26
|
Nevado B, Wong ELY, Osborne OG, Filatov DA. Adaptive Evolution Is Common in Rapid Evolutionary Radiations. Curr Biol 2019; 29:3081-3086.e5. [PMID: 31495580 DOI: 10.1016/j.cub.2019.07.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/08/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022]
Abstract
One of the most long-standing and important mysteries in evolutionary biology is why biological diversity is so unevenly distributed across space and taxonomic lineages. Nowhere is this disparity more evident than in the multitude of rapid evolutionary radiations found on oceanic islands and mountain ranges across the globe [1-5]. The evolutionary processes driving these rapid diversification events remain unclear [6-8]. Recent genome-wide studies suggest that natural selection may be frequent during rapid evolutionary radiations, as inferred from work in cichlid fish [9], white-eye birds [10], new world lupins [11], and wild tomatoes [12]. However, whether frequent adaptive evolution is a general feature of rapid evolutionary radiations remains untested. Here we show that adaptive evolution is significantly more frequent in rapid evolutionary radiations compared to background levels in more slowly diversifying lineages. This result is consistent across a wide range of angiosperm lineages analyzed: 12 evolutionary radiations, which together comprise 1,377 described species, originating from some of the most biologically diverse systems on Earth. In addition, we find a significant negative correlation between population size and frequency of adaptive evolution in rapid evolutionary radiations. A possible explanation for this pattern is that more frequent adaptive evolution is at least partly driven by positive selection for advantageous mutations that compensate for the fixation of slightly deleterious mutations in smaller populations.
Collapse
|
27
|
HervÍas-Parejo S, Heleno R, Rumeu B, Guzmán B, Vargas P, Olesen JM, Traveset A, Vera C, Benavides E, Nogales M. Small size does not restrain frugivory and seed dispersal across the evolutionary radiation of Galápagos lava lizards. Curr Zool 2019; 65:353-361. [PMID: 31413708 PMCID: PMC6688575 DOI: 10.1093/cz/zoy066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/06/2018] [Indexed: 11/13/2022] Open
Abstract
Frugivory in lizards is often assumed to be constrained by body size; only large individuals are considered capable of consuming fruits, with the potential of acting as seed dispersers. However, only one previous study has tested the correlation of frugivory with body and head size at an archipelago scale across closely related species. All nine lava lizards (Microlophus spp.) were studied on the eleven largest Galápagos islands from 2010 to 2016 to investigate whether frugivory is related to body and head size. We also tested whether fruit abundance influences fruit consumption and explored the effect of seed ingestion on seedling emergence time and percentage. Our results showed that across islands, lava lizards varied considerably in size (64-102 mm in mean snout-vent length) and level of frugivory (1-23%, i.e., percentage of droppings with seeds). However, level of frugivory was only weakly affected by size as fruit consumption was also common among small lizards. Lava lizards consumed fruits throughout the year and factors other than fruit abundance may be more important drivers of fruit selection (e.g., fruit size, energy content of pulp). From 2,530 droppings, 1,714 seeds of at least 61 plant species were identified, 76% of the species being native to the Galápagos. Most seeds (91%) showed no external structural damage. Seedling emergence time (44 versus 118 days) and percentage (20% versus 12%) were enhanced for lizard-ingested seeds compared to control (uningested) fruits. De-pulping by lizards (i.e., removal of pulp with potential germination inhibitors) might increase the chances that at least some seeds find suitable recruitment conditions. We concluded that lizards are important seed dispersers throughout the year and across the whole archipelago, regardless of body size.
Collapse
|
28
|
Iwanycki Ahlstrand N, Verstraete B, Hassemer G, Dunbar‐Co S, Hoggard R, Meudt HM, Rønsted N. Ancestral range reconstruction of remote oceanic island species of Plantago (Plantaginaceae) reveals differing scales and modes of dispersal. JOURNAL OF BIOGEOGRAPHY 2019; 46:706-722. [PMID: 31217659 PMCID: PMC6559316 DOI: 10.1111/jbi.13525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/17/2018] [Indexed: 05/26/2023]
Abstract
AIM The aim of this study was to resolve the phylogenetic placement of island taxa, reconstruct ancestral origins and resolve competing hypotheses of dispersal patterns and biogeographical histories for oceanic island endemic taxa within subgenus Plantago (Plantaginaceae). LOCATION Juan Fernández Islands, the Auckland Islands, Lord Howe Island, New Amsterdam Island, New Zealand, Tasmania, Falkland Islands, Rapa Iti and the Hawaiian Islands. TAXON Island endemics within Plantago (Plantaginaceae), a globally distributed taxonomic group comprising approximately 250 species. METHODS We use Bayesian phylogenetic and divergence time analyses and historical biogeographical analysis of molecular sequence data to infer the ancestral origins of the oceanic island species in Plantago. RESULTS Taxa within subgenus Plantago form clades based on geographic proximities and challenge previous phylogenetic relationships and classification based on morphology. We infer that biogeographic histories of oceanic island taxa from multiple islands were shaped by dispersal at different scales and possibly by different types of birds. The highly remote Hawaiian Islands and Rapa Iti were colonized from North American taxa in a pattern corresponding to known migration routes of large marine birds, rather than from New Zealand as previously hypothesized. The island endemics of Juan Fernández, the Falkland Islands, Lord Howe, Auckland Islands and New Zealand are found to have sources in the nearest continental areas. The analyses confirm recent speciation within subgenus Plantago - which is particularly heightened in island lineages in Hawaii and Rapa Iti - but show slightly older divergence times than previous molecular dating studies. MAIN CONCLUSIONS Using molecular data to infer ancestral ranges for plants with uncertain taxonomic relationships can greatly improve our understanding of biogeographical histories and help elucidate origins, dispersal modes and routes in widespread lineages with complex distribution patterns such as Plantago. We improve understanding of important floristic exchange areas between continents and islands as a result of long-distance dispersal. We infer that a combination of both stepping stone dispersal and extreme long-distance dispersal can shape insular floras, and that multiple floristic areas can be the sources of closely related island taxa. However, despite the successful dispersal of Plantago, radiation in island archipelagos is generally limited suggesting specific traits may limit diversification.
