26
|
Svirsky R, Sharabi-Nov A, Sagi T, Meiri H, Adi O, Kugler N, Maymon R. High sensitivity and specificity in fetal gender identification in the first trimester, using ultrasound and Noninvasive Prenatal Screening (NIPS) in twin pregnancies, a prospective study. BMC Pregnancy Childbirth 2023; 23:812. [PMID: 37993805 PMCID: PMC10664379 DOI: 10.1186/s12884-023-06133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
INTRODUCTION Determination of the fetal gender in the first trimester is important in twin pregnancy cases of familial X-linked genetic syndromes and helps determine chorionicity. We assessed and compared the accuracy of first-trimester ultrasound scans, and cell-free fetal DNA (CfDNA) in determining fetal gender in the first trimester of twin pregnancies. METHODS Women with twin pregnancies were recruited prospectively during the first trimester. Fetal gender was determined using both ultrasound scans and CfDNA screening. Both results were compared to the newborn gender after delivery. RESULTS A total of 113 women with twin pregnancies were enrolled. There was 100% sensitivity and specificity in Y chromosome detection using CfDNA. Gender assignment using ultrasound in any first-trimester scans was 79.7%. Accuracy level increased from 54.2% in CRL 45-54 mm to 87.7% in CRL 55-67 mm and 91.5% in CRL 67-87 mm. Male fetuses had significantly higher chances of a gender assignment error compared to female fetuses, odds ratio = 23.574 (CI 7.346 - 75.656). CONCLUSIONS CfDNA is highly sensitive and specific in determining the presence of the Y chromosome in twin pregnancies in the first trimester. Between CRL 55-87 mm, ultrasound scanning offers a highly accurate determination of fetal gender in twin pregnancies.
Collapse
|
27
|
Martí E, Larracuente AM. Genetic conflict and the origin of multigene families: implications for sex chromosome evolution. Proc Biol Sci 2023; 290:20231823. [PMID: 37909083 PMCID: PMC10618873 DOI: 10.1098/rspb.2023.1823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
Sex chromosomes are havens for intragenomic conflicts. The absence of recombination between sex chromosomes creates the opportunity for the evolution of segregation distorters: selfish genetic elements that hijack different aspects of an individual's reproduction to increase their own transmission. Biased (non-Mendelian) segregation, however, often occurs at a detriment to their host's fitness, and therefore can trigger evolutionary arms races that can have major consequences for genome structure and regulation, gametogenesis, reproductive strategies and even speciation. Here, we review an emerging feature from comparative genomic and sex chromosome evolution studies suggesting that meiotic drive is pervasive: the recurrent evolution of paralogous sex-linked gene families. Sex chromosomes of several species independently acquire and co-amplify rapidly evolving gene families with spermatogenesis-related functions, consistent with a history of intragenomic conflict over transmission. We discuss Y chromosome features that might contribute to the tempo and mode of evolution of X/Y co-amplified gene families, as well as their implications for the evolution of complexity in the genome. Finally, we propose a framework that explores the conditions that might allow for recurrent bouts of fixation of drivers and suppressors, in a dosage-sensitive fashion, and therefore the co-amplification of multigene families on sex chromosomes.
Collapse
|
28
|
Tomaszkiewicz M, Sahlin K, Medvedev P, Makova KD. Transcript Isoform Diversity of Ampliconic Genes on the Y Chromosome of Great Apes. Genome Biol Evol 2023; 15:evad205. [PMID: 37967251 PMCID: PMC10673640 DOI: 10.1093/gbe/evad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
Y chromosomal ampliconic genes (YAGs) are important for male fertility, as they encode proteins functioning in spermatogenesis. The variation in copy number and expression levels of these multicopy gene families has been studied in great apes; however, the diversity of splicing variants remains unexplored. Here, we deciphered the sequences of polyadenylated transcripts of all nine YAG families (BPY2, CDY, DAZ, HSFY, PRY, RBMY, TSPY, VCY, and XKRY) from testis samples of six great ape species (human, chimpanzee, bonobo, gorilla, Bornean orangutan, and Sumatran orangutan). To achieve this, we enriched YAG transcripts with capture probe hybridization and sequenced them with long (Pacific Biosciences) reads. Our analysis of this data set resulted in several findings. First, we observed evolutionarily conserved alternative splicing patterns for most YAG families except for BPY2 and PRY. Second, our results suggest that BPY2 transcripts and proteins originate from separate genomic regions in bonobo versus human, which is possibly facilitated by acquiring new promoters. Third, our analysis indicates that the PRY gene family, having the highest representation of noncoding transcripts, has been undergoing pseudogenization. Fourth, we have not detected signatures of selection in the five YAG families shared among great apes, even though we identified many species-specific protein-coding transcripts. Fifth, we predicted consensus disorder regions across most gene families and species, which could be used for future investigations of male infertility. Overall, our work illuminates the YAG isoform landscape and provides a genomic resource for future functional studies focusing on infertility phenotypes in humans and critically endangered great apes.
