26
|
Cébron A, Berthe T, Garnier J. Nitrification and nitrifying bacteria in the lower Seine River and estuary (France). Appl Environ Microbiol 2004; 69:7091-100. [PMID: 14660353 PMCID: PMC309961 DOI: 10.1128/aem.69.12.7091-7100.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Achères wastewater treatment plant, located just downstream of Paris, discharges its effluents into the lower Seine River. The effluents contain large numbers of heterotrophic bacteria, organic matter, and ammonium and are a source of nitrifying bacteria. As a result, degradation of organic matter by heterotrophic bacteria and subsequent oxygen depletion occur immediately downstream of the effluent outlet, whereas nitrifying bacteria apparently need to build up a significant biomass before ammonium oxidation significantly depletes the oxygen. We quantified the potential total nitrifying activity and the potential activities of the ammonia- and nitrite-oxidizing communities along the Seine River. In the summer, the maximum nitrifying activity occurs in the upper freshwater estuary, approximately 200 km downstream of Achères. The quantities of nitrifying bacteria, based on amoA gene copy numbers, and of Nitrobacter organisms, based on 16S rRNA gene copy numbers, were correlated with the potential nitrifying activities. The species composition of ammonia-oxidizing bacteria was investigated at two sites: the Triel station just downstream from Achères (km 84) and the Seine freshwater estuary at the Duclair station (km 278). By means of PCR primers targeting the amoA gene, a gene library was created. Phylogenetic analysis revealed that the majority of the analyzed clones at both sites were affiliated with the genus NITROSOMONAS: The Nitrosomonas oligotropha- and Nitrosomonas urea-related clones represented nearly 81% of the community of ammonia-oxidizing bacteria at Triel and 60% at Duclair. Two other ammonia-oxidizing clusters of the beta subclass of the Proteobacteria, i.e., Nitrosomonas europaea- and Nitrosospira-like bacteria, were found in smaller numbers. The major change in the ammonia-oxidizing community between the two stations along the Seine River-upper estuary continuum was the replacement of the N. oligotropha- and N. urea-related bacteria by the Nitrosospira-affiliated bacteria. Although the diversities of the ammonia oxidizers appear to be similar for the two sites, only half of the restriction patterns are common to both sites, which could be explained by the differences in ammonium concentrations, which are much lower in the upper estuary than in the river at the effluent outlet. These results imply a significant immigration and/or selection of the ammonia-oxidizing bacterial population along the continuum of the Seine River from Paris to the estuary.
Collapse
|
27
|
Limpiyakorn T, Shinohara Y, Kurisu F, Yagi O. Distribution of ammonia-oxidizing bacteria in sewage activated sludge: analysis based on 16S rDNA sequence. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2004; 50:9-14. [PMID: 15566181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This study carried out analysis of ammonia-oxidizing bacteria (AOB) communities in 12 sewage activated sludge systems standing in eight sewage treatment plants located in Tokyo. The systems were different in the treatment process configuration: anaerobic/anoxic/aerobic (A20), anaerobic/aerobic (AO), and conventional activated sludge (AS) processes. AOB communities were analyzed by sequences of 16S rDNA amplicons, which were separated by denaturing gradient gel eletrophoresis (DGGE) after specific polymerase chain reaction (PCR) amplification. The results demonstrated that low ammonium concentrations in the influents of the 12 sewage activated sludge systems resulted in the dominance of Nitrosomonas oligotropha-like sequences. Further, Nitrosomonas europaea- and Nitrosomonas cryotolerans-like sequences were recovered from only one A20 system of which the influent contained higher ammonium and chloride concentrations than those of other systems. Nitrosomonas communis-like sequences were found in every A20 and AO system, but mostly not found in every AS system. In summary, influent characteristics and treatment process configuration affected the AOB communities in the 12 sewage activated sludge systems.