Collapse
|
29
|
Mazza PPA, Buccianti A, Savorelli A. Grasping at straws: a re-evaluation of sweepstakes colonisation of islands by mammals. Biol Rev Camb Philos Soc 2019; 94:1364-1380. [PMID: 30864268 DOI: 10.1111/brv.12506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 11/28/2022]
Abstract
Natural rafting is an easy, non-evidence-based solution often used to explain the presence of a variety of species on isolated islands. The question arises as to whether this solution is based on solid scientific grounds. It is a plausible colonisation route only if intricate networks of variables are considered and many different conditions satisfied. This review provides a descriptive account of some of the most critical issues underlying the theory of natural rafting that should be addressed by its supporters. These include: (i) biological variables; (ii) characteristics of the vessels; and (iii) physical variables. Natural rafting may explain the dispersal of poikilotherms with low metabolic rates and low resource requirements that could withstand trans-oceanic crossings, but explaining the transport of homeothermic terrestrial mammals to oceanic islands is more problematic. Drifting at sea exposes organisms to high concentrations of salt, high temperature and humidity excursions, starvation, and above all to dehydration. A sufficiently large group of healthy reproductive individuals of the two sexes should either be transported together, or be able to reassemble after separate crossings, to prevent inbreeding, genetic drift and ultimately extinction. Any vessels of flotsam occupied must minimally provide the animals they transport with sufficient provisions to survive the journey, offer minimum friction and drag through water, and be transported by appropriately directed, sustained, high-speed currents. Thus, a 'sweepstakes colonisation' event would be the result of a lucky combination of all, or at least the majority, of these factors. Some cases throw doubt on the use of a natural rafting model to explain known animal colonisations, with one of the most striking examples being Madagascar. This island is far from the nearest mainland coasts and the sea currents in the Mozambique Channel are directed towards Africa rather than Madagascar, yet, the island was colonised by terrestrial mammals (e.g. extinct hippopotamuses, lemurs, carnivores, rodents and tenrecs) unable to swim and to survive long journeys at sea. In order to assess the feasibility of the natural rafting model in a case such as Madagascar, tests were performed using three variables for which enough information could be obtained from the literature: length of survival without food, survival without water, and sea current speed. The distributions of these variables appear to be log-normal and multiplicative, or follow a power-law, rather than being Gaussian. The tests suggest that a distributional analysis is a more suitable approach than the use of geometric probability to calculate the probabilities associated with the examined data. Such non-linear and self-organising systems may reach a critical point governed by different competing factors. Mammals with high survival requirements, such as lemurs and hippopotamuses, thus may have a virtually zero probability of reaching distant islands by natural rafting. Our results raise doubts as to the validity of a natural rafting model, and we urge a rethinking of the modes in which numerous islands were colonised by land mammals and a careful revision of past geological and phylogeographic work.
Collapse
|
30
|
Saro I, García-Verdugo C, González-Pérez MA, Naranjo A, Santana A, Sosa PA. Genetic structure of the Canarian palm tree (Phoenix canariensis) at the island scale: does the 'island within islands' concept apply to species with high colonisation ability? PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:101-109. [PMID: 30230155 DOI: 10.1111/plb.12913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
Oceanic islands are dynamic settings that often promote within-island patterns of strong population differentiation. Species with high colonisation abilities, however, are less likely to be affected by genetic barriers, but island size may impact on species genetic structure regardless of dispersal ability. The aim of the present study was to identify the patterns and factors responsible for the structure of genetic diversity at the island scale in Phoenix canariensis, a palm species with high dispersal potential. To this end, we conducted extensive population sampling on the three Canary Islands where the species is more abundant and assessed patterns of genetic variation at eight microsatellite loci, considering different within-island scales. Our analyses revealed significant genetic structure on each of the three islands analysed, but the patterns and level of structure differed greatly among islands. Thus, genetic differentiation fitted an isolation-by-distance pattern on islands with high population densities (La Gomera and Gran Canaria), but such a pattern was not found on Tenerife due to strong isolation between colonised areas. In addition, we found a positive correlation between population geographic isolation and fine-scale genetic structure. This study highlights that island size is not necessarily a factor causing strong population differentiation on large islands, whereas high colonisation ability does not always promote genetic connectivity among neighbouring populations. The spatial distribution of populations (i.e. landscape occupancy) can thus be a more important driver of plant genetic structure than other island, or species' life-history attributes.