Collapse
|
29
|
García-Olivares V, Muñoz-Barrera A, Rubio-Rodríguez LA, Jáspez D, Díaz-de Usera A, Iñigo-Campos A, Veeramah KR, Alonso S, Thomas MG, Lorenzo-Salazar JM, González-Montelongo R, Flores C. Benchmarking of human Y-chromosomal haplogroup classifiers with whole-genome and whole-exome sequence data. Comput Struct Biotechnol J 2023; 21:4613-4618. [PMID: 37817776 PMCID: PMC10560978 DOI: 10.1016/j.csbj.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
In anthropological, medical, and forensic studies, the nonrecombinant region of the human Y chromosome (NRY) enables accurate reconstruction of pedigree relationships and retrieval of ancestral information. Using high-throughput sequencing (HTS) data, we present a benchmarking analysis of command-line tools for NRY haplogroup classification. The evaluation was performed using paired Illumina data from whole-genome sequencing (WGS) and whole-exome sequencing (WES) experiments from 50 unrelated donors. Additionally, as a validation, we also used paired WGS/WES datasets of 54 individuals from the 1000 Genomes Project. Finally, we evaluated the tools on data from third-generation HTS obtained from a subset of donors and one reference sample. Our results show that WES, despite typically offering less genealogical resolution than WGS, is an effective method for determining the NRY haplogroup. Y-LineageTracker and Yleaf showed the highest accuracy for WGS data, classifying precisely 98% and 96% of the samples, respectively. Yleaf outperforms all benchmarked tools in the WES data, classifying approximately 90% of the samples. Yleaf, Y-LineageTracker, and pathPhynder can correctly classify most samples (88%) sequenced with third-generation HTS. As a result, Yleaf provides the best performance for applications that use WGS and WES. Overall, our study offers researchers with a guide that allows them to select the most appropriate tool to analyze the NRY region using both second- and third-generation HTS data.
Collapse
|
30
|
Xavier C, Sutter C, Amory C, Niederstätter H, Parson W. NuMY-A qPCR Assay Simultaneously Targeting Human Autosomal, Y-Chromosomal, and Mitochondrial DNA. Genes (Basel) 2023; 14:1645. [PMID: 37628695 PMCID: PMC10454206 DOI: 10.3390/genes14081645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The accurate quantification of DNA in forensic samples is of utmost importance. These samples are often present in limited amounts; therefore, it is indicated to use the appropriate analysis route with the optimum DNA amount (when possible). Also, DNA quantification can inform about the degradation stage and therefore support the decision on which downstream genotyping method to use. Consequently, DNA quantification aids in getting the best possible results from a forensic sample, considering both its DNA quantity and quality limitations. Here, we introduce NuMY, a new quantitative real-time PCR (qPCR) method for the parallel quantification of human nuclear (n) and mitochondrial (mt) DNA, assessing the male portion in mixtures of both sexes and testing for possible PCR inhibition. NuMY is based on previous work and follows the MIQE guidelines whenever applicable. Although quantification of nuclear (n)DNA by simultaneously analyzing autosomal and male-specific targets is available in commercial qPCR kits, tools that include the quantification of mtDNA are sparse. The quantification of mtDNA has proven relevant for samples with low nDNA content when conventional DNA fingerprinting techniques cannot be followed. Furthermore, the development and use of new massively parallel sequencing assays that combine multiple marker types, i.e., autosomal, Y-chromosomal, and mtDNA, can be optimized when precisely knowing the amount of each DNA component present in the input sample. For high-quality DNA extracts, NuMY provided nDNA results comparable to those of another quantification technique and has also proven to be a reliable tool for challenging, forensically relevant samples such as mixtures, inhibited, and naturally degraded samples.
Collapse
|
31
|
Flynn JM, Ahmed-Braimah YH, Long M, Wing RA, Clark AG. High quality genome assemblies reveal evolutionary dynamics of repetitive DNA and structural rearrangements in the Drosophila virilis sub-group. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553086. [PMID: 37645834 PMCID: PMC10462019 DOI: 10.1101/2023.08.13.553086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
High-quality genome assemblies across a range of non-traditional model organisms can accelerate the discovery of novel aspects of genome evolution. The Drosophila virilis group has several attributes that distinguish it from more highly studied species in the Drosophila genus, such as an unusual abundance of repetitive elements and extensive karyotype evolution, in addition to being an attractive model for speciation genetics. Here we used long-read sequencing to assemble five genomes of three virilis group species and characterized sequence and structural divergence and repetitive DNA evolution. We find that our contiguous genome assemblies allow characterization of chromosomal arrangements with ease and can facilitate analysis of inversion breakpoints. We also leverage a small panel of resequenced strains to explore the genomic pattern of divergence and polymorphism in this species and show that known demographic histories largely predicts the extent of genome-wide segregating polymorphism. We further find that a neo-X chromosome in D. americana displays X-like levels of nucleotide diversity. We also found that unusual repetitive elements were responsible for much of the divergence in genome composition among species. Helitron-derived tandem repeats tripled in abundance on the Y chromosome in D. americana compared to D. novamexicana, accounting for most of the difference in repeat content between these sister species. Repeats with characteristics of both transposable elements and satellite DNAs expanded by three-fold, mostly in euchromatin, in both D. americana and D. novamexicana compared to D. virilis. Our results represent a major advance in our understanding of genome biology in this emerging model clade.