Collapse
|
28
|
Sliekers AO, Haaijer S, Schmid M, Harhangi H, Verwegen K, Kuenen JG, Jetten MSM. Nitrification and Anammox with Urea as the Energy Source. Syst Appl Microbiol 2004; 27:271-8. [PMID: 15214631 DOI: 10.1078/0723-2020-00259] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Urea is present in many ecosystems and can be used as an energy source by chemolithotrophic aerobic ammonia oxidizing bacteria (AOB). Thus the utilization of urea in comparison to ammonia, by AOB as well as anaerobic ammonia oxidizing (Anammox) bacteria was investigated, using enrichments cultures, inoculated with activated sludge, and molecular ecological methods. In batch enrichment cultures grown with ammonia a population established in 2 weeks, which was dominated by halophilic and halotolerant AOB as determined by fluorescence in situ hybridization (FISH) experiments, with the 16S rRNA targeting oligonucleotide probe NEU. In other batch enrichment cultures using urea, the AOB population was assessed by PCR amplification, cloning and phylogenetic analysis of amoA and ribosomal 16S rRNA genes. While only one of the 48 16S rRNA gene clones could be identified as AOB (Nitrosomonas oligotropha), the amoA approach revealed two more AOB, Nitrosomonas europaea and Nitrosomonas nitrosa to be present in the enrichment. FISH analysis of the enrichment with probe NEU and newly designed probes for a specific detection of N. oligotropha and N. nitrosa related organisms, respectively, showed that N. oligotropha-like AOB formed about 50% of the total bacterial population. Also N. nitrosa (about 15% of the total population) and N. europaea (about 5% of the total population) were relatively abundant. Additionally, continuous enrichments were performed under oxygen limitation. When ammonia was the energy source, the community in this reactor consisted of Anammox bacteria and AOB hybridizing with probe NEU. As the substrate was changed to urea, AOB related to N. oligotropha became the dominant AOB in this oxygen limited consortium. This resulted in a direct conversion of urea to dinitrogen gas, without the addition of organic carbon.
Collapse
MESH Headings
- Aerobiosis
- Ammonia/metabolism
- Anaerobiosis
- Bacteria, Anaerobic/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/isolation & purification
- Ecosystem
- Genes, Bacterial/genetics
- Genes, rRNA/genetics
- In Situ Hybridization, Fluorescence
- Molecular Sequence Data
- Nitrogen/metabolism
- Nitrosomonas/classification
- Nitrosomonas/genetics
- Nitrosomonas/growth & development
- Nitrosomonas/isolation & purification
- Nitrosomonas/metabolism
- Oxidation-Reduction
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology
- Sewage/microbiology
- Urea/metabolism
Collapse
|
29
|
Egli K, Langer C, Siegrist HR, Zehnder AJB, Wagner M, van der Meer JR. Community analysis of ammonia and nitrite oxidizers during start-up of nitritation reactors. Appl Environ Microbiol 2003; 69:3213-22. [PMID: 12788718 PMCID: PMC161468 DOI: 10.1128/aem.69.6.3213-3222.2003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Partial nitrification of ammonium to nitrite under oxic conditions (nitritation) is a critical process for the effective use of alternative nitrogen removal technologies from wastewater. Here we investigated the conditions which promote establishment of a suitable microbial community for performing nitritation when starting from regular sewage sludge. Reactors were operated in duplicate under different conditions (pH, temperature, and dilution rate) and were fed with 50 mM ammonium either as synthetic medium or as sludge digester supernatant. In all cases, stable nitritation could be achieved within 10 to 20 days after inoculation. Quantitative in situ hybridization analysis with group-specific fluorescent rRNA-targeted oligonucleotides (FISH) in the different reactors showed that nitrite-oxidizing bacteria of the genus Nitrospira were only active directly after inoculation with sewage sludge (up to 4 days and detectable up to 10 days). As demonstrated by quantitative FISH and restriction fragment length polymorphism (RFLP) analyses of the amoA gene (encoding the active-site subunit of the ammonium monooxygenase), the community of ammonia-oxidizing bacteria changed within the first 15 to 20 days from a more diverse set of populations consisting of members of the Nitrosomonas communis and Nitrosomonas oligotropha sublineages and the Nitrosomonas europaea-Nitrosomonas eutropha subgroup in the inoculated sludge to a smaller subset in the reactors. Reactors operated at 30 degrees C and pH 7.5 contained reproducibly homogeneous communities dominated by one amoA RFLP type