Collapse
|
31
|
Beatty CD, Sánchez Herrera M, Skevington JH, Rashed A, Van Gossum H, Kelso S, Sherratt TN. Biogeography and systematics of endemic island damselflies: The Nesobasis and Melanesobasis (Odonata: Zygoptera) of Fiji. Ecol Evol 2017; 7:7117-7129. [PMID: 28904788 PMCID: PMC5587492 DOI: 10.1002/ece3.3175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/03/2017] [Accepted: 05/25/2017] [Indexed: 12/11/2022] Open
Abstract
The study of island fauna has greatly informed our understanding of the evolution of diversity. We here examine the phylogenetics, biogeography, and diversification of the damselfly genera Nesobasis and Melanesobasis, endemic to the Fiji Islands, to explore mechanisms of speciation in these highly speciose groups. Using mitochondrial (COI, 12S) and nuclear (ITS) replicons, we recovered garli-part maximum likelihood and mrbayes Bayesian phylogenetic hypotheses for 26 species of Nesobasis and eight species/subspecies of Melanesobasis. Biogeographical patterns were explored using lagrange and bayes-lagrange and interpreted through beast relaxed clock dating analyses. We found that Nesobasis and Melanesobasis have radiated throughout Fiji, but are not sister groups. For Nesobasis, while the two largest islands of the archipelago-Viti Levu and Vanua Levu-currently host two distinct species assemblages, they do not represent phylogenetic clades; of the three major groupings each contains some Viti Levu and some Vanua Levu species, suggesting independent colonization events across the archipelago. Our beast analysis suggests a high level of species diversification around 2-6 Ma. Our ancestral area reconstruction (rasp-lagrange) suggests that both dispersal and vicariance events contributed to the evolution of diversity. We thus conclude that the evolutionary history of Nesobasis and Melanesobasis is complex; while inter-island dispersal followed by speciation (i.e., peripatry) has contributed to diversity, speciation within islands appears to have taken place a number of times as well. This speciation has taken place relatively recently and appears to be driven more by reproductive isolation than by ecological differentiation: while species in Nesobasis are morphologically distinct from one another, they are ecologically very similar, and currently are found to exist sympatrically throughout the islands on which they are distributed. We consider the potential for allopatric speciation within islands, as well as the influence of parasitic endosymbionts, to explain the high rates of speciation in these damselflies.
Collapse
|
32
|
Lobato E, Doutrelant C, Melo M, Reis S, Covas R. Insularity effects on bird immune parameters: A comparison between island and mainland populations in West Africa. Ecol Evol 2017; 7:3645-3656. [PMID: 28616162 PMCID: PMC5468148 DOI: 10.1002/ece3.2788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 11/30/2016] [Accepted: 12/21/2016] [Indexed: 01/19/2023] Open
Abstract
Oceanic islands share several environmental characteristics that have been shown to drive convergent evolutionary changes in island organisms. One change that is often assumed but has seldom been examined is the evolution of weaker immune systems in island species. The reduction in species richness on islands is expected to lead to a reduced parasite pressure and, given that immune function is costly, island animals should show a reduced immune response. However, alternative hypotheses exist; for example, the slower pace of life on islands could favor the reorganization of the immune system components (innate vs. acquired immunity) on islands. Thus far, few island species have been studied and no general patterns have emerged. Here, we compared two immune parameters of birds from São Tomé and Príncipe islands to those of their close relatives at similar latitudes on the mainland (Gabon, West Africa). On islands, the acquired humoral component (total immunoglobulins) was lower for most species, whereas no clear pattern was detected for the innate component (haptoglobin levels). These different responses did not seem to arise from a reorganization of the two immune components, as both total immunoglobulins and haptoglobin levels were positively associated. This work adds to the few empirical studies conducted so far which suggest that changes in immune parameters in response to insularity are not as straightforward as initially thought.
Collapse
|
33
|
Carvajal-Endara S, Hendry AP, Emery NC, Davies TJ. Habitat filtering not dispersal limitation shapes oceanic island floras: species assembly of the Galápagos archipelago. Ecol Lett 2017; 20:495-504. [PMID: 28294532 DOI: 10.1111/ele.12753] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/03/2016] [Accepted: 01/25/2017] [Indexed: 01/13/2023]
Abstract
Remote locations, such as oceanic islands, typically harbour relatively few species, some of which go on to generate endemic radiations. Species colonising these locations tend to be a non-random subset from source communities, which is thought to reflect dispersal limitation. However, non-random colonisation could also result from habitat filtering, whereby only a few continental species can become established. We evaluate the imprints of these processes on the Galápagos flora by analysing a comprehensive regional phylogeny for ~ 39 000 species alongside information on dispersal strategies and climatic suitability. We found that habitat filtering was more important than dispersal limitation in determining species composition. This finding may help explain why adaptive radiation is common on oceanic archipelagoes - because colonising species can be relatively poor dispersers with specific niche requirements. We suggest that the standard assumption that plant communities in remote locations are primarily shaped by dispersal limitation deserves reconsideration.
Collapse
|
34
|
Puppo P, Curto M, Meimberg H. Genetic structure of Micromeria (Lamiaceae) in Tenerife, the imprint of geological history and hybridization on within-island diversification. Ecol Evol 2016; 6:3443-3460. [PMID: 28725348 PMCID: PMC5513284 DOI: 10.1002/ece3.2094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 01/17/2023] Open
Abstract
Geological history of oceanic islands can have a profound effect on the evolutionary history of insular flora, especially in complex islands such as Tenerife in the Canary Islands. Tenerife results from the secondary connection of three paleo‐islands by a central volcano, and other geological events that further shaped it. This geological history has been shown to influence the phylogenetic history of several taxa, including genus Micromeria (Lamiaceae). Screening 15 microsatellite markers in 289 individuals representing the eight species of Micromeria present in Tenerife, this study aims to assess the genetic diversity and structure of these species and its relation with the geological events on the island. In addition, we evaluate the extent of hybridization among species and discuss its influence on the speciation process. We found that the species restricted to the paleo‐islands present lower levels of genetic diversity but the highest levels of genetic differentiation suggesting that their ranges might have contracted over time. The two most widespread species in the island, M. hyssopifolia and M. varia, present the highest genetic diversity levels and a genetic structure that seems correlated with the geological composition of the island. Samples from M. hyssopifolia from the oldest paleo‐island, Adeje, appear as distinct while samples from M. varia segregate into two main clusters corresponding to the paleo‐islands of Anaga and Teno. Evidence of hybridization and intraspecific migration between species was found. We argue that species boundaries would be retained despite hybridization in response to the habitat's specific conditions causing postzygotic isolation and preserving morphological differentiation.