Collapse
|
32
|
Kuroki Y, Fukami M. Y Chromosome Genomic Variations and Biological Significance in Human Diseases and Health. Cytogenet Genome Res 2023; 163:5-13. [PMID: 37562362 DOI: 10.1159/000531933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
The Y chromosome is a haploid genome unique to males with no genes essential for life. It is easily transmitted to the next generation without being repaired by recombination, even if a major genomic structural alteration occurs. On the other hand, the Y chromosome genome is basically a region transmitted only from father to son, reflecting a male-specific inheritance between generations. The Y chromosome exhibits genomic structural differences among different ethnic groups and individuals. The Y chromosome was previously thought to affect only male-specific phenotypes, but recent studies have revealed associations between the Y chromosomes and phenotypes common to both males and females, such as certain types of cancer and neuropsychiatric disorders. This evidence was discovered with the finding of the mosaic loss of the Y chromosome in somatic cells. This phenomenon is also affected by environmental factors, such as smoking and aging. In the past, functional analysis of the Y chromosome has been elucidated by assessing the function of Y chromosome-specific genes and the association between Y chromosome haplogroups and human phenotypes. These studies are currently being conducted intensively. Additionally, the recent advance of large-scale genome cohort studies has increased the amount of Y chromosome genomic information available for analysis, making it possible to conduct more precise studies of the relationship between genome structures and phenotypes. In this review, we will introduce recent analyses using large-scale genome cohort data and previously reported association studies between Y chromosome haplogroups and human phenotypes, such as male infertility, cancer, cardiovascular system traits, and neuropsychiatric disorders. The function and biological role of the Y chromosome in human phenotypes will also be discussed.
Collapse
|
33
|
Holmlund H, Yamauchi Y, Ruthig VA, Cocquet J, Ward MA. Return of the forgotten hero: the role of Y chromosome-encoded Zfy in male reproduction. Mol Hum Reprod 2023; 29:gaad025. [PMID: 37354519 PMCID: PMC10695432 DOI: 10.1093/molehr/gaad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/06/2023] [Indexed: 06/26/2023] Open
Abstract
The Y-linked zinc finger gene ZFY is conserved across eutherians and is known to be a critical fertility factor in some species. The initial studies of the mouse homologues, Zfy1 and Zfy2, were performed using mice with spontaneous Y chromosome mutations and Zfy transgenes. These studies revealed that Zfy is involved in multiple processes during spermatogenesis, including removal of germ cells with unpaired chromosomes and control of meiotic sex chromosome inactivation during meiosis I, facilitating the progress of meiosis II, promoting spermiogenesis, and improving assisted reproduction outcomes. Zfy was also identified as a key gene in Y chromosome evolution, protecting this chromosome from extinction by serving as the executioner responsible for meiosis surveillance. Studies with targeted Zfy knock-outs revealed that mice lacking both homologues have severe spermatogenic defects and are infertile. Based on protein structure and in vitro assays, Zfy is expected to drive spermatogenesis as a transcriptional regulator. The combined evidence documents that the presence of at least one Zfy homologue is required for male fertility and that Zfy2 plays a more prominent role. This knowledge reinforces the importance of these factors for mouse spermatogenesis and informs our understanding of the human ZFY variants, which are homologous to the mouse Zfy1 and Zfy2.
Collapse
|
34
|
George S, Dagar VK, Nagaraja N, Chakrabarty BK. Mosaic Turner Variant Adult Female Presenting with XO/XY Karyotype. J Hum Reprod Sci 2023; 16:260-262. [PMID: 38045507 PMCID: PMC10688273 DOI: 10.4103/jhrs.jhrs_71_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 12/05/2023] Open
Abstract
Turner syndrome (TS) is the most frequently detected chromosomal abnormality in females caused by the partial or complete absence of second X chromosome. Due to varied phenotypical presentation, the diagnosis of TS can create a spectrum of clinical concerns related to morbidity and mortality. At least 10% of Turner females exhibit the presence of Y chromosome or Y-derived sequences. Patients with 45,X/46,XY mosaicism may have a phenotypic variation of the external genitalia and exhibit features ranging from normal male to ambiguous to female genitalia with features of TS. Turner mosaic variants with Y chromosome components have increased risk for gonadoblastoma. Although the risk is not exactly quantifiable, according to the 2016 Cincinnati International TS Meeting Clinical Practice guidelines, bilateral prophylactic gonadectomy is mandatory if Y chromosomal component is identified in mosaic Turner. We describe a rare case of an adult female patient detected as mosaic Turner variant with the presence of Y chromosome and reconfirmed by an aneuploidy FISH probe.
Collapse
|
35
|
Malyarchuk BA. The role of Beringia in human adaptation to Arctic conditions based on results of genomic studies of modern and ancient populations. Vavilovskii Zhurnal Genet Selektsii 2023; 27:373-382. [PMID: 37465192 PMCID: PMC10350865 DOI: 10.18699/vjgb-23-45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 07/20/2023] Open
Abstract
The results of studies in Quaternary geology, archeology, paleoanthropology and human genetics demonstrate that the ancestors of Native Americans arrived in mid-latitude North America mainly along the Pacific Northwest Coast, but had previously inhabited the Arctic and during the last glacial maximum were in a refugium in Beringia, a land bridge connecting Eurasia and North America. The gene pool of Native Americans is represented by unique haplogroups of mitochondrial DNA and the Y chromosome, the evolutionary age of which ranges from 13 to 22 thousand years. The results of a paleogenomic analysis also show that during the last glacial maximum Beringia was populated by human groups that had arisen as a result of interaction between the most ancient Upper Paleolithic populations of Northern Eurasia and newcomer groups from East Asia. Approximately 20 thousand years ago the Beringian populations began to form, and the duration of their existence in relative isolation is estimated at about 5 thousand years. Thus, the adaptation of the Beringians to the Arctic conditions could have taken several millennia. The adaptation of Amerindian ancestors to high latitudes and cold climates is supported by genomic data showing that adaptive genetic variants in Native Americans are associated with various metabolic pathways: melanin production processes in the skin, hair and eyes, the functioning of the cardiovascular system, energy metabolism and immune response characteristics. Meanwhile, the analysis of the existing hypotheses about the selection of some genetic variants in the Beringian ancestors of the Amerindians in connection with adaptation to the Arctic conditions (for example, in the FADS, ACTN3, EDAR genes) shows the ambiguity of the testing results, which may be due to the loss of some traces of the "Beringian" adaptation in the gene pools of modern Native Americans. The most optimal strategy for further research seems to be the search for adaptive variant.