from the N. europaea-N. eutropha group. Duplicate reactors at pH 7.0 developed into diverse communities and showed transient population changes even within the ammonia oxidizer community. Reactors at pH 7.5 and 25 degrees C formed communities that were indistinguishable by the applied FISH probes but differing in amoA RFLP types. Communities in reactors fed with sludge digester supernatant exhibited a higher diversity and were constantly reinoculated with ammonium oxidizers from the supernatant. Therefore, such systems could be maintained at a higher dilution rate (0.75 day(-1) compared to 0.2 day(-1) for the synthetic wastewater reactors). Despite similar reactor performance with respect to chemical parameters, the underlying community structures were different, which may have an influence on stability during perturbations.
Collapse
|
30
|
Xu M, Zeng G, Ren S, Cen Y, Sun G, Guo J. [Study on the ammonia-oxidizing bacteria from activated sludge samples by the molecular analysis]. WEI SHENG WU XUE BAO = ACTA MICROBIOLOGICA SINICA 2003; 43:372-8. [PMID: 16279205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The molecular analysis methods of PCR amplification, random cloning and sequencing were used to investigate the ammonia-oxidizing bacterial community composition and the activity of ammonia-monooxygenase (AMO) from the activated sludge samples of an industrial wastewater treatment plant receiving sewage with high ammonia concentration. It is the first time to use PCR-DGGE combined technique to analysis the difference of dominant bacterial community compositions of the activated sludge samples in China. The result showed that the ammonia-oxidizing bacteria (AOB) detected from the activated sludge samples all belong to Nitrosomonas sp. The activity of AMO, the stability of bacteria community composition and the treatment efficiency of the wastewater treatment system were improved evidently, after the activated sludge system was operated for a certain extant. It is suggested that the molecular techniques will contribute to our understanding of the diversity and function of AOB and will benefit to improve the industrial wastewater treatment system.
Collapse
|
31
|
Pynaert K, Smets BF, Wyffels S, Beheydt D, Siciliano SD, Verstraete W. Characterization of an autotrophic nitrogen-removing biofilm from a highly loaded lab-scale rotating biological contactor. Appl Environ Microbiol 2003; 69:3626-35. [PMID: 12788771 PMCID: PMC161519 DOI: 10.1128/aem.69.6.3626-3635.2003] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, a lab-scale rotating biological contactor (RBC) treating a synthetic NH(4)(+) wastewater devoid of organic carbon and showing high N losses was examined for several important physiological and microbial characteristics. The RBC biofilm removed 89% +/- 5% of the influent N at the highest surface load of approximately 8.3 g of N m(-2) day(-1), with N(2) as the main end product. In batch tests, the RBC biomass showed good aerobic and anoxic ammonium oxidation (147.8 +/- 7.6 and 76.5 +/- 6.4 mg of NH(4)(+)-N g of volatile suspended solids [VSS](-1) day(-1), respectively) and almost no nitrite oxidation (< 1 mg of N g of VSS(-1) day(-1)). The diversity of aerobic ammonia-oxidizing bacteria (AAOB) and planctomycetes in the biofilm was characterized by cloning and sequencing of PCR-amplified partial 16S rRNA genes. Phylogenetic analysis of the clones revealed that the AAOB community was fairly homogeneous and was dominated by Nitrosomonas-like species. Close relatives of the known anaerobic ammonia-oxidizing bacterium (AnAOB) Kuenenia stuttgartiensis dominated the planctomycete community and were most probably responsible for anoxic ammonium oxidation in the RBC. Use of a less specific planctomycete primer set, not amplifying the AnAOB, showed a high diversity among other planctomycetes, with representatives of all known groups present in the biofilm. The spatial organization of the biofilm was characterized using fluorescence in situ hybridization (FISH) with confocal scanning laser microscopy (CSLM). The latter showed that AAOB occurred side by side with putative AnAOB (cells hybridizing with probe PLA46 and AMX820/KST1275) throughout the biofilm, while other planctomycetes hybridizing with probe PLA886 (not detecting the known AnAOB) were present as very conspicuous spherical structures. This study reveals that long-term operation of a lab-scale RBC on a synthetic NH(4)(+) wastewater devoid of organic carbon yields a stable biofilm in which two bacterial groups, thought to be jointly responsible for the high autotrophic N removal, occur side by side throughout the biofilm.