Collapse
|
35
|
Terzopoulou S, Rigal F, Whittaker RJ, Borges PAV, Triantis KA. Drivers of extinction: the case of Azorean beetles. Biol Lett 2016; 11:20150273. [PMID: 26063753 DOI: 10.1098/rsbl.2015.0273] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oceanic islands host a disproportionately high fraction of endangered or recently extinct endemic species. We report on species extinctions among endemic Azorean beetles following 97% habitat loss since AD 1440. We infer extinctions from historical and contemporary records and examine the influence of three predictors: geographical range, habitat specialization and body size. Of 55 endemic beetle species investigated (out of 63), seven can be considered extinct. Single-island endemics (SIEs) were more prone to extinction than multi-island endemics. Within SIEs restricted to native habitat, larger species were more extinction-prone. We thus show a hierarchical path to extinction in Azorean beetles: species with small geographical range face extinction first, with the larger bodied ones being the most threatened. Our study provides a clear warning of the impact of habitat loss on island endemic biotas.
Collapse
|
36
|
Traveset A, Fernández-Palacios JM, Kueffer C, Bellingham PJ, Morden C, Drake DR. Introduction to the Special Issue: Advances in island plant biology since Sherwin Carlquist's Island Biology. AOB PLANTS 2015; 8:plv148. [PMID: 26722109 PMCID: PMC4740358 DOI: 10.1093/aobpla/plv148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 12/08/2015] [Indexed: 05/17/2023]
Abstract
Sherwin Carlquist's seminal publications-in particular his classic Island Biology, published in 1974-formulated hypotheses specific to island biology that remain valuable today. This special issue brings together some of the most interesting contributions presented at the First Island Biology Symposium hosted in Honolulu on 7-11 July 2014. We compiled a total of 18 contributions that present data from multiple archipelagos across the world and from different disciplines within the plant sciences. In this introductory paper, we first provide a short overview of Carlquist's life and work and then summarize the main findings of the collated papers. A first group of papers deals with issues to which Carlquist notably contributed: long-distance dispersal, adaptive radiation and plant reproductive biology. The findings of such studies demonstrate the extent to which the field has advanced thanks to (i) the increasing availability and richness of island data, covering many taxonomic groups and islands; (ii) new information from the geosciences, phylogenetics and palaeoecology, which allows us a more realistic understanding of the geological and biological development of islands and their biotas; and (iii) the new theoretical and methodological advances that allow us to assess patterns of abundance, diversity and distribution of island biota over large spatial scales. Most other papers in the issue cover a range of topics related to plant conservation on islands, such as causes and consequences of mutualistic disruptions (due to pollinator or disperser losses, introduction of alien predators, etc.). Island biologists are increasingly considering reintroducing ecologically important species to suitable habitats within their historic range and to neighbouring islands with depauperate communities of vertebrate seed dispersers, and an instructive example is given here. Finally, contributions on ecological networks demonstrate the usefulness of this methodological tool to advancing conservation management and better predicting the consequences of disturbances on species and interactions in the fragile insular ecosystems.
Collapse
|
37
|
Moreira APB, Meirelles PM, Santos EDO, Amado-Filho GM, Francini-Filho RB, Thompson CC, Thompson FL. Turbulence-driven shifts in holobionts and planktonic microbial assemblages in St. Peter and St. Paul Archipelago, Mid-Atlantic Ridge, Brazil. Front Microbiol 2015; 6:1038. [PMID: 26483769 PMCID: PMC4591530 DOI: 10.3389/fmicb.2015.01038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/11/2015] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to investigate the planktonic and the holobiont Madracis decactis (Scleractinia) microbial diversity along a turbulence-driven upwelling event, in the world's most isolated tropical island, St Peter and St Paul Archipelago (SPSPA, Brazil). Twenty one metagenomes were obtained for seawater (N = 12), healthy and bleached holobionts (N = 9) before, during and after the episode of high seawater turbulence and upwelling. Microbial assemblages differed between low turbulence-low nutrient (LLR) and high-turbulence-high nutrient (HHR) regimes in seawater. During LLR there was a balance between autotrophy and heterotrophy in the bacterioplankton and the ratio cyanobacteria:heterotrophs ~1 (C:H). Prochlorales, unclassified Alphaproteobacteria and Euryarchaeota were the dominant bacteria and archaea, respectively. Basic metabolisms and cyanobacterial phages characterized the LLR. During HHR C:H < < 0.05 and Gammaproteobacteria approximated 50% of the most abundant organisms in seawater. Alteromonadales, Oceanospirillales, and Thaumarchaeota were the dominant bacteria and archaea. Prevailing metabolisms were related to membrane transport, virulence, disease, and defense. Phages targeting heterotrophs and virulence factor genes characterized HHR. Shifts were also observed in coral microbiomes, according to both annotation–indepent and -dependent methods. HHR bleached corals metagenomes were the most dissimilar and could be distinguished by their di- and tetranucleotides frequencies, Iron Acquision metabolism and virulence genes, such as V. cholerae-related virulence factors. The healthy coral holobiont was shown to be less sensitive to transient seawater-related perturbations than the diseased animals. A conceptual model for the turbulence-induced shifts is put forward.
Collapse
|
38
|
Carvalho JC, Cardoso P, Rigal F, Triantis KA, Borges PAV. Modeling directional spatio-temporal processes in island biogeography. Ecol Evol 2015; 5:4671-82. [PMID: 26668731 PMCID: PMC4670066 DOI: 10.1002/ece3.1632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/28/2015] [Accepted: 07/09/2015] [Indexed: 12/02/2022] Open
Abstract
A key challenge in island biogeography is to quantity the role of dispersal in shaping biodiversity patterns among the islands of a given archipelago. Here, we propose such a framework. Dispersal within oceanic archipelagos may be conceptualized as a spatio‐temporal process dependent on: (1) the spatial distribution of islands, because the probability of successful dispersal is inversely related to the spatial distance between islands and (2) the chronological sequence of island formation that determines the directional asymmetry of dispersal (hypothesized to be predominantly from older to younger islands). From these premises, directional network models may be constructed, representing putative connections among islands. These models may be translated to eigenfunctions in order to be incorporated into statistical analysis. The framework was tested with 12 datasets from the Hawaii, Azores, and Canaries. The explanatory power of directional network models for explaining species composition patterns, assessed by the Jaccard dissimilarity index, was compared with simpler time‐isolation models. The amount of variation explained by the network models ranged from 5.5% (for Coleoptera in Hawaii) to 60.2% (for Pteridophytes in Canary Islands). In relation to the four studied taxa, the variation explained by network models was higher for Pteridophytes in the three archipelagos. By the contrary, small fractions of explained variation were observed for Coleoptera (5.5%) and Araneae (8.6%) in Hawaii. Time‐isolation models were, in general, not statistical significant and explained less variation than the equivalent directional network models for all the datasets. Directional network models provide a way for evaluating the spatio‐temporal signature of species dispersal. The method allows building scenarios against which hypotheses about dispersal within archipelagos may be tested. The new framework may help to uncover the pathways via which species have colonized the islands of a given archipelago and to understand the origins of insular biodiversity.
Collapse
|
39
|
Pisa S, Vanderpoorten A, Patiño J, Werner O, González-Mancebo JM, Ros RM. How to define nativeness in vagile organisms: lessons from the cosmopolitan moss Bryum argenteum on the island of Tenerife (Canary Islands). PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:1057-1065. [PMID: 25980839 DOI: 10.1111/plb.12348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/13/2015] [Indexed: 06/04/2023]
Abstract
The distinction between native and introduced biotas presents unique challenges that culminate in organisms with high long-distance dispersal capacities in a rapidly changing world. Bryophytes, in particular, exhibit large distribution ranges, and some species can truly be qualified as cosmopolitan. Cosmopolitan species, however, typically occur in disturbed environments, raising the question of their nativeness throughout their range. Here, we employ genetic data to address the question of the origin of the cosmopolitan, weedy moss Bryum argenteum on the island of Tenerife. The genetic diversity of B. argenteum on Tenerife was comparable to that found in continental areas due to recurrent colonisation events, erasing any signature of a bottleneck that would be expected in the case of a recent colonisation event. The molecular dating analyses indicated that the first colonisation of the island took place more than 100,000 years ago, i.e. well before the first human settlements. Furthermore, the significant signal for isolation-by-distance found in B. argenteum within Tenerife points to the substantial role of genetic drift in establishing the observed patterns of genetic variation. Together, the results support the hypothesis that B. argenteum is native on Tenerife; although the existence of haplotypes shared between Tenerife and continental areas suggests that more recent, potentially man-mediated introduction also took place. While defining nativeness in organisms that are not deliberately introduced, and wherein the fossil record is extremely scarce, is an exceedingly challenging task, our results suggest that population genetic analyses can represent a useful tool to help distinguish native from alien populations.
Collapse
|
40
|
Watanabe K, Sugawara T. Is heterostyly rare on oceanic islands? AOB PLANTS 2015; 7:plv087. [PMID: 26199401 PMCID: PMC4570599 DOI: 10.1093/aobpla/plv087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 07/03/2015] [Indexed: 05/28/2023]
Abstract
Heterostyly has been considered rare or absent on oceanic islands. However, there has been no comprehensive review on this issue. Is heterostyly truly rare on oceanic islands? What makes heterostyly rare on such islands? To answer these questions, we review the reproductive studies on heterostyly on oceanic islands, with special emphasis on the heterostylous genus Psychotria in the Pacific Ocean as a model system. Overall, not many reproductive studies have been performed on heterostylous species on oceanic islands. In Hawaiian Psychotria, all 11 species are thought to have evolved dioecy from distyly. In the West Pacific, three species on the oceanic Bonin and Lanyu Islands are distylous (Psychotria homalosperma, P. boninensis and P. cephalophora), whereas three species on the continental Ryukyu Islands show various breeding systems, such as distyly (P. serpens), dioecy (P. rubra) and monoecy (P. manillensis). On some other Pacific oceanic islands, possibilities of monomorphy have been reported. For many Psychotria species, breeding systems are unknown, although recent studies indicate that heterostylous species may occur on some oceanic islands. A shift from heterostyly to other sexual systems may occur on some oceanic islands. This tendency may also contribute to the rarity of heterostyly, in addition to the difficulty in colonization/autochthonous evolution of heterostylous species on oceanic islands. Further investigation of reproductive systems of Psychotria on oceanic islands using robust phylogenetic frameworks would provide new insights into plant reproduction on oceanic islands.
Collapse
|
41
|
Traveset A, Chamorro S, Olesen JM, Heleno R. Space, time and aliens: charting the dynamic structure of Galápagos pollination networks. AOB PLANTS 2015; 7:plv068. [PMID: 26104283 PMCID: PMC4522039 DOI: 10.1093/aobpla/plv068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/13/2015] [Indexed: 05/28/2023]
Abstract
Oceanic archipelagos are threatened by the introduction of alien species which can severely disrupt the structure, function and stability of native communities. Here we investigated the pollination interactions in the two most disturbed Galápagos Islands, comparing the three main habitats and the two seasons, and assessing the impacts of alien plant invasions on network structure. We found that the pollination network structure was rather consistent between the two islands, but differed across habitats and seasons. Overall, the arid zone had the largest networks and highest species generalization levels whereas either the transition between habitats or the humid habitat showed lower values. Our data suggest that alien plants integrate easily into the communities, but with low impact on overall network structure, except for an increase in network selectiveness. The humid zone showed the highest nestedness and the lowest modularity, which might be explained by the low species diversity and the higher incidence of alien plants in this habitat. Both pollinators and plants were also more generalized in the hot season, when networks showed to be more nested. Alien species (both plants and pollinators) represented a high fraction (∼56 %) of the total number of interactions in the networks. It is thus likely that, in spite of the overall weak effect we found of alien plant invasion on pollination network structure, these introduced species influence the reproductive success of native ones, and by doing so, they affect the functioning of the community. This certainly deserves further investigation.
Collapse
|
42
|
González-Castro A, Yang S, Nogales M, Carlo TA. Relative importance of phenotypic trait matching and species' abundances in determining plant-avian seed dispersal interactions in a small insular community. AOB PLANTS 2015; 7:plv017. [PMID: 25750409 PMCID: PMC4372831 DOI: 10.1093/aobpla/plv017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/10/2015] [Indexed: 05/25/2023]
Abstract
Network theory has provided a general way to understand mutualistic plant-animal interactions at the community level. However, the mechanisms responsible for interaction patterns remain controversial. In this study we use a combination of statistical models and probability matrices to evaluate the relative importance of species morphological and nutritional (phenotypic) traits and species abundance in determining interactions between fleshy-fruited plants and birds that disperse their seeds. The models included variables associated with species abundance, a suite of variables associated with phenotypic traits (fruit diameter, bird bill width, fruit nutrient compounds), and the species identity of the avian disperser. Results show that both phenotypic traits and species abundance are important determinants of pairwise interactions. However, when considered separately, fruit diameter and bill width were more important in determining seed dispersal interactions. The effect of fruit compounds was less substantial and only important when considered together with abundance-related variables and/or the factor 'animal species'.
Collapse
|
43
|
Takayama K, López-Sepúlveda P, Greimler J, Crawford DJ, Peñailillo P, Baeza M, Ruiz E, Kohl G, Tremetsberger K, Gatica A, Letelier L, Novoa P, Novak J, Stuessy TF. Relationships and genetic consequences of contrasting modes of speciation among endemic species of Robinsonia (Asteraceae, Senecioneae) of the Juan Fernández Archipelago, Chile, based on AFLPs and SSRs. THE NEW PHYTOLOGIST 2015; 205:415-28. [PMID: 25209139 DOI: 10.1111/nph.13000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/14/2014] [Indexed: 05/23/2023]
Abstract
This study analyses and compares the genetic signatures of anagenetic and cladogenetic speciation in six species of the genus Robinsonia (Asteraceae, Senecioneae), endemic to the Juan Fernández Islands, Chile. Population genetic structure was analyzed by amplified fragment length polymorphism (AFLP) and microsatellite (simple sequence repeat, SSR) markers from 286 and 320 individuals, respectively, in 28 populations. Each species is genetically distinct. Previous hypotheses of classification among these species into subgenera and sections, via morphological, phytochemical, isozymic and internal transcribed spacer (ITS) data, have been confirmed, except that R. saxatilis appears to be related to R. gayana rather than R. evenia. Analysis of phylogenetic results and biogeographic context suggests that five of these species have originated by cladogenesis and adaptive radiation on the older Robinson Crusoe Island. The sixth species, R. masafuerae, restricted to the younger Alejandro Selkirk Island, is closely related to and an anagenetic derivative of R. evenia from Robinson Crusoe. Microsatellite and AFLP data reveal considerable genetic variation among the cladogenetically derived species of Robinsonia, but within each the genetic variation is lower, highlighting presumptive genetic isolation and rapid radiation. The anagenetically derived R. masafuerae harbors a level of genetic variation similar to that of its progenitor, R. evenia. This is the first direct comparison of the genetic consequences of anagenetic and cladogenetic speciation in plants of an oceanic archipelago.