Collapse
|
36
|
Tong MJ, Zhang K, Li CX, Zhang GF, Zhang WJ, Yang L, Hou QT, Liu J. Application of Familial Y-STR Haplotype Mismatch Tolerance in Genealogy Inference. FA YI XUE ZA ZHI 2023; 39:296-304. [PMID: 37517019 DOI: 10.12116/j.issn.1004-5619.2022.520602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
OBJECTIVES To provide a guideline for genealogy inference and family lineage investigation through a study of the mismatch tolerance distribution of Y-STR loci in Chinese Han male lineage. METHODS Three Han lineages with clear genetic relationships were selected. YFiler Platinum PCR amplification Kit was used to obtain the typing data of 35 Y-STR loci in male samples. The variation of Y-STR haplotypes in generation inheritance and the mismatch tolerance at 1-7 kinship levels were statistically analyzed. RESULTS Mutations in Y-STR were family-specific with different mutation loci and numbers of mutation in different lineages. Among all the mutations, 66.03% were observed on rapidly and fast mutating loci. At 1-7 kinship levels, the number of mismatch tolerance ranged from 0 to 5 on all 35 Y-STR loci, with a maximum step size of 6. On medium and slow mutant loci, the number of mismatch tolerance ranged from 0 to 2, with a maximum step size of 3; on rapidly and fast mutant loci, the number of mismatch tolerance ranged from 0 to 3, with a maximum step size of 6. CONCLUSIONS Combined use of SNP genealogy inference and Y-STR lineage investigation, both 0 and multiple mismatch tolerance need to be considered. Family lineage with 0-3 mismatch tolerance on all 35 Y-STR loci and 0-1 mismatch tolerance on medium and slow loci can be prioritized for screening. When the number of mismatch tolerance is eligible, family lineages with long steps should be carefully excluded. Meanwhile, adding fast mutant loci should also be handled with caution.
Collapse
|
37
|
Qi M, Pang J, Mitsiades I, Lane AA, Rheinbay E. Loss of chromosome Y in primary tumors. Cell 2023; 186:S0092-8674(23)00646-3. [PMID: 37385248 DOI: 10.1016/j.cell.2023.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/17/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
Certain cancer types afflict female and male patients disproportionately. The reasons include differences in male/female physiology, effect of sex hormones, risk behavior, environmental exposures, and genetics of the sex chromosomes X and Y. Loss of Y (LOY) is common in peripheral blood cells in aging men, and this phenomenon is associated with several diseases. However, the frequency and role of LOY in tumors is little understood. Here, we present a comprehensive catalog of LOY in >5,000 primary tumors from male patients in the TCGA. We show that LOY rates vary by tumor type and provide evidence for LOY being either a passenger or driver event depending on context. LOY in uveal melanoma specifically is associated with age and survival and is an independent predictor of poor outcome. LOY creates common dependencies on DDX3X and EIF1AX in male cell lines, suggesting that LOY generates unique vulnerabilities that could be therapeutically exploited.
Collapse
|
38
|
Fleskes RE, Owsley DW, Bruwelheide KS, Barca KG, Griffith DR, Cabana GS, Schurr TG. Historical genomes elucidate European settlement and the African diaspora in Delaware. Curr Biol 2023; 33:2350-2358.e7. [PMID: 37207647 DOI: 10.1016/j.cub.2023.04.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/01/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
The 17th-century colonization of North America brought thousands of Europeans to Indigenous lands in the Delaware region, which comprises the eastern boundary of the Chesapeake Bay in what is now the Mid-Atlantic region of the United States.1 The demographic features of these initial colonial migrations are not uniformly characterized, with Europeans and European-Americans migrating to the Delaware area from other countries and neighboring colonies as single persons or in family units of free persons, indentured servants, or tenant farmers.2 European colonizers also instituted a system of racialized slavery through which they forcibly transported thousands of Africans to the Chesapeake region. Historical information about African-descended individuals in the Delaware region is limited, with a population estimate of less than 500 persons by 1700 CE.3,4 To shed light on the population histories of this period, we analyzed low-coverage genomes of 11 individuals from the Avery's Rest archaeological site (circa 1675-1725 CE), located in Delaware. Previous osteological and mitochondrial DNA (mtDNA) sequence analyses showed a southern group of eight individuals of European maternal descent, buried 15-20 feet from a northern group of three individuals of African maternal descent.5 Autosomal results further illuminate genomic similarities to Northwestern European reference populations or West and West-Central African reference populations, respectively. We also identify three generations of maternal kin of European ancestry and a paternal parent-offspring relationship between an adult and child of African ancestry. These findings expand our understanding of the origins and familial relationships in late 17th and early 18th century North America.
Collapse
|
39
|
Sun L, Wang Z, Lu T, Manolio TA, Paterson AD. eXclusionarY: 10 years later, where are the sex chromosomes in GWASs? Am J Hum Genet 2023; 110:903-912. [PMID: 37267899 PMCID: PMC10257007 DOI: 10.1016/j.ajhg.2023.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
10 years ago, a detailed analysis showed that only 33% of genome-wide association study (GWAS) results included the X chromosome. Multiple recommendations were made to combat such exclusion. Here, we re-surveyed the research landscape to determine whether these earlier recommendations had been translated. Unfortunately, among the genome-wide summary statistics reported in 2021 in the NHGRI-EBI GWAS Catalog, only 25% provided results for the X chromosome and 3% for the Y chromosome, suggesting that the exclusion phenomenon not only persists but has also expanded into an exclusionary problem. Normalizing by physical length of the chromosome, the average number of studies published through November 2022 with genome-wide-significant findings on the X chromosome is ∼1 study/Mb. By contrast, it ranges from ∼6 to ∼16 studies/Mb for chromosomes 4 and 19, respectively. Compared with the autosomal growth rate of ∼0.086 studies/Mb/year over the last decade, studies of the X chromosome grew at less than one-seventh that rate, only ∼0.012 studies/Mb/year. Among the studies that reported significant associations on the X chromosome, we noted extreme heterogeneities in data analysis and reporting of results, suggesting the need for clear guidelines. Unsurprisingly, among the 430 scores sampled from the PolyGenic Score Catalog, 0% contained weights for sex chromosomal SNPs. To overcome the dearth of sex chromosome analyses, we provide five sets of recommendations and future directions. Finally, until the sex chromosomes are included in a whole-genome study, instead of GWASs, we propose such studies would more properly be referred to as "AWASs," meaning "autosome-wide scans."
Collapse
|
40
|
Chen P, Aravin AA. Genetic control of a sex-specific piRNA program. Curr Biol 2023; 33:1825-1835.e3. [PMID: 37059098 PMCID: PMC10431932 DOI: 10.1016/j.cub.2023.03.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 03/17/2023] [Indexed: 04/16/2023]
Abstract
Sexually dimorphic traits in morphologies are widely studied,1,2,3,4 but those in essential molecular pathways remain largely unexplored. Previous work showed substantial sex differences in Drosophila gonadal piRNAs,5 which guide PIWI proteins to silence selfish genetic elements, thereby safeguarding fertility.6,7,8 However, the genetic control mechanisms of piRNA sexual dimorphism remain unknown. Here, we showed that most sex differences in the piRNA program originate from the germ line rather than the gonadal somatic cells. Building on this, we dissected the contribution of sex chromosomes and cellular sexual identity toward the sex-specific germline piRNA program. We found that the presence of the Y chromosome is sufficient to recapitulate some aspects of the male piRNA program in a female cellular environment. Meanwhile, sexual identity controls the sexually divergent piRNA production from X-linked and autosomal loci, revealing a crucial input from sex determination into piRNA biogenesis. Sexual identity regulates piRNA biogenesis through Sxl, and this effect is mediated, in part, through chromatin proteins Phf7 and Kipferl. Together, our work delineated the genetic control of a sex-specific piRNA program, where sex chromosomes and sexual identity collectively sculpt an essential molecular trait.
Collapse
|
41
|
Tancredi D, Cardinali I. Being a Dog: A Review of the Domestication Process. Genes (Basel) 2023; 14:genes14050992. [PMID: 37239352 DOI: 10.3390/genes14050992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The process of canine domestication represents certainly one of the most interesting questions that evolutionary biology aims to address. A "multiphase" view of this process is now accepted, with a first phase during which different groups of wolves were attracted by the anthropogenic niche and a second phase characterized by the gradual establishment of mutual relationships between wolves and humans. Here, we provide a review of dog (Canis familiaris) domestication, highlighting the ecological differences between dogs and wolves, analyzing the molecular mechanisms which seem to have influenced the affiliative behaviors first observed in Belyaev's foxes, and describing the genetics of ancient European dogs. Then, we focus on three Mediterranean peninsulas (Balkan, Iberian and Italian), which together represent the main geographic area for studying canine domestication dynamics, as it has shaped the current genetic variability of dog populations, and where a well-defined European genetic structure was pinpointed through the analysis of uniparental genetic markers and their phylogeny.
Collapse
|
42
|
Nakagawa Y, Tada A, Kojo K, Tsuchiya H, Kurobe M, Uchida M, Yamasaki K, Iwamoto T, Sato Y. Analysis of the correlation between gene copy deletion in the AZFc region and male infertility in Japanese men. Reprod Biol 2023; 23:100728. [PMID: 36640629 DOI: 10.1016/j.repbio.2022.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
Deletion of the azoospermia factor c (AZFc), located on the long arm of the Y chromosome, is a cause of male infertility. The structure of the Y chromosome is diversified by the copy number of various genes, such as deleted in azoospermia (DAZ), basic protein Y2, chromodomain Y1, testis-specific transcript Y-linked 4, and Golgi autoantigen golgin subfamily a2 like Y, located in the AZF region. In this study, we investigated the deletion of each gene copy and analyzed its relationship with Japanese male infertility. Deletions of single nucleotide variants of each gene copy in 721 proven fertile men as controls, 139 patients with non-obstructive azoospermia (NOA), and 56 patients with oligozoospermia (OS) were analyzed via polymerase chain reaction-restriction fragment length polymorphism analysis. Their association with infertility was analyzed using logistic regression analysis adjusted for the Y-chromosome haplogroup, D1a2a. Deletions of DAZ/II in the r1 region and DAZ/V in the r1 and r2 regions showed significant associations with NOA (odds ratio [OR] = 4.15, 95 % confidence interval [CI] = 1.18-14.6, P = 0.026; OR = 4.19, 95 % CI = 1.19-14.7, P = 0.025, respectively). They did not show any association with OS. Partial deletion of the AZFc region affects spermatogenesis in Japanese male.
Collapse
|
43
|
Müller P, Velazquez Camacho O, Yazbeck AM, Wölwer C, Zhai W, Schumacher J, Heider D, Buettner R, Quaas A, Hillmer AM. Why loss of Y? A pan-cancer genome analysis of tumors with loss of Y chromosome. Comput Struct Biotechnol J 2023; 21:1573-1583. [PMID: 36874157 PMCID: PMC9978323 DOI: 10.1016/j.csbj.2023.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Loss of the Y chromosome (LoY) is frequently observed in somatic cells of elderly men. However, LoY is highly increased in tumor tissue and correlates with an overall worse prognosis. The underlying causes and downstream effects of LoY are widely unknown. Therefore, we analyzed genomic and transcriptomic data of 13 cancer types (2375 patients) and classified tumors of male patients according to loss or retain of the Y chromosome (LoY or RoY, average LoY fraction: 0.46). The frequencies of LoY ranged from almost absence (glioblastoma, glioma, thyroid carcinoma) to 77% (kidney renal papillary cell carcinoma). Genomic instability, aneuploidy, and mutation burden were enriched in LoY tumors. In addition, we found more frequently in LoY tumors the gate keeping tumor suppressor gene TP53 mutated in three cancer types (colon adenocarcinoma, head and neck squamous carcinoma, lung adenocarcinoma) and oncogenes MET, CDK6, KRAS, and EGFR amplified in multiple cancer types. On the transcriptomic level, we observed MMP13, known to be involved in invasion, to be up-regulated in LoY of three adenocarcinomas and down-regulation of the tumor suppressor gene GPC5 in LoY of three cancer types. Furthermore, we found enrichment of a smoking-related mutation signature in LoY tumors of head and neck and lung cancer. Strikingly, we observed a correlation between cancer type-specific sex bias in incidence rates and frequencies of LoY, in line with the hypothesis that LoY increases cancer risk in males. Overall, LoY is a frequent phenomenon in cancer that is enriched in genomically unstable tumors. It correlates with genomic features beyond the Y chromosome and might contribute to higher incidence rates in males.
Collapse
|
44
|
Pei S, Cao X, Wang X, Li F, Yue X. Identification of Y-SNPs within ovine MSY region and their association with testicular size. Theriogenology 2023; 197:295-300. [PMID: 36527866 DOI: 10.1016/j.theriogenology.2022.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The screening of genomic variations within the male-specific region of the mammalian Y chromosome (MSY) is one of the most effective ways to investigate paternal evolutionary history and identify molecular markers related to male fertility. The current study was to identify single nucleotide polymorphisms (SNPs) within single-copy genes of the ovine MSY, and confirm whether they are associated with testicular size. A total of 21 Y-specific gene fragments were successfully amplified to screen Y-SNPs in 956 rams across nine sheep breeds. Three Y-SNPs, including SRY16: g.88 A > G in South African Mutton Merino sheep, ZFY16: g.146 C > T in Suffolk and South African Mutton Merino sheep, and EIF2S3Y2: g.77 C > G in Hu and Tan sheep, were identified using DNA-pooled sequencing and PCR restriction fragment length polymorphism (PCR-RFLP) methods. The investigation of the global distribution for three Y-SNPs showed that the C allele of ZFY16: g.146 C > T co-segregated with haplogroup y-HC, and the C/G allele of EIF2S3Y2: g.77 C > G co-segregated with haplogroup y-HA/y-HB1 in Hu sheep according to data mining from a previous study. In addition, association analysis revealed that ZFY16: g.146 C > T had a significant effect on yearling scrotal circumference in Suffolk sheep, and EIF2S3Y2: g.77 C > G was significantly associated with testicular and epididymis weight in Hu sheep (P ≤ 0.05). The current study concluded that Y-SNPs were associated with testicular size in specific sheep, which provides valuable candidate makers for selecting elite rams at an early age.
Collapse
|
45
|
Holland A, Bradbury NA. Did you forget your cell sex? An update on the inclusion of sex as a variable in AJP-Cell Physiology. Am J Physiol Cell Physiol 2023; 324:C910-C926. [PMID: 36717097 DOI: 10.1152/ajpcell.00434.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
"I don't know the question, but sex is definitely the answer!", was a Woody Allen quote cited by Fuller and Insel in an Editorial Comment in 2013 on the importance of cell sex in submissions to AJP-Cell Physiology, and in biomedical research in general. The notion that cell sex is important is axiomatic in studies on prostate cancer or placental physiology. Indeed, most researchers are aware that HeLa cells are female cervical derived, and CHO are female hamster ovary cells, yet beyond those well-known examples, it would be fair to assume that the sex of cells derived from kidney, lung, or liver, for example, is given cursory, if any thought. What possible impact could the presence or absence of a Y chromosome have on protein trafficking in a non-reproductive tissue? However, this approach to cell, and indeed organismal physiology, seems to be in conflict with accumulating data, that shows that far from being irrelevant, genes expressed off sex chromosomes have an impact on cells as diverse and neurons and renal cells. Moreover, it is also the policy of AJP-Cell Physiology, that the source of all cells utilized should be clearly indicated when submitting an article for publication. In 2013, we wrote a review examining how faithfully such requirements were adhered to in submissions to Cell Physiology. Nearly a decade later, it seems fitting to revisit the topic, and ask if any improvements have been made in the description of cells and cell lines utilized in publications submitted to AJP-Cell Physiology.
Collapse
|
46
|
Inkster AM, Wong MT, Matthews AM, Brown CJ, Robinson WP. Who's afraid of the X? Incorporating the X and Y chromosomes into the analysis of DNA methylation array data. Epigenetics Chromatin 2023; 16:1. [PMID: 36609459 PMCID: PMC9825011 DOI: 10.1186/s13072-022-00477-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Many human disease phenotypes manifest differently by sex, making the development of methods for incorporating X and Y-chromosome data into analyses vital. Unfortunately, X and Y chromosome data are frequently excluded from large-scale analyses of the human genome and epigenome due to analytical complexity associated with sex chromosome dosage differences between XX and XY individuals, and the impact of X-chromosome inactivation (XCI) on the epigenome. As such, little attention has been given to considering the methods by which sex chromosome data may be included in analyses of DNA methylation (DNAme) array data. RESULTS With Illumina Infinium HumanMethylation450 DNAme array data from 634 placental samples, we investigated the effects of probe filtering, normalization, and batch correction on DNAme data from the X and Y chromosomes. Processing steps were evaluated in both mixed-sex and sex-stratified subsets of the analysis cohort to identify whether including both sexes impacted processing results. We found that identification of probes that have a high detection p-value, or that are non-variable, should be performed in sex-stratified data subsets to avoid over- and under-estimation of the quantity of probes eligible for removal, respectively. All normalization techniques investigated returned X and Y DNAme data that were highly correlated with the raw data from the same samples. We found no difference in batch correction results after application to mixed-sex or sex-stratified cohorts. Additionally, we identify two analytical methods suitable for XY chromosome data, the choice between which should be guided by the research question of interest, and we performed a proof-of-concept analysis studying differential DNAme on the X and Y chromosome in the context of placental acute chorioamnionitis. Finally, we provide an annotation of probe types that may be desirable to filter in X and Y chromosome analyses, including probes in repetitive elements, the X-transposed region, and cancer-testis gene promoters. CONCLUSION While there may be no single "best" approach for analyzing DNAme array data from the X and Y chromosome, analysts must consider key factors during processing and analysis of sex chromosome data to accommodate the underlying biology of these chromosomes, and the technical limitations of DNA methylation arrays.
Collapse
|
47
|
Tao R, Li M, Chai S, Xia R, Qu Y, Yuan C, Yang G, Dong X, Bian Y, Zhang S, Li C. Developmental validation of a 381 Y-chromosome SNP panel for haplogroup analysis in the Chinese populations. Forensic Sci Int Genet 2023; 62:102803. [PMID: 36368220 DOI: 10.1016/j.fsigen.2022.102803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/19/2022] [Accepted: 10/26/2022] [Indexed: 01/15/2023]
Abstract
Y-chromosome single nucleotide polymorphism (Y-SNP) shows great variation in geographical distribution and population heterogeneity and can be used to map population genetics around the world. Massive parallel sequencing (MPS) methodology enables high-resolution Y-SNP haplogrouping for a certain male and is widely used in forensic genetics and evolutionary studies. In this present study, we used MPS to develop a customized 381 Y-SNP panel (SifaMPS 381 Y-SNP panel) to investigate the basic structure and subbranches of the haplogroup tree of the Chinese populations. The SifaMPS 381 Y-SNP panel covers all the Y-SNPs from our previously designed 183 Y-SNP panel and additional SNPs under the predominant haplogroups in the Chinese populations based on certain criteria. We also evaluated the sequencing matrix, concordance, sensitivity, repeatability of this panel and the ability to analyze mixed and case-type samples based on the Illumina MiSeq System. The results demonstrated that the novel MPS Y-SNP panel possessed good sequencing performance and generated accurate Y-SNP genotyping results. Although the recommended DNA input was greater than 1.25 ng, we observed that a lower DNA amount could still be used to analyze haplogroups correctly. In addition, this panel could handle mixed samples and common case-type samples and had higher resolution among Chinese Han males than previously reported. In conclusion, the SifaMPS 381 Y-SNP panel showed an overall good performance and offers a better choice for Y-SNP haplogrouping of the Chinese population, thereby facilitating paternal lineage classification, familial searching and other forensic applications.
Collapse
|
48
|
Turnover of mammal sex chromosomes in the Sry-deficient Amami spiny rat is due to male-specific upregulation of Sox9. Proc Natl Acad Sci U S A 2022; 119:e2211574119. [PMID: 36442104 PMCID: PMC9894122 DOI: 10.1073/pnas.2211574119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mammalian sex chromosomes are highly conserved, and sex is determined by SRY on the Y chromosome. Two exceptional rodent groups in which some species lack a Y chromosome and Sry offer insights into how novel sex genes can arise and replace Sry, leading to sex chromosome turnover. However, intensive study over three decades has failed to reveal the identity of novel sex genes in either of these lineages. We here report our discovery of a male-specific duplication of an enhancer of Sox9 in the Amami spiny rat Tokudaia osimensis, in which males and females have only a single X chromosome (XO/XO) and the Y chromosome and Sry are completely lost. We performed a comprehensive survey to detect sex-specific genomic regions in the spiny rat. Sex-related genomic differences were limited to a male-specific duplication of a 17-kb unit located 430 kb upstream of Sox9 on an autosome. Hi-C analysis using male spiny rat cells showed the duplicated region has potential chromatin interaction with Sox9. The duplicated unit harbored a 1,262-bp element homologous to mouse enhancer 14 (Enh14), a candidate Sox9 enhancer that is functionally redundant in mice. Transgenic reporter mice showed that the spiny rat Enh14 can function as an embryonic testis enhancer in mice. Embryonic gonads of XX mice in which Enh14 was replaced by the duplicated spiny rat Enh14 showed increased Sox9 expression and decreased Foxl2 expression. We propose that male-specific duplication of this Sox9 enhancer substituted for Sry function, defining a novel Y chromosome in the spiny rat.
Collapse
|
49
|
Song M, Wang X, Zhao C, Qian X, Lang M, Hou Y, Song F. Inference of population structure and admixture proportion from Y chromosomal data of Chinese population. Electrophoresis 2022; 43:2351-2362. [PMID: 35973689 DOI: 10.1002/elps.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022]
Abstract
In the past two decades, Y chromosome data has been generated for human population genetic studies. These Y chromosome datasets were produced with various testing methods and markers, thus difficult to combine them for a comprehensive analysis. In this study, we combine four human Y chromosomal datasets of Han, Tibetan, Hui, and Li ethnic groups. The dataset contains 27 microsatellites and 137 single nucleotide polymorphisms these populations share in common. We assembled a single dataset containing 2439 individuals from 25 nationwide populations in China. A systematic analysis of genetic distance and clustering was performed. To determine the gene flow of the studied population with worldwide populations, we modeled the ancestry informative markers. The reference panel was regarded as a mixture of South Asian (SAS), East Asian (EAS), European (EUR), African (AFR), and American (AMR) populations from 1000 Genomes data of Y chromosome using nonlinear data-fitting. We then calculated the admixture proportion of these four studied populations with 26 worldwide populations. The results showed that the Han and Hui have great genetic affinity, and Hui is the most admixed ethnic group, with 61.53% EAS, 34.65% SAS, 1.91% AFR, 1.56% AMR, and 0.04% EUR ancestry component (the AMR is highly admixed and thus should be ignored). All the other three ethnic groups contained more than 97% EAS ancestry component. The Li is the least admixed population in this study. The combined dataset in this study is the largest of this kind reported to date and proposes reference population data for use in future paternal genetic studies and forensic genealogical identification.
Collapse
|
50
|
Gong G, Xiong Y, Xiao S, Li XY, Huang P, Liao Q, Han Q, Lin Q, Dan C, Zhou L, Ren F, Zhou Q, Gui JF, Mei J. Origin and chromatin remodeling of young X/Y sex chromosomes in catfish with sexual plasticity. Natl Sci Rev 2022; 10:nwac239. [PMID: 36846302 PMCID: PMC9945428 DOI: 10.1093/nsr/nwac239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/22/2022] [Accepted: 10/21/2022] [Indexed: 11/15/2022] Open
Abstract
Assembly of a complete Y chromosome is a significant challenge in animals with an XX/XY sex-determination system. Recently, we created YY-supermale yellow catfish by crossing XY males with sex-reversed XY females, providing a valuable model for Y-chromosome assembly and evolution. Here, we assembled highly homomorphic Y and X chromosomes by sequencing genomes of the YY supermale and XX female in yellow catfish, revealing their nucleotide divergences with only less than 1% and with the same gene compositions. The sex-determining region (SDR) was identified to locate within a physical distance of 0.3 Mb by FST scanning. Strikingly, the incipient sex chromosomes were revealed to originate via autosome-autosome fusion and were characterized by a highly rearranged region with an SDR downstream of the fusion site. We found that the Y chromosome was at a very early stage of differentiation, as no clear evidence of evolutionary strata and classical structure features of recombination suppression for a rather late stage of Y-chromosome evolution were observed. Significantly, a number of sex-antagonistic mutations and the accumulation of repetitive elements were discovered in the SDR, which might be the main driver of the initial establishment of recombination suppression between young X and Y chromosomes. Moreover, distinct three-dimensional chromatin organizations of the Y and X chromosomes were identified in the YY supermales and XX females, as the X chromosome exhibited denser chromatin structure than the Y chromosome, while they respectively have significantly spatial interactions with female- and male-related genes compared with other autosomes. The chromatin configuration of the sex chromosomes as well as the nucleus spatial organization of the XX neomale were remodeled after sex reversal and similar to those in YY supermales, and a male-specific loop containing the SDR was found in the open chromatin region. Our results elucidate the origin of young sex chromosomes and the chromatin remodeling configuration in the catfish sexual plasticity.
Collapse
|