Collapse
|
32
|
Okabe S, Kindaichi T, Ito T, Satoh H. Analysis of size distribution and areal cell density of ammonia-oxidizing bacterial microcolonies in relation to substrate microprofiles in biofilms. Biotechnol Bioeng 2003; 85:86-95. [PMID: 14705015 DOI: 10.1002/bit.10864] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A fine-scale in situ spatial organization of ammonia-oxidizing bacteria (AOB) in biofilms was investigated by combining molecular techniques (i.e., fluorescence in situ hybridization (FISH) and 16S rDNA-cloning analysis) and microelectrode measurements. Important parameters of AOB microcolonies such as size distribution and areal cell density of the microcolonies were determined and correlated with substrate microprofiles in the biofilms. In situ hybridization with a nested 16S rRNA-targeted oligonucleotide probe set revealed two different populations of AOB, Nitrosomonas europaea-lineage and Nitrosospira multiformis-lineage, coexisting in an autotrophic nitrifying biofilm. Nitrosospira formed looser microcolonies, with an areal cell density of 0.51 cells microm(-2), which was half of the cell density of Nitrosomonas (1.12 cells microm(-2)). It is speculated that the formation of looser microcolonies facilitates substrate diffusion into the microcolonies, which might be a survival strategy to low O(2) and NH(4) (+) conditions in the biofilm. A long-term experiment (4-week cultivation at different substrate C/N ratios) revealed that the size distribution of AOB microcolonies was strongly affected by better substrate supply due to shorter distance from the surface and the presence of organic carbon. The microcolony size was relatively constant throughout the autotrophic nitrifying biofilm, while the size increased by approximately 80% toward the depth of the biofilm cultured at the substrate C/N = 1. A short-term ( approximately 3 h) organic carbon addition experiment showed that the addition of organic carbon created interspecies competition for O(2) between AOB and heterotrophic bacteria, which dramatically decreased the in situ NH(4) (+)-uptake activity of AOB in the surface of the biofilms. This result might explain the spatial distribution of AOB microcolony size in the biofilms cultured at the substrate C/N = 1. These experimental results suggest O(2) and organic carbon were the main factors controlling the spatial organization and activity of AOB in biofilms. These findings are significantly important to further improve mathematical models used to describe how the slow-growing AOB develop their niches in biofilms and how that configuration affects nitrification performance in the biofilm.
