26
|
Alonso S, Rendueles M, Díaz M. Efficient lactobionic acid production from whey by Pseudomonas taetrolens under pH-shift conditions. BIORESOURCE TECHNOLOGY 2011; 102:9730-9736. [PMID: 21862326 DOI: 10.1016/j.biortech.2011.07.089] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 05/31/2023]
Abstract
Lactobionic acid finds applications in the fields of pharmaceuticals, cosmetics and medicine. The production of lactobionic acid from whey by Pseudomonas taetrolens was studied in shake-flasks and in a bioreactor. Shake-flask experiments showed that lactobionic acid was a non-growth associated product. A two-stage pH-shift bioconversion strategy with a pH-uncontrolled above 6.5 during the growth phase and maintained at 6.5 during cumulative production was adopted in bioreactor batch cultures. An inoculation level of 30% promoted high cell culture densities that triggered lactobionic acid production at a rate of 1.12 g/Lh. This methodology displayed efficient bioconversion with cheese whey as an inexpensive substrate for lactobionic acid production.
Collapse
|
27
|
Hamerli D, Birch RG. Transgenic expression of trehalulose synthase results in high concentrations of the sucrose isomer trehalulose in mature stems of field-grown sugarcane. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:32-37. [PMID: 20492546 DOI: 10.1111/j.1467-7652.2010.00528.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sugarcane plants were developed that produce the sucrose isomers trehalulose and isomaltulose through expression of a vacuole-targeted trehalulose synthase modified from the gene in 'Pseudomonas mesoacidophila MX-45' and controlled by the maize ubiquitin (Ubi-1) promoter. Trehalulose concentration in juice increased with internode maturity, reaching about 600 mM, with near-complete conversion of sucrose in the most mature internodes. Plants remained vigorous, and trehalulose production in selected lines was retained over multiple vegetative generations under glasshouse and field conditions.
Collapse
|
28
|
Coniglio M, Kreis W. Immobilization of flavonol 3-O-beta-heterodisaccharidase on porous glass and production of rutinose from rutin. PLANTA MEDICA 2009; 75:1459-1461. [PMID: 19452439 DOI: 10.1055/s-0029-1185703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Flavonol 3- O-beta-heterodisaccharidase (FHG 1) was isolated from the dried herb of Fagopyrum esculentum, immobilized on porous glass, and used for the release of rutinose from rutin. The stability of the enzyme in its free or immobilized form was observed continuously at two different temperatures (4 degrees C and 25 degrees C). T(1/2) values were determined to be about 48 h for the free enzyme and about 300 h for the immobilized enzyme. The rutinose released was isolated by fractionated ethanol precipitation.
Collapse
|
29
|
Nishizawa A, Yabuta Y, Shigeoka S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. PLANT PHYSIOLOGY 2008; 147:1251-63. [PMID: 18502973 PMCID: PMC2442551 DOI: 10.1104/pp.108.122465] [Citation(s) in RCA: 632] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 05/20/2008] [Indexed: 05/17/2023]
Abstract
Galactinol synthase (GolS) is a key enzyme in the synthesis of raffinose family oligosaccharides that function as osmoprotectants in plant cells. In leaves of Arabidopsis (Arabidopsis thaliana) plants overexpressing heat shock transcription factor A2 (HsfA2), the transcription of GolS1, -2, and -4 and raffinose synthase 2 (RS2) was highly induced; thus, levels of galactinol and raffinose increased compared with those in wild-type plants under control growth conditions. In leaves of the wild-type plants, treatment with 50 mum methylviologen (MV) increased the transcript levels of not only HsfA2, but also GolS1, -2, -3, -4, and -8 and RS2, -4, -5, and -6, the total activities of GolS isoenzymes, and the levels of galactinol and raffinose. GolS1- or GolS2-overexpressing Arabidopsis plants (Ox-GolS1-11, Ox-GolS2-8, and Ox-GolS2-29) had increased levels of galactinol and raffinose in the leaves compared with wild-type plants under control growth conditions. High intracellular levels of galactinol and raffinose in the transgenic plants were correlated with increased tolerance to MV treatment and salinity or chilling stress. Galactinol and raffinose effectively protected salicylate from attack by hydroxyl radicals in vitro. These findings suggest the possibility that galactinol and raffinose scavenge hydroxyl radicals as a novel function to protect plant cells from oxidative damage caused by MV treatment, salinity, or chilling.
Collapse
|
30
|
Park JW, Hong JSJ, Parajuli N, Jung WS, Park SR, Lim SK, Sohng JK, Yoon YJ. Genetic dissection of the biosynthetic route to gentamicin A2 by heterologous expression of its minimal gene set. Proc Natl Acad Sci U S A 2008; 105:8399-404. [PMID: 18550838 PMCID: PMC2448848 DOI: 10.1073/pnas.0803164105] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Indexed: 11/18/2022] Open
Abstract
Since the first use of streptomycin as an effective antibiotic drug in the treatment of tuberculosis, aminoglycoside antibiotics have been widely used against a variety of bacterial infections for over six decades. However, the pathways for aminoglycoside biosynthesis still remain unclear, mainly because of difficulty in genetic manipulation of actinomycetes producing this class of antibiotics. Gentamicin belongs to the group of 4,6-disubstituted aminoglycosides containing a characteristic core aminocyclitol moiety, 2-deoxystreptamine (2-DOS), and the recent discovery of its biosynthetic gene cluster in Micromonospora echinospora has enabled us to decipher its biosynthetic pathway. To determine the minimal set of genes and their functions for the generation of gentamicin A(2), the first pseudotrisaccharide intermediate in the biosynthetic pathway for the gentamicin complex, various sets of candidate genes from M. echinospora and other related aminoglycoside-producing strains were introduced into a nonaminoglycoside producing strain of Streptomyces venezuelae. Heterologous expression of different combinations of putative 2-DOS biosynthetic genes revealed that a subset, gtmB-gtmA-gacH, is responsible for the biosynthesis of this core aminocyclitol moiety of gentamicin. Expression of gtmG together with gtmB-gtmA-gacH led to production of 2'-N-acetylparomamine, demonstrating that GtmG acts as a glycosyltransferase that adds N-acetyl-d-glucosamine (GLcNA) to 2-DOS. Expression of gtmM in a 2'-N-acetylparomamine-producing recombinant S. venezuelae strain generated paromamine. Expression of gtmE in an engineered paromamine-producing strain of S. venezuelae successfully generated gentamicin A(2), indicating that GtmE is another glycosyltransferase that attaches d-xylose to paromamine. These results represent in vivo evidence elucidating the complete biosynthetic pathway of the pseudotrisaccharide aminoglycoside.
Collapse
|
31
|
Aachary AA, Prapulla SG. Corncob-induced endo-1,4-beta-d-xylanase of Aspergillus oryzae MTCC 5154: production and characterization of xylobiose from glucuronoxylan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:3981-3988. [PMID: 18489109 DOI: 10.1021/jf073430i] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Eight different fungi were cultivated in a peptone-yeast extract medium containing 1% oat spelt xylan (OSX) to evaluate endo-1,4-beta-xylanase secretion for xylooligosaccharide (XOS) production. Aspergillus oryzae MTCC 5154, Aspergillus flavus , Aspergillus niger , and Aspergillus ochraceus showed significant titers of endoxylanases, which were further used for the production of XOS from birch wood xylan (BWX). A. oryzae produced 89.5 +/- 1.13% XOS in the hydrolysate at 24 h of reaction. The effect of OSX, BWX, and raw corncob on the induction of endoxylanase in A. oryzae was studied, and the xylanase activity was maximum at 96 h of cultivation in 3% corncob containing medium. XOS produced at 36 h of reaction was 5.87 +/- 0.53 mg/mL (12 +/- 2% xylose, 48 +/- 2.43% xylobiose, and 40 +/- 3.6% higher oligomers) from 1% BWX . HPLC/refractive index detection and ESI/MS analysis of fractions obtained by GPC corresponded to neutral and 4- O-methyl-alpha- d-glucuronic acid substituted acidic oligosaccharides. The major fraction, beta- d-xylopyranosyl-(1-->4)- d-xylanopyranose was characterized using (13)C NMR.
Collapse
|
32
|
Moon KO, Choi KH, Kang HY, Oh JI, Jang SB, Park CS, Lee JH, Cha J. Probing the critical residues for intramolecular fructosyl transfer reaction of a levan fructotransferase. J Microbiol Biotechnol 2008; 18:1064-1069. [PMID: 18600048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Levan fructotransferase (LFTase) preferentially catalyzes the transfructosylation reaction in addition to levan hydrolysis, whereas other levan-degrading enzymes hydrolyze levan into a levan-oligosaccharide and fructose. Based on sequence comparisons and enzymatic properties, the fructosyl transfer activity of LFTase is proposed to have evolved from levanase. In order to probe the residues that are critical to the intramolecular fructosyl transfer reaction of the Microbacterium sp. AL-210 LFTase, an error-prone PCR mutagenesis process was carried out, and the mutants that led to a shift in activity from transfructosylation towards hydrolysis of levan were screened by the DNS method. After two rounds of mutagenesis, TLC and HPLC analyses of the reaction products by the selected mutants revealed two major products; one is a di-D-fructose- 2,6':6,2'-dianhydride (DFAIV) and the other is a levanbiose. The newly detected levanbiose corresponds to the reaction product from LFTase lacking transferring activity. Two mutants (2-F8 and 2-G9) showed a high yield of levanbiose (38-40%) compared with the wild-type enzyme, and thus behaved as levanases. Sequence analysis of the individual mutants responsible for the enhanced hydrolytic activity indicated that Asn-85 was highly involved in the transfructosylation activity of LFTase.
Collapse
|
33
|
Tan SS, Li DY, Jiang ZQ, Zhu YP, Shi B, Li LT. Production of xylobiose from the autohydrolysis explosion liquor of corncob using Thermotoga maritima xylanase B (XynB) immobilized on nickel-chelated Eupergit C. BIORESOURCE TECHNOLOGY 2008; 99:200-4. [PMID: 17258452 DOI: 10.1016/j.biortech.2006.12.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 11/30/2006] [Accepted: 12/01/2006] [Indexed: 05/13/2023]
Abstract
In this study, a thermostable recombinant xylanase B (XynB) from Thermotoga maritima MSB8 was immobilized on nickel-chelated Eupergit C 250L. This immobilized XynB was then used to hydrolyze the autohydrolysis explosion liquor of corncob (AELC) in a packed-bed enzyme reactor for continuous production of xylooligosaccharides, especially xylobiose. When tested in batch hydrolysis of AELC, the immobilized XynB still retained its relative activity of 92.5% after 10 cycles of hydrolysis at 90 degrees C. The immobilized XynB retained 83.6% of its initial hydrolysis activity even after 168 h of hydrolysis reaction at 90 degrees C and demonstrated a half-life time of 577.6 h (24 days) for continuous hydrolysis. HPLC showed that xylobiose (49.8%) and xylose (22.6%) were the main hydrolysis products yielded during continuous hydrolysis. Xylobiose was adsorbed on an activated charcoal column and eluted with a linear gradient of 15% (v/v) ethanol to yield xylobiose with 84.7% of recovery. Also, the purity of xylobiose was up to 97.2% as determined by HPLC. Therefore, the immobilized XynB was suitable for the efficient production of xylobiose from AELC. This is the first report on the immobilization of xylanase for xylobiose production.
Collapse
|
34
|
Torres LL, Salerno GL. A metabolic pathway leading to mannosylfructose biosynthesis in Agrobacterium tumefaciens uncovers a family of mannosyltransferases. Proc Natl Acad Sci U S A 2007; 104:14318-23. [PMID: 17728402 PMCID: PMC1964871 DOI: 10.1073/pnas.0706709104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A metabolic pathway for biosynthesis of the nonreducing disaccharide mannosylfructose (beta-fructofuranosyl-alpha-mannopyranoside), an important osmolyte in Agrobacterium tumefaciens, was discovered. We have identified and functionally characterized two ORFs that correspond to genes (named mfpsA and mfppA) encoding the rare enzymes mannosylfructose-phosphate synthase and mannosylfructose-phosphate phosphatase, an associated phosphohydrolase. The mfpsA and mfppA genes are arranged in an operon structure, whose transcription is up-regulated by NaCl, resulting in the accumulation of mannosylfructose in the cells. Not only is the biosynthesis of mannosylfructose mechanistically similar to that of sucrose, but the corresponding genes for the biosynthesis of both disaccharides are also phylogenetic close relatives. Importantly, a protein phylogeny analysis indicated that mannosylfructose-phosphate synthase defines a unique group of mannosyltransferases.
Collapse
|
35
|
Hua L, Nordkvist M, Nielsen PM, Villadsen J. Scale-up of enzymatic production of lactobionic acid using the rotary jet head system. Biotechnol Bioeng 2007; 97:842-9. [PMID: 17154315 DOI: 10.1002/bit.21272] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Enzymatic oxidation of lactose to lactobionic acid (LBA) by a carbohydrate oxidase from Microdochium nivale was studied in a pilot-scale batch reactor of 600 L working volume using a rotary jet head (RJH) for mixing and mass transfer (Nordkvist et al., 2003, Chem Eng Sci 58:3877-3890). Both lactose and whey permeate were used as substrate, air was used as oxygen source, and catalase was added to eliminate the byproduct hydrogen peroxide. More than 98% conversion to LBA was achieved. Neither enzyme deactivation nor enzyme inhibition was observed under the experimental conditions. The dissolved oxygen tension (DOT) was constant throughout the tank for a given set of operating conditions, indicating that liquid mixing was sufficiently good to avoid oxygen gradients in the tank. However, at a given oxygen tension measured in the tank, the specific rate of reaction found in the RJH system was somewhat higher than previously obtained in a 1 L mechanically stirred tank reactor (Nordkvist et al., 2007, in this issue, pp. 694-707). This can be ascribed to a higher pressure in the recirculation loop which is part of the RJH system. Compared to mechanically stirred systems, high values of the volumetric mass transfer coefficient, k(L)a, were obtained when lactose was used as substrate, especially at low values of the specific power input and the superficial gas velocity. k(L)a was lower for experiments with whey permeate than with lactose due to addition of antifoam. The importance of mass transfer and of the saturation concentration of oxygen on the volumetric rate of reaction was demonstrated by simulations.
Collapse
|
36
|
Markosian AA, Abelian LA, Adamian MO, Ekazhev ZD, Akopian ZI, Abelian VA. [Production of fructooligosaccharide syrup from sucrose in combination with palatinose and trehalose]. PRIKLADNAIA BIOKHIMIIA I MIKROBIOLOGIIA 2007; 43:424-431. [PMID: 17929569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The fructofuranosidases (EC 3.2.1.26) of Aspergillus niger St-0018 and A. foetidus St-0194 were used to produce fructooligosaccharides (FOS) under periodic and continuous conditions. The incorporation of cells into calcium alginate gel gave the most efficient immobilized biocatalysts. The feasibility of transforming residual sucrose into palatinose and trehalulose using isomaltulose synthase (EC 5.4.99.11) was demonstrated.
Collapse
|
37
|
Purushothaman A, Fukuda J, Mizumoto S, ten Dam GB, van Kuppevelt TH, Kitagawa H, Mikami T, Sugahara K. Functions of Chondroitin Sulfate/Dermatan Sulfate Chains in Brain Development. J Biol Chem 2007; 282:19442-52. [PMID: 17500059 DOI: 10.1074/jbc.m700630200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) have been implicated in the processes of neural development in the brain. In this study, we characterized developmentally regulated brain CS/DS chains using a single chain antibody, GD3G7, produced by the phage display technique. Evaluation of the specificity of GD3G7 toward various glycosaminoglycan preparations showed that this antibody specifically reacted with squid CS-E (rich in the GlcUAbeta1-3GalNAc(4,6-O-sulfate) disaccharide unit E), hagfish CS-H (rich in the IdoUAalpha1-3GalNAc(4,6-O-sulfate) unit iE), and shark skin DS (rich in both E and iE units). In situ hybridization for the expression of N-acetylgalac-tosamine-4-sulfate 6-O-sulfotransferase in the postnatal mouse brain, which is involved in the biosynthesis of CS/DS-E, showed a widespread expression of the transcript in the developing brain except at postnatal day 7, where strong expression was observed in the external granule cell layer in the cerebellum. The expression switched from the external to internal granule cell layer with development. Immunohistochemical localization of GD3G7 in the mouse brain showed that the epitope was relatively abundant in the cerebellum, hippocampus, and olfactory bulb. GD3G7 suppressed the growth of neurites in embryonic hippocampal neurons mediated by CS-E, suggesting that the epitope is embedded in the neurite outgrowth-promoting motif of CS-E. In addition, a CS-E decasaccharide fraction was found to be the critical minimal structure needed for recognition by GD3G7. Four discrete decasaccharide epitopic sequences were identified. The antibody GD3G7 has broad applications in investigations of CS/DS chains during the central nervous system's development and under various pathological conditions.
Collapse
|
38
|
Zeng X, Sun Y, Ye H, Liu J, Uzawa H. Synthesis of p-nitrophenyl sulfated disaccharides with β-d-(6-sulfo)-GlcNAc units using β-N-acetylhexosaminidase from Aspergillus oryzae in a transglycosylation reaction. Biotechnol Lett 2007; 29:1105-10. [PMID: 17492477 DOI: 10.1007/s10529-007-9366-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/27/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
When alpha-D-GlcNAc-OC(6)H(4)NO(2) -p and beta-D-(6-sulfo)-GlcNAc-OC(6)H(4)NO(2)-p (2) were used as substrates, beta-N-acetylhexosaminidase from Aspergillus oryzae transferred the beta-D-(6-sulfo)-GlcNAc(unit from 2 to alpha-D-GlcNAc-OC(6)H(4)NO(2) -p to afford beta-D-(6-sulfo)-GlcNAc-(1-->4)-alpha-D-GlcNAc-OC(6)H(4)NO(2)-p (3) in a yield of 94% based on the amount of donor, 2, added. beta-D-(6-sulfo)-GlcNAc-(1-->4)-alpha-D-Glc-OC(6)H(4)NO(2)-p (4) was obtained with alpha-D-Glc-OC(6)H(4)NO(2) -p as acceptor in a similar manner. With a reaction mixture of 2 and beta-D-GlcNAc-OC(6)H(4)NO(2)-p (1) in a molar ratio of 6:1, the enzyme mediated the transfer of beta-D-GlcNAc from 1 to 2, affording disaccharide beta-D-GlcNAc-(1-->4)-beta-(6-sulfo)-D-GlcNAc-OC(6)H(4)NO(2)-p (5) in a yield of 13% based on the amount of 1 added.
Collapse
|
39
|
Kadokura K, Rokutani A, Yamamoto M, Ikegami T, Sugita H, Itoi S, Hakamata W, Oku T, Nishio T. Purification and characterization of Vibrio parahaemolyticus extracellular chitinase and chitin oligosaccharide deacetylase involved in the production of heterodisaccharide from chitin. Appl Microbiol Biotechnol 2007; 75:357-65. [PMID: 17334758 DOI: 10.1007/s00253-006-0831-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 12/20/2006] [Accepted: 12/24/2006] [Indexed: 11/30/2022]
Abstract
A chitin-degrading bacterial strain, KN1699, isolated from Yatsu dry beach (Narashino, Chiba Prefecture, Japan), was identified as Vibrio parahaemolyticus. Treatment of powdered chitin with crude enzyme solution prepared from the supernatant of KN1699 cultures yielded a disaccharide, beta-D-N-acetylglucosaminyl-(1,4)-D-glucosamine (GlcNAc-GlcN), as the primary chitin degradation product. The extracellular enzymes involved in the production of this heterodisaccharide, chitinase (Pa-Chi; molecular mass, 92 kDa) and chitin oligosaccharide deacetylase (Pa-COD; molecular mass, 46 kDa), were isolated from the crude enzyme solution, and their hydrolysis specificities were elucidated. These studies confirmed that (1) Pa-Chi hydrolyzes chitin to produce (GlcNAc)(2) and (2) Pa-COD hydrolyzes the acetamide group of reducing end GlcNAc residue of (GlcNAc)(2). These findings indicate that GlcNAc-GlcN is produced from chitin by the cooperative hydrolytic reactions of both Pa-Chi and Pa-COD.
Collapse
|
40
|
Puchart V, Biely P. A simple enzymatic synthesis of 4-nitrophenyl β-1,4-d-xylobioside, a chromogenic substrate for assay and differentiation of endoxylanases. J Biotechnol 2007; 128:576-86. [PMID: 17223215 DOI: 10.1016/j.jbiotec.2006.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 11/24/2006] [Accepted: 12/04/2006] [Indexed: 11/26/2022]
Abstract
A simple procedure has been elaborated for preparation of 4-nitrophenyl beta-d-xylopyranosyl-1,4-beta-d-xylopyranoside (NPX(2)), a chromogenic substrate of some endo-beta-1,4-xylanases. The procedure is based on a self-transfer reaction from 4-nitrophenyl beta-d-xylopyranoside catalyzed by an Aureobasidium pullulans and Aspergillus niger beta-xylosidases. Both enzymes catalyzed only the formation of 4-nitrophenyl glycosides of beta-1,4-xylobiose with a small admixture of 4-nitrophenyl glycoside of beta-1,3-xylobiose. The highest yields of the NPX(2) (19.4%) was obtained at pH 5.5. The removal of the beta-1,3-isomer from NPX(2) is not necessary for quantification of endo-beta-1,4-xylanase activity since it is not attacked by endo-beta-1,4-xylanases. In contrast to GH family 5 xylanase from Erwinia chrysanthemi, which did not attack NPX(2), all family 10 and 11 xylanases cleaved the chromogenic substrate exclusively between xylobiose and the aromatic aglycone. Significant differences in the K(m) values of GH10 and GH11 xylanases suggested that activities of these enzymes could be selectively quantified in the mixtures using various concentrations of NPX(2). Moreover, NPX(2) could serve as an ideal substrate to follow the interaction of endo-beta-1,4-xylanases with various xylanase inhibitors.
Collapse
|
41
|
Saranpuetti C, Tanaka M, Sone T, Asano K, Tomita F. Determination of enzymes from Colletotrichum sp. AHU9748 essential for lepidimoide production from okra polysaccharide. J Biosci Bioeng 2007; 102:452-6. [PMID: 17189174 DOI: 10.1263/jbb.102.452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 08/09/2006] [Indexed: 11/17/2022]
Abstract
The allelopathic substance lepidimoide (Lp), which exhibits multiple functions in the growth and development of plants, was produced by Colletotrichum sp. AHU9748 from okra polysaccharide. Okra polysaccharide has the repeating structure (1-->4)-O-alpha-(d-galactopyranosyluronic acid)-(1-->2)-O-alpha-l-rhamnopyranose in its hexasaccharide repeating unit of its main chain. To determine the enzymes essential for Lp production, the supernatant of a culture broth was fractionated by repeated column chromatographies to identify two serial fractions responsible for Lp production and non-Lp production by measuring Lp production together with beta-galactosidase (beta-gal), rhamnogalacturonan lyase (RG-lyase) and acetylesterase (AE) activities, which we hypothesized to be necessary for Lp production from the structure of Lp. We confirmed the presence of these three enzymatic activities in the highest-Lp-producing fraction. The addition of purified RG-lyase to fractions producing no or a small amount of Lp demonstrated that beta-gal and RG-lyase activities are necessary for Lp production. The N-terminal amino acid sequences of the three separated proteins on SDS-PAGE confirmed the presence of enzymes identical to beta-gal, RG-lyase and AE in the Lp-producing fractions.
Collapse
|
42
|
Sasaki N, Yoshida H, Fuwa TJ, Kinoshita-Toyoda A, Toyoda H, Hirabayashi Y, Ishida H, Ueda R, Nishihara S. Drosophila beta 1,4-N-acetylgalactosaminyltransferase-A synthesizes the LacdiNAc structures on several glycoproteins and glycosphingolipids. Biochem Biophys Res Commun 2007; 354:522-7. [PMID: 17239818 DOI: 10.1016/j.bbrc.2007.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
The GalNAcbeta1,4GlcNAc (LacdiNAc or LDN) structure is a more common structural feature in invertebrate glycoconjugates when compared with the Galbeta1,4GlcNAc structure. Recently, beta1,4-N-acetylgalactosaminyltransferase (beta4GalNAcT) was identified in some invertebrates including Drosophila. However, the LDN structure has not been reported in Drosophila, and the biological function of LDN remains to be determined. In this study, we examined acceptor substrate specificity of Drosophila beta4GalNAcTA by using some N- and O-glycans on glycoproteins and neutral glycosphingolipids (GSLs). GalNAc was efficiently transferred toward N-glycans, O-glycans, and the arthro-series GSLs. Moreover, we showed that dbeta4GalNAcTA contributed to the synthesis of the LDN structure in vivo. The dbeta4GalNAcTA mRNA was highly expressed in the developmental and adult neuronal tissues. Thus, these results suggest that dbeta4GalNAcTA acts on the terminal GlcNAc residue of some glycans for the synthesis of LDN, and the LDN structure may play a role in the physiological or neuronal development of Drosophila.
Collapse
|
43
|
de Segura AG, Alcalde M, Bernabé M, Ballesteros A, Plou FJ. Synthesis of methyl α-d-glucooligosaccharides by entrapped dextransucrase from Leuconostoc mesenteroides B-1299. J Biotechnol 2006; 124:439-45. [PMID: 16513200 DOI: 10.1016/j.jbiotec.2005.12.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 12/02/2005] [Accepted: 12/23/2005] [Indexed: 11/19/2022]
Abstract
The synthesis of methyl alpha-D-glucooligosaccharides, using sucrose as glucosyl donor and methyl alpha-D-glucopyranoside as acceptor, was studied with dextransucrase from Leuconostoc mesenteroides NRRL B-1299. The enzyme was immobilized by entrapment in alginate. By NMR and mass spectrometry we identified three homologous series (S1-S3) of methyl alpha-D-glucooligosaccharides. Series S2 and S3 were characterized by the presence of alpha(1-->2) linkages, in combination with alpha(1-->6) bonds. Two parameters, sucrose to acceptor concentration ratio (S/A) and the total sugar concentration (TSC) determined the yield of methyl alpha-D-glucooligosaccharides. The maximum concentration achieved of the first acceptor product, methyl alpha-D-isomaltoside, was 65 mM using a S/A 1:4 and a TSC of 336 g l(-1). When increasing temperature, a shift of selectivity towards compounds containing alpha(1-->2) bonds was observed. The formation of leucrose as a side process was very significant (reaching values of 32 g l(-1)) at high sucrose concentrations.
Collapse
|
44
|
Newton GL, Ko M, Ta P, Av-Gay Y, Fahey RC. Purification and characterization of Mycobacterium tuberculosis 1d-myo-inosityl-2-acetamido-2-deoxy-α-d-glucopyranoside deacetylase, MshB, a mycothiol biosynthetic enzyme. Protein Expr Purif 2006; 47:542-50. [PMID: 16630724 DOI: 10.1016/j.pep.2006.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 02/28/2006] [Accepted: 03/06/2006] [Indexed: 11/26/2022]
Abstract
Mycothiol (MSH, AcCys-GlcN-Ins) is the major low molecular weight thiol in actinomycetes and is essential for growth of Mycobacterium tuberculosis. MshB, the GlcNAc-Ins deacetylase, is a key enzyme in MSH biosynthesis. MshB from M. tuberculosis was cloned, expressed, purified, and its properties characterized. Values of k(cat) and K(m) for MshB were determined for the biological substrate, GlcNAc-Ins, and several other good substrates. The substrate specificity of MshB was compared to that of M. tuberculosis mycothiol S-conjugate amidase (Mca), a homologous enzyme having weak GlcNAc-Ins deacetylase activity. Both enzymes are metalloamidases with overlapping amidase activity toward mycothiol S-conjugates (AcCySR-GlcN-Ins). The Ins residue and hydrophobic R groups enhance the activity with both MshB and Mca, but changes in the acyl group attached to GlcN have opposite effects on the two enzymes.
Collapse
|
45
|
Ikehara Y, Sato T, Niwa T, Nakamura S, Gotoh M, Ikehara SK, Kiyohara K, Aoki C, Iwai T, Nakanishi H, Hirabayashi J, Tatematsu M, Narimatsu H. Apical Golgi localization of N,N′-diacetyllactosediamine synthase, β4GalNAc-T3, is responsible for LacdiNAc expression on gastric mucosa. Glycobiology 2006; 16:777-85. [PMID: 16728562 DOI: 10.1093/glycob/cwl005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
beta1,4-N-acetylgalactosaminyltransferase III (beta4GalNAc-T3), which was recently cloned and identified, exhibits GalNAc transferase activity toward a GlcNAcbeta residue with beta1,4-linkage, forming the N,N'-diacetyllactosediamine, GalNAcbeta1,4GlcNAc (LacdiNAc or LDN). Though LacdiNAc has not been found in the gastric mucosa, a large amount of transcript was detected in our previous study. To increase our knowledge of beta4GalNAc-T3 expression and its product LacdiNAc, we examined the exact localization of beta4GalNAc-T3 in human gastric mucosa using a newly developed antibody, monoclonal antibody (mAb) K1356. This antibody specifically detected the enzyme that transfected the beta4GalNAc-T3 gene into MKN45 cells, and the terminal betaGalNAc epitope yielded on the cell surface was recognized by a lectin, Wisteria floribunda agglutinin (WFA). beta4GalNAc-T3 was localized in the supra-nuclear region of surface mucous cells in gastric mucosa, and WFA positively stained the mucins secreted by the cells. In contrast, in the cells of the glandular compartment in the fundic glands and a few cells in the pyloric glands, beta4GalNAc-T3 was observed in the basolateral position of the nucleus, where no WFA reactivity was detected. The anti-Tn (GalNAcalpha-O-Ser/Thr) antibody staining did not overlap with the WFA staining. By measuring the binding activity of WFA using automated frontal affinity chromatography (FAC), we found WFA to bind most strongly LacdiNAc among the sugar chains examined. Neither beta4GalNAc-T3 nor WFA-positive staining was detected in intestinal metaplastic cells. These results suggest that the supra-nuclear expression of beta4GalNAc-T3 is essential for the formation of LacdiNAc on the surface mucous cells and that LacdiNAc and beta4GalNAc-T3 are novel differentiation markers of surface mucous cells in the gastric mucosa.
Collapse
|
46
|
Feng J, Che Y, Milse J, Yin YJ, Liu L, Rückert C, Shen XH, Qi SW, Kalinowski J, Liu SJ. The gene ncgl2918 encodes a novel maleylpyruvate isomerase that needs mycothiol as cofactor and links mycothiol biosynthesis and gentisate assimilation in Corynebacterium glutamicum. J Biol Chem 2006; 281:10778-85. [PMID: 16481315 DOI: 10.1074/jbc.m513192200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Data mining of the Corynebacterium glutamicum genome identified 4 genes analogous to the mshA, mshB, mshC, and mshD genes that are involved in biosynthesis of mycothiol in Mycobacterium tuberculosis and Mycobacterium smegmatis. Individual deletion of these genes was carried out in this study. Mutants mshC- and mshD- lost the ability to produce mycothiol, but mutant mshB- produced mycothiol as the wild type did. The phenotypes of mutants mshC- and mshD- were the same as the wild type when grown in LB or BHIS media, but mutants mshC- and mshD- were not able to grow in mineral medium with gentisate or 3-hydroxybenzoate as carbon sources. C. glutamicum assimilated gentisate and 3-hydroxybenzoate via a glutathione-independent gentisate pathway. In this study it was found that the maleylpyruvate isomerase, which catalyzes the conversion of maleylpyruvate into fumarylpyruvate in the glutathione-independent gentisate pathway, needed mycothiol as a cofactor. This mycothiol-dependent maleylpyruvate isomerase gene (ncgl2918) was cloned, actively expressed, and purified from Escherichia coli. The purified mycothiol-dependent isomerase is a monomer of 34 kDa. The apparent Km and Vmax values for maleylpyruvate were determined to be 148.4 +/- 11.9 microM and 1520 +/- 57.4 micromol/min/mg, respectively (mycothiol concentration, 2.5 microM). Previous studies had shown that mycothiol played roles in detoxification of oxidative chemicals and antibiotics in streptomycetes and mycobacteria. To our knowledge, this is the first demonstration that mycothiol is essential for growth of C. glutamicum with gentisate or 3-hydroxybenzoate as carbon sources and the first characterization of a mycothiol-dependent maleylpyruvate isomerase.
Collapse
|
47
|
Park JH, Cha CJ, Roe JH. Identification of genes for mycothiol biosynthesis in Streptomyces coelicolor A3(2). J Microbiol 2006; 44:121-5. [PMID: 16554727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Mycothiol is a low molecular weight thiol compound produced by a number of actinomycetes, and has been suggested to serve both anti-oxidative and detoxifying roles. To investigate the metabolism and the role of mycothiol in Streptomyces coelicolor, the biosynthetic genes (mshA, B, C, and D) were predicted based on sequence homology with the mycobacterial genes and confirmed experimentally. Disruption of the mshA, C, and D genes by PCR targeting mutagenesis resulted in no synthesis of mycothiol, whereas the mshB mutation reduced its level to about 10% of the wild type. The results indicate that the mshA, C, and D genes encode non-redundant biosynthetic enzymes, whereas the enzymatic activity of MshB (acetylase) is shared by at least one other gene product, most likely the mca gene product (amidase).
Collapse
|
48
|
Newton GL, Ta P, Fahey RC. A mycothiol synthase mutant of Mycobacterium smegmatis produces novel thiols and has an altered thiol redox status. J Bacteriol 2005; 187:7309-16. [PMID: 16237013 PMCID: PMC1272995 DOI: 10.1128/jb.187.21.7309-7316.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacteria and other actinomycetes do not produce glutathione but make mycothiol (MSH; AcCys-GlcN-Ins) that has functions similar to those of glutathione and is essential for growth of Mycobacterium tuberculosis. Mycothiol synthase (MshD) catalyzes N acetylation of Cys-GlcN-Ins to produce MSH in Mycobacterium smegmatis mc2155, and Cys-GlcN-Ins is maintained at a low level. The mycothiol synthase mutant, the mshD::Tn5 mutant, produces high levels of Cys-GlcN-Ins along with two novel thiols, N-formyl-Cys-GlcN-Ins and N-succinyl-Cys-GlcN-Ins, and a small amount of MSH. The nonenzymatic reaction of acyl-coenzyme A (CoA) with Cys-GlcN-Ins to produce acyl-Cys-GlcN-Ins is a facile reaction under physiologic conditions, with succinyl-CoA being an order of magnitude more reactive than acetyl-CoA. The uncatalyzed reaction rates are adequate to account for the observed production of N-succinyl-Cys-GlcN-Ins and MSH under physiologic conditions. It was shown that the N-acyl-Cys-GlcN-Ins compounds are maintained in a substantially reduced state in the mutant but that Cys-GlcN-Ins exists in disulfide forms at 5 to 40% at different stages of growth. MSH was able to facilitate reduction of N-succinyl-Cys-GlcN-Ins disulfide through thiol-disulfide exchange, but N-formyl-Cys-GlcN-Ins was ineffective. The oxidized state of Cys-GlcN-Ins in cells appears to result from a high susceptibility to autoxidation and a low capacity of the cell to reduce its disulfide forms. The mutant exhibited no enhanced sensitivity to hydrogen peroxide, tert-butyl hydroperoxide, or cumene hydroperoxide relative to the parent strain, suggesting that the most abundant thiol, N-formyl-Cys-GlcN-Ins, functions as a substitute for MSH.
Collapse
|
49
|
Kuk JH, Jung WJ, Hyun Jo G, Ahn JS, Kim KY, Park RD. Selective preparation of N-acetyl-D-glucosamine and N,N'-diacetylchitobiose from chitin using a crude enzyme preparation from Aeromonas sp. Biotechnol Lett 2005; 27:7-11. [PMID: 15685412 DOI: 10.1007/s10529-004-6300-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 11/02/2004] [Indexed: 11/29/2022]
Abstract
A bacterium, Aeromonas sp. GJ-18, having strong chitinolytic activity was isolated from coastal soil and used for crude enzyme preparations. This enzyme preparation contained N-acetyl-D-glucosaminidase and N,N'-diacetylchitobiohydrolase. N-Acetyl-D-glucosaminidase was inactive above 50 degrees C, but N,N'-diacetylchitobiohydrolase was stable at this temperature. Utilizing the temperature sensitivities of the chitin degradation enzymes in crude enzyme preparation, N-acetyl-D-glucosamine (GlcNAc) and N,N'-diacetylchitobiose [(GlcNAc)(2)] were selectively produced from chitin. At 45 degrees C, GlcNAc was produced as a major hydrolytic product (94% composition) with a yield of 74% in 5 d, meanwhile at 55 degrees C (GlcNAc)(2) was the major product (86%) with a yield of 35% within 5 d.
Collapse
|
50
|
Ohta Y, Hatada Y, Ito S, Horikoshi K. High-level expression of a neoagarobiose-producing beta-agarase gene from Agarivorans sp. JAMB-A11 in Bacillus subtilis and enzymic properties of the recombinant enzyme. Biotechnol Appl Biochem 2005; 41:183-91. [PMID: 15307821 DOI: 10.1042/ba20040083] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The structural gene for a neoagarobiose-producing beta-agarase of an Agarivorans isolate was expressed in Bacillus subtilis. High-level production of the recombinant enzyme was achieved corresponding to a level of 1.9 x 10(4) units/l of the culture broth. The efficiency of the production is thus 30-fold greater than that of the original strain. The recombinant enzyme (RagaA11) had a molecular mass of 105 kDa and a specific activity of 371 units/mg. The optimal pH and temperature of the enzyme were 7.5-8.0 and 40 degrees C respectively. The enzyme is an endo-type beta-agarase hydrolysing not only agarose, but also neoagarotetraose, to yield neoagarobiose as the final main product, representing approx. 90 mol% of total products. RagaA11 would be useful for industrial production of neoagarobiose.
Collapse
|