Collapse
|
44
|
Takayama K, López-Sepúlveda P, Greimler J, Crawford DJ, Peñailillo P, Baeza M, Ruiz E, Kohl G, Tremetsberger K, Gatica A, Letelier L, Novoa P, Novak J, Stuessy TF. Relationships and genetic consequences of contrasting modes of speciation among endemic species of Robinsonia (Asteraceae, Senecioneae) of the Juan Fernández Archipelago, Chile, based on AFLPs and SSRs. THE NEW PHYTOLOGIST 2015; 205:415-428. [PMID: 25209139 DOI: 10.1600/036364415x689311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/14/2014] [Indexed: 05/23/2023]
Abstract
This study analyses and compares the genetic signatures of anagenetic and cladogenetic speciation in six species of the genus Robinsonia (Asteraceae, Senecioneae), endemic to the Juan Fernández Islands, Chile. Population genetic structure was analyzed by amplified fragment length polymorphism (AFLP) and microsatellite (simple sequence repeat, SSR) markers from 286 and 320 individuals, respectively, in 28 populations. Each species is genetically distinct. Previous hypotheses of classification among these species into subgenera and sections, via morphological, phytochemical, isozymic and internal transcribed spacer (ITS) data, have been confirmed, except that R. saxatilis appears to be related to R. gayana rather than R. evenia. Analysis of phylogenetic results and biogeographic context suggests that five of these species have originated by cladogenesis and adaptive radiation on the older Robinson Crusoe Island. The sixth species, R. masafuerae, restricted to the younger Alejandro Selkirk Island, is closely related to and an anagenetic derivative of R. evenia from Robinson Crusoe. Microsatellite and AFLP data reveal considerable genetic variation among the cladogenetically derived species of Robinsonia, but within each the genetic variation is lower, highlighting presumptive genetic isolation and rapid radiation. The anagenetically derived R. masafuerae harbors a level of genetic variation similar to that of its progenitor, R. evenia. This is the first direct comparison of the genetic consequences of anagenetic and cladogenetic speciation in plants of an oceanic archipelago.
Collapse
|
45
|
López-Sepúlveda P, Takayama K, Greimler J, Crawford DJ, Peñailillo P, Baeza M, Ruiz E, Kohl G, Tremetsberger K, Gatica A, Letelier L, Novoa P, Novak J, Stuessy TF. Progressive migration and anagenesis in Drimys confertifolia of the Juan Fernández Archipelago, Chile. JOURNAL OF PLANT RESEARCH 2015; 128:73-90. [PMID: 25292282 PMCID: PMC4300435 DOI: 10.1007/s10265-014-0666-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/12/2014] [Indexed: 05/23/2023]
Abstract
A common mode of speciation in oceanic islands is by anagenesis, wherein an immigrant arrives and through time transforms by mutation, recombination, and drift into a morphologically and genetically distinct species, with the new species accumulating a high level of genetic diversity. We investigate speciation in Drimys confertifolia, endemic to the two major islands of the Juan Fernández Archipelago, Chile, to determine genetic consequences of anagenesis, to examine relationships among populations of D. confertifolia and the continental species D. winteri and D. andina, and to test probable migration routes between the major islands. Population genetic analyses were conducted using AFLPs and nuclear microsatellites of 421 individuals from 42 populations from the Juan Fernández islands and the continent. Drimys confertifolia shows a wide genetic variation within populations on both islands, and values of genetic diversity within populations are similar to those found within populations of the continental progenitor. The genetic results are compatible with the hypothesis of high levels of genetic variation accumulating within anagenetically derived species in oceanic islands, and with the concept of little or no geographical partitioning of this variation over the landscape. Analysis of the probability of migration within the archipelago confirms colonization from the older island, Robinson Crusoe, to the younger island Alejandro Selkirk.
Collapse
|
46
|
Cunha RL, Lima FP, Tenorio MJ, Ramos AA, Castilho R, Williams ST. Evolution at a different pace: distinctive phylogenetic patterns of cone snails from two ancient oceanic archipelagos. Syst Biol 2014; 63:971-87. [PMID: 25121824 DOI: 10.1093/sysbio/syu059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ancient oceanic archipelagos of similar geological age are expected to accrue comparable numbers of endemic lineages with identical life history strategies, especially if the islands exhibit analogous habitats. We tested this hypothesis using marine snails of the genus Conus from the Atlantic archipelagos of Cape Verde and Canary Islands. Together with Azores and Madeira, these archipelagos comprise the Macaronesia biogeographic region and differ remarkably in the diversity of this group. More than 50 endemic Conus species have been described from Cape Verde, whereas prior to this study, only two nonendemic species, including a putative species complex, were thought to occur in the Canary Islands. We combined molecular phylogenetic data and geometric morphometrics with bathymetric and paleoclimatic reconstructions to understand the contrasting diversification patterns found in these regions. Our results suggest that species diversity is even lower than previously thought in the Canary Islands, with the putative species complex corresponding to a single species, Conus guanche. One explanation for the enormous disparity in Conus diversity is that the amount of available habitat may differ, or may have differed in the past due to eustatic (global) sea level changes. Historical bathymetric data, however, indicated that sea level fluctuations since the Miocene have had a similar impact on the available habitat area in both Cape Verde and Canary archipelagos and therefore do not explain this disparity. We suggest that recurrent gene flow between the Canary Islands and West Africa, habitat losses due to intense volcanic activity in combination with unsuccessful colonization of new Conus species from more diverse regions, were all determinant in shaping diversity patterns within the Canarian archipelago. Worldwide Conus species diversity follows the well-established pattern of latitudinal increase of species richness from the poles towards the tropics. However, the eastern Atlantic revealed a striking pattern with two main peaks of Conus species richness in the subtropical area and decreasing diversities toward the tropical western African coast. A Random Forests model using 12 oceanographic variables suggested that sea surface temperature is the main determinant of Conus diversity either at continental scales (eastern Atlantic coast) or in a broader context (worldwide). Other factors such as availability of suitable habitat and reduced salinity due to the influx of large rivers in the tropical area also play an important role in shaping Conus diversity patterns in the western coast of Africa.
Collapse
|
47
|
Illera JC, Palmero AM, Laiolo P, Rodríguez F, Moreno ÁC, Navascués M. Genetic, morphological, and acoustic evidence reveals lack of diversification in the colonization process in an island bird. Evolution 2014; 68:2259-74. [PMID: 24749863 DOI: 10.1111/evo.12429] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 03/30/2014] [Accepted: 03/31/2014] [Indexed: 11/28/2022]
Abstract
Songbirds with recently (i.e., early Holocene) founded populations are suitable models for studying incipient differentiation in oceanic islands. On such systems each colonization event represents a different evolutionary episode that can be studied by addressing sets of diverging phenotypic and genetic traits. We investigate the process of early differentiation in the spectacled warbler (Sylvia conspicillata) in 14 populations separated by sea barriers from three Atlantic archipelagos and from continental regions spanning from tropical to temperate latitudes. Our approach involved the study of sexual acoustic signals, morphology, and genetic data. Mitochondrial DNA did not provide clear population structure. However, microsatellites analyses consistently identified two genetic groups, albeit without correspondence to subspecies classification and little correspondence to geography. Coalescent analyses showed significant evidence for gene flow between the two genetic groups. Discriminant analyses could not correctly assign morphological or acoustic traits to source populations. Therefore, although theory predicting that in isolated populations genetic, morphological, or acoustic traits can lead to radiation, we have strikingly failed to document differentiation on these attributes in a resident passerine throughout three oceanic archipelagos.
Collapse
|
48
|
Patiño J, Carine M, Fernández-Palacios JM, Otto R, Schaefer H, Vanderpoorten A. The anagenetic world of spore-producing land plants. THE NEW PHYTOLOGIST 2014; 201:305-311. [PMID: 24010958 DOI: 10.1111/nph.12480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/30/2013] [Indexed: 06/02/2023]
Abstract
A fundamental challenge to our understanding of biodiversity is to explain why some groups of species diversify, whereas others do not. On islands, the gradual evolution of a new species from a founder event has been called 'anagenetic speciation'. This process does not lead to rapid and extensive speciation within lineages and has received little attention. Based on a survey of the endemic bryophyte, pteridophyte and spermatophyte floras of nine oceanic archipelagos, we show that anagenesis, as measured by the proportion of genera with single endemic species within a genus, is much higher in bryophytes (73%) and pteridophytes (65%) than in spermatophytes (55%). Anagenesis contributed 49% of bryophyte and 40% of endemic pteridophyte species, but only 17% of spermatophytes. The vast majority of endemic bryophytes and pteridophytes are restricted to subtropical evergreen laurel forests and failed to diversify in more open environments, in contrast with the pattern exhibited by spermatophytes. We propose that the dominance of anagenesis in island bryophytes and pteridophytes is a result of a mixture of intrinsic factors, notably their strong preference for (sub)tropical forest environments, and extrinsic factors, including the long-term macro-ecological stability of these habitats and the associated strong phylogenetic niche conservatism of their floras.
Collapse
|
49
|
Ando H, Setsuko S, Horikoshi K, Suzuki H, Umehara S, Inoue-Murayama M, Isagi Y. Diet analysis by next-generation sequencing indicates the frequent consumption of introduced plants by the critically endangered red-headed wood pigeon (Columba janthina nitens) in oceanic island habitats. Ecol Evol 2013; 3:4057-69. [PMID: 24324859 PMCID: PMC3853553 DOI: 10.1002/ece3.773] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/25/2013] [Accepted: 08/12/2013] [Indexed: 12/15/2022] Open
Abstract
Oceanic island ecosystems are vulnerable to the introduction of alien species, and they provide a habitat for many endangered species. Knowing the diet of an endangered animal is important for appropriate nature restoration efforts on oceanic islands because introduced species may be a major component of the diets of some endangered species. DNA barcoding techniques together with next-generation sequencing may provide more detailed information on animal diets than other traditional methods. We performed a diet analysis using 48 fecal samples from the critically endangered red-headed wood pigeon that is endemic to the Ogasawara Islands based on chloroplast trnL P6 loop sequences. The frequency of each detected plant taxa was compared with a microhistological analysis of the same sample set. The DNA barcoding approach detected a much larger number of plants than the microhistological analysis. Plants that were difficult to identify by microhistological analysis after being digested in the pigeon stomachs were frequently identified only by DNA barcoding. The results of the barcoding analysis indicated the frequent consumption of introduced species, in addition to several native species, by the red-headed wood pigeon. The rapid eradication of specific introduced species may reduce the food resources available to this endangered bird; thus, balancing eradication efforts with the restoration of native food plants should be considered. Although some technical problems still exist, the trnL approach to next-generation sequencing may contribute to a better understanding of oceanic island ecosystems and their conservation.
Collapse
|
50
|
Nonaka K, Omura S, Masuma R, Kaifuchi S, Masuma R. Three new Pochonia taxa (Clavicipitaceae) from soils in Japan. Mycologia 2013; 105:1202-18. [PMID: 23921245 DOI: 10.3852/12-132] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fifty Pochonia strains were isolated from soil samples collected throughout Japan. Using a combination of micromorphological characters and multigene (SSU, LSU, TEF, RPB1, RPB2) phylogenics, seven taxa were identified, three of which previously were undescribed. In this paper we describe the new species, P. boninensis, and two new varieties, P. chlamydosporia var. ellipsospora and var. spinulospora. They were recovered from Chichi-jima, Aogashima and Okinawa's main island. The three new taxa are distinguished from known species and varieties by conidial morphology. We also report the first finding of P. rubescens from Japan.
Collapse
|