Collapse
|
33
|
Prosser JI, Embley TM. Cultivation-based and molecular approaches to characterisation of terrestrial and aquatic nitrifiers. Antonie Van Leeuwenhoek 2002; 81:165-79. [PMID: 12448715 DOI: 10.1023/a:1020598114104] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Increased awareness of the metabolic diversity within autotrophic nitrifying bacteria has led to a re-evaluation of their role in the cycling of nitrogen in terrestrial and aquatic ecosystems. This has been accompanied by improvements in our ability to characterise natural populations of autotrophic ammonia oxidising bacteria through the application of molecular techniques. Molecular approaches indicate considerable diversity within natural populations and the association of different groups of ammonia oxidisers with different environments and changes in populations in response to environmental factors. To some extent, results from molecular approaches are consistent with those adopting laboratory enrichment and isolation strategies. Physiological studies on the latter demonstrate links between phylogenetic groups and possession of characteristics of relevance to ecological studies. Understanding of the significance of ammonia oxidiser species and functional diversity for global cycling of nitrogen require greater links between molecular analyses, physiological studies and measurements of nitrogen cycling processes. However, there is increasing evidence for physiological properties driving the environmental distribution of particular groups of ammonia oxidisers and for associations between nitrification process rates and ammonia oxidiser community structure.
Collapse
|
34
|
Philips S, Wyffels S, Sprengers R, Verstraete W. Oxygen-limited autotrophic nitrification/denitrification by ammonia oxidisers enables upward motion towards more favourable conditions. Appl Microbiol Biotechnol 2002; 59:557-66. [PMID: 12172626 DOI: 10.1007/s00253-002-1059-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2002] [Revised: 05/22/2002] [Accepted: 05/27/2002] [Indexed: 11/25/2022]
Abstract
The hypothesis is formulated that in case of oxygen limitation in the sediment, nitrifiers switch from nitrification to oxygen-limited autotrophic nitrification-denitrification (OLAND) in order to survive and maintain activity. During OLAND, ammonium is oxidised using nitrite as e-acceptor to form dinitrogen gas. As an additional advantage they benefit from the gaseous N(2) formed as a means of transport. In this way, the nitrifiers can move out of the sediment and rise through the water column towards more favourable conditions. At the surface, the bacteria could take up oxygen, and recommence nitrification. In order to test this hypothesis, nitrifying sediment with an overlaying water column was simulated in lab-scale columns. Nitrogen transformations and material transport through the water column were followed after addition of different forms of nitrogen under oxygen-limited conditions. (15)N-labelling experiments showed a large contribution of OLAND to the observed nitrogen deficits. Nitrifier enumerations, fluorescent in situ hybridisation and 16S rRNA gene analysis revealed increased populations of ammonia oxidising nitrifiers in the upper water layers. The results presented support the proposed hypothesis of transport using OLAND. Nitrifying activity in the sediment immediately recovered almost completely from prolonged oxygen-limited incubation when oxygen concentrations were increased.
Collapse
|
35
|
Nicolaisen MH, Ramsing NB. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J Microbiol Methods 2002; 50:189-203. [PMID: 11997169 DOI: 10.1016/s0167-7012(02)00026-x] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Denaturing gradient gel electrophoresis (DGGE) of PCR amplicons of the ammonia monooxygenase gene (amoA) was developed and employed to investigate the diversity of ammonia-oxidizing bacteria (AOB) in four different habitats. The results were compared to DGGE of PCR-amplified partial 16S rDNA sequences made with primers specific for ammonia-oxidizing bacteria. Potential problems, such as primer degeneracy and multiple gene copies of the amoA gene, were investigated to evaluate and minimize their possible impact on the outcome of a DGGE analysis. amoA and 16S rDNA amplicons were cloned, and a number of clones screened by DGGE to determine the abundance of different motility types in the clone library. The abundance of clones was compared to the relative intensity of bands emerging in the band pattern produced by direct amplification of the genes from the environmental sample. Selected clones were sequenced to evaluate the specificity of the respective primers. The 16S rDNA primer pair, reported to be specific for ammonia-oxidizing bacteria (AOB), generated several sequences that were not related to the known Nitrosospira-Nitrosomonas group and, thus, not likely to be ammonia oxidizers. However, no false positives were found among the sequences retrieved with the modified amoA primers. Some phylogenetic information could be deduced from the position of amoA bands in DGGE gels. The Nitrosomonas-like sequences were found within a denaturant range from 30% to 46%, whereas the Nitrosospira-like sequences migrated to 50% to 60% denaturant. The majority of retrieved sequences from all four habitats with high ammonia loads were Nitrosomonas-like and only few Nitrosospira-like sequences were detected.
Collapse
|
36
|
Persson F, Wik T, Sörensson F, Hermansso M. Distribution and activity of ammonia oxidizing bacteria in a large full-scale trickling filter. WATER RESEARCH 2002; 36:1439-1448. [PMID: 11996334 DOI: 10.1016/s0043-1354(01)00345-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The biofilm in a full-scale nitrifying trickling filter (NTF) treating municipal wastewater has been investigated with microbiological methods using fluorescence in situ hybridization (FISH) with 16S rRNA oligonucleotide probes in combination with confocal laser scanning microscopy (CLSM) and mathematical modeling using a dynamic multi-species biofilm reactor model. Ammonia oxidizing bacteria (AOB) were found to belong to the genus Nitrosomonas at different depths in the NTF at every sampling occasion, corresponding to different long-term operational conditions for the NTF. Both the measurements and the corresponding simulated predictions showed the same general trend of a decrease with filter depth of the amount of biofilm, the proportion of AOB to all bacteria and the total amount of AOB. The latter decreased by several times from top to bottom of the NTF. Measurements and simulations of potential ammonium oxidizing activity in the biofilm also showed a decreasing activity with depth in the NTF, which generally was operating at close to complete nitrification. However, no difference was observed when the activity was normalized to the amount of biofilm, despite decreasing proportions of AOB to all bacteria with depth in the NTF. This could be explained by diffusion limitations in the biofilm from the upper parts of the NTF according to the biofilm reactor model. The relatively good agreement between the simulations and the measurements shows that the kind of biofilm reactor model used can qualitatively describe an averaged behavior and averaged composition of the biofilm in the reactor.
Collapse
|
37
|
Norton JM, Alzerreca JJ, Suwa Y, Klotz MG. Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Arch Microbiol 2002; 177:139-49. [PMID: 11807563 DOI: 10.1007/s00203-001-0369-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2001] [Revised: 09/27/2001] [Accepted: 10/16/2001] [Indexed: 10/27/2022]
Abstract
Autotrophic ammonia-oxidizing bacteria use the essential enzyme ammonia monooxygenase (AMO) to transform ammonia to hydroxylamine. The amo operon consists of at least three genes, amoC, amoA, and amoB; amoA encodes the subunit containing the putative enzyme active site. The use of the amo genes as functional markers for ammonia-oxidizing bacteria in environmental applications requires knowledge of the diversity of the amo operon on several levels: (1) the copy number of the operon in the genome, (2) the arrangement of the three genes in an individual operon, and (3) the primary sequence of the individual genes. We present a database of amo gene sequences for pure cultures of ammonia-oxidizing bacteria representing both the beta- and the gamma-subdivision of Proteobacteria in the following genera: Nitrosospira (6 strains), Nitrosomonas (5 strains) and Nitrosococcus (2 strains). The amo operon was found in multiple (2-3) nearly identical copies in the beta-subdivision representatives but in single copies in the gamma-subdivision ammonia oxidizers. The analysis of the deduced amino acid sequence revealed strong conservation for all three Amo peptides in both primary and secondary structures. For the amoA gene within the beta-subdivision, nucleotide identity values are approximately 85% within the Nitrosomonas or the Nitrosospira groups, but approximately 75% when comparing between these groups. Conserved regions in amoA and amoC were identified and used as primer sites for PCR amplification of amo genes from pure cultures, enrichments and the soil environment. The intergenic region between amoC and amoA is variable in length and may be used to profile the community of ammonia-oxidizing bacteria in environmental samples. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00203-001-0369-z.
Collapse
|
38
|
Webster G, Embley TM, Prosser JI. Grassland management regimens reduce small-scale heterogeneity and species diversity of beta-proteobacterial ammonia pxidizer populations. Appl Environ Microbiol 2002; