acid and silane primer and bond, composite resin blocks (2 × 2 × 2 mm(3)) were built up and light polymerized onto the treated surfaces by 3 configurations: (a) composite blocks bonded onto veneering ceramic surface alone, (b) composite blocks bonded onto alumina core or zirconia core surfaces, (c) a 50% surface area of the composite blocks bonded to veneering ceramics and the other 50% surface area of the composite blocks to alumina core or zirconia core surfaces. The shear bond strength of the composite to each specimen was tested by a universal testing machine at a 0.5 mm/min crosshead speed. The shear bond strength was analyzed by unpaired t-tests for within the configuration groups and ANOVA for among the different configuration groups. RESULTS When the mean shear bond strength was compared within groups of the same configuration, there were no statistically significant differences. Comparison of the shear bond strength among groups of different configurations revealed statistically significant differences. The mean shear bond strength of composite onto 100% veneering ceramic surface and composite onto 50% veneering 50% all-ceramic cores was statistically higher than that of composite onto 100% all-ceramic cores; however, the differences of the shear bond strength of composite bonded only onto the veneering ceramic surface were not statistically significant from those of 50% surface area of composite bonded onto all-ceramic cores. CONCLUSION No statistically significant differences in the bond strength of a porcelain repair system to alumina and zirconia copings were observed. Increasing the surface of veneering ceramics to a porcelain repair system improved the repair material's bond strength.
Collapse
|
Journal Article |
12 |
14 |
44
|
Seker E, Kilicarslan MA, Deniz ST, Mumcu E, Ozkan P. Effect of atmospheric plasma versus conventional surface treatments on the adhesion capability between self-adhesive resin cement and titanium surface. J Adv Prosthodont 2015; 7:249-56. [PMID: 26140177 PMCID: PMC4486621 DOI: 10.4047/jap.2015.7.3.249] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/20/2015] [Accepted: 04/08/2015] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate the effects of atmospheric plasma (APL) versus conventional surface treatments on the adhesion of self-adhesive resin cement to Ti-6Al-4V alloy. MATERIALS AND METHODS Sixty plates of machined titanium (Ti) discs were divided into five groups (n=12): 1) Untreated (CNT); 2) Sandblasted (SAB); 3) Tribochemically treated (ROC); 4) Tungsten CarbideBur (TCB); 5) APL treated (APL). SEM analysis and surface roughness (Ra) measurements were performed. Self-adhesive resin cement was bonded to the Ti surfaces and shear bond strength (SBS) tests, Ra and failure mode examinations were carried out. Data were analyzed by one-way analysis of variance and chi-squared test. RESULTS The lowest SBS value was obtained with CNT and was significantly different from all other groups except for APL. The ROC showed the highest SBS and Ra values of all the groups. CONCLUSION It was concluded that the effect of APL on SBS and Ra was not sufficient and it may not be a potential for promoting adhesion to titanium.
Collapse
|
Journal Article |
10 |
14 |
45
|
Kim JE, Kim JH, Shim JS, Roh BD, Shin Y. Effect of air-particle pressures on the surface topography and bond strengths of resin cement to the hybrid ceramics. Dent Mater J 2017; 36:454-460. [PMID: 28420832 DOI: 10.4012/dmj.2016-293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to determine the appropriate pressure for airborne-abrasion by comparing the shear bond strength values for different hybrid ceramic surfaces. Two materials were used to produce hybrid ceramic specimens: Lava Ultimate and MAZIC Duro. The group of specimens whose surfaces were not subjected to airborne-abrasion was set as the control group. In the experimental group, airborne-abrasion was performed at pressures of 0.1, 0.2, and 0.3 MPa. After the adhesive and resin cement was applied, an SBS test was performed. For the MAZIC Duro block, the SBS increased monotonically with the airborne-abrasion pressure increased, peaking at 0.3 MPa. For the Lava Ultimate block, the SBS increased as the airborne-abrasion pressure increased to 0.2 MPa, and then decreased in the 0.3-MPa group, thereby peaking at 0.2 MPa. This study has confirmed that the bonding strength varies with the material used even when applying the same surface treatment.
Collapse
|
Journal Article |
8 |
14 |
46
|
Lee JY, Kim JS, Hwang CJ. Comparison of shear bond strength of orthodontic brackets using various zirconia primers. Korean J Orthod 2015; 45:164-70. [PMID: 26258062 PMCID: PMC4524955 DOI: 10.4041/kjod.2015.45.4.164] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/07/2015] [Accepted: 02/12/2015] [Indexed: 11/22/2022] Open
Abstract
Objective The aim of this study was to compare the shear bond strength (SBS) of orthodontic brackets bonded to zirconia surfaces using three different zirconia primers and one silane primer, and subjected to thermocycling. Methods We designed 10 experimental groups following the surface treatment and thermocycling. The surface was treated with one of the following method: no-primer (NP), Porcelain Conditioner (PC), Z-PRIME Plus (ZP), Monobond Plus (MP) and Zirconia Liner Premium (ZL) (n=20). Then each group was subdivided to non-thermocycled and thermocycled groups (NPT, PC, ZPT, MPT, ZLT) (n=10). Orthodontic brackets were bonded to the specimens using Transbond™ XT Paste and light cured for 15 s at 1,100 mW/cm2. The SBS was measured at a 1 mm/min crosshead speed. The failure mode was assessed by examination with a stereomicroscope and the amount of bonding resin remaining on the zirconia surface was scored using the modified adhesive remnant index (ARI). Results The SBS of all experimental groups decreased after thermocycling. Before thermocycling, the SBS was ZL, ZP ≥ MP ≥ PC > NP but after thermocycling, the SBS was ZLT ≥ MPT ≥ ZPT > PCT = NPT (p > 0.05). For the ARI score, both of the groups lacking primer (NP and NPT) displayed adhesive failure modes, but the groups with zirconia primers (ZP, ZPT, MP, MPT, ZL, and ZLT) were associated with mixed failure modes. Conclusions Surface treatment with a zirconia primer increases the SBS relative to no-primer or silane primer application between orthodontic brackets and zirconia prostheses.
Collapse
|
Journal Article |
10 |
14 |
47
|
Abdelraouf RM, Mohammed M, Abdelgawad F. Evaluation of Shear-Bond-Strength of Dental Self-Adhering Flowable Resin-Composite versus Total-Etch One to Enamel and Dentin Surfaces: An In-Vitro Study. Open Access Maced J Med Sci 2019; 7:2162-2166. [PMID: 31456846 PMCID: PMC6698122 DOI: 10.3889/oamjms.2019.579] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 11/05/2022] Open
Abstract
AIM This study aimed to assess the shear bond strength of a self-adhering flowable resin composite versus a total-etch one to different surfaces of permanent-molars. MATERIAL AND METHODS Thirty-six sound human permanent molars were used. The teeth were embedded in acrylic blocks, such that their buccal surfaces were shown. The teeth were divided into three groups: Group I: Uncut-Enamel, Group II: Cut-enamel-surfaces with minimal-grinding and Group III: dentin-surfaces. Half of the teeth in each group were used for bonding to a self-adhering flowable resin-composite (Dyad-flow, Kerr, USA). While the other half of each group was bonded to a total-etch flowable resin-composite (Filtek™Z350-XT,3M-ESPE, USA) which necessitate etching and bonding. Teflon-mold was used for constructing resin composite cylinders (3 × 3 mm) over the buccal surfaces. The Dyad-flow was applied in the central hole of the mould placed upon tooth-surface, and then light-cured for 20 seconds. The Filtek-Z350-XT was applied similarly after etching and bonding steps. The teeth were stored in 37°C distilled water for 24 hours. The strength was measured using a universal testing machine and statistically analysed. Modes of failure were studied using digital-microscope. RESULTS Mean values of shear bond strength for the Dyad and Filtek-Z350-XT in the uncut-enamel were 3.5 and 24.6MPa respectively, while that for cut-enamel were 4.5 and 12.7MPa respectively (Both highly statistically significant P ≤ 0.01) and in dentin were 4.3 and 6.7MPa respectively (Statistically significant P ≤ 0.05). The failure mode for Dyad was mainly adhesive (un-cut or cut-enamel 83.3% adhesive and 16.7% mixed, while in dentin 100% adhesive). While the modes of failure for Filtek-Z350-XT in enamel, either cut or un-cut, were 50% cohesive and 50% mixed, whereas in dentin 100% adhesive. CONCLUSION Bonding of self-etch ″Dyad-flow″ flowable resin-composite was lower than the total-etch one in enamel and dentin. Thus further material improvement may be required.
Collapse
|
Journal Article |
6 |
13 |
48
|
Irmak Ö, Baltacıoğlu İH, Ulusoy N, Bağış YH. Solvent type influences bond strength to air or blot-dried dentin. BMC Oral Health 2016; 16:77. [PMID: 27549333 PMCID: PMC4994181 DOI: 10.1186/s12903-016-0247-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/30/2016] [Indexed: 11/26/2022] Open
Abstract
Background Air-drying of etched and rinsed dentin surface may force the exposed collagen fibrils to collapse. Blot-drying is an alternative method to wipe the excess water from the dentin surface without compromising the monomer penetration. Contemporary total etch adhesives contain ethanol/water or acetone as solvent in which resin monomers are dissolved. Solvent type of the adhesive system has an important role in bonding to dentin. An adhesive containing tertiary butanol as an alternative solvent has been in the market. Purpose of this study is to determine the shear bond strengths of three total-etch adhesives with different solvents (acetone, ethanol or tertiary butanol) applied to air or blot dried moist dentin. Methods Sixty extracted non-carious human third molars were divided into three main groups according to solvent content of the adhesives [acetone based - One Step (OS, Bisco, IL, USA); ethanol/water based - Optibond Solo Plus (OB, Kerr, CA, USA); and tertiary butanol based - XP Bond (XP, Caulk/Dentsply, DE, USA)]. Each main group was divided into two groups according to drying methods (blot or air) (n = 10). Shear bond strengths (SBS) were measured. Data were analyzed by Student’s t test and Tukey HSD test (p < 0,05). Results XP showed highest SBS values in both drying methods applied (p < 0.05). Drying method did not influence the SBS in OS and OB (p > 0.05). XP-blot produced significantly higher SBS than XP-air (p < 0.05). Conclusions Tertiary butanol based adhesive showed higher bond strength values than ethanol or acetone based adhesives. Blot drying of dentin improved the bond strength values of tertiary butanol based adhesive. Further research is necessary to determine in vivo and in vitro performance of tertiary butanol based adhesives.
Collapse
|
Journal Article |
9 |
13 |
49
|
Albahri R, Yoon HI, Lee JD, Yoon S, Lee SJ. Shear bond strength of provisional repair materials bonded to 3D printed resin. J Dent Sci 2020; 16:261-267. [PMID: 33384807 PMCID: PMC7770250 DOI: 10.1016/j.jds.2020.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/04/2020] [Indexed: 11/28/2022] Open
Abstract
Background/purpose There is limited literature on the materials of choice and their properties when repairing 3-D printed resin-based restorations. The objective of this in-vitro study is to determine the shear bond strength of various repair materials to 3D printed SLA (stereolithography) resin. Materials and methods For Group A (control), fifteen cylinders of 3-D printing SLA resin were printed as one unit of a Ø6.8 × 8 mm (diameter and height) cylindrical block with a Ø3 × 5 mm cylindrical block at the center. For the test groups, forty-five specimen cylinders of 3-D printing SLA resin (Ø6.8 × 8 mm) were fabricated and the surfaces were treated with 3 different test materials: Group B: Poly-Methyl Methacrylate (PMMA); Group C: Bis-acrylic composite resin, and Group D: Bis-GMA composite All specimens were tested using an Instron machine at a crosshead speed of 0.5 mm/min. A Shapiro-Wilk test was used to assess normality within the data, then the data was statistically analyzed by a Mann-Whitney test. Results There were no statistically significant differences between testing groups, except Group A. Group B displayed mixed (87%) and adhesive (13%) failure at the fractured surface. Group C showed both mixed (60%) and adhesive failure at the fractured surface (40%). All Group D showed mixed fracture patterns, partly cohesive fractured surface within the base cylinder area and partly adhesive fractured surface at the bonded interface. Conclusion No statistically significant differences in the shear bond strength of the different repair materials to 3D printed cylinders were observed. The 3D printed cylinder repaired with Bis-GMA composite demonstrated the most predictability from the fractography analysis.
Collapse
|
Journal Article |
5 |
13 |
50
|
Effect of femtosecond laser beam angle on bond strength of zirconia-resin cement. Lasers Med Sci 2015; 30:2123-8. [PMID: 25958172 DOI: 10.1007/s10103-015-1762-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
Abstract
Yttrium-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramic is widely used as an all-ceramic core material because of its enhanced mechanical and aesthetic properties. The bond strength of Y-TZP restorations affects long-term success; hence, surface treatment is required on ceramic boundaries. This study evaluated the effect of different laser beam angles on Y-TZP-resin cement shear bond strength (SBS). Forty plates of Y-TZP ceramics were randomly assigned to four groups (n = 10). A femtosecond amplifier laser pulse was applied on Y-TZP surface with different incidence angles (90°, 75°, 60°, 45°). The resin cement was adhered onto the zirconia surfaces. The SBS of each sample was measured using universal testing machine at crosshead speed of 1 mm/min. The SBS was analyzed through one-way analysis of variance (ANOVA)/Tukey tests. The results showed that the degree of laser beam angle affects the SBS of resin cement to Y-TZP. The laser beam was applied to a surface with a 45° angle which resulted in significantly higher SBS (18.2 ± 1.43 MPa) than other groups (at 90° angulation (10.79 ± 1.8 MPa), at 75° (13.48 ± 1.2 MPa) and at 60° (15.85 ± 0.81 MPa); p < 0.001). This study shows that decreasing of the angle between the ceramic surface and the laser beam increased the SBS between the resin cement and the ceramic material, as well as the orifice.
Collapse
|
Journal Article |
10 |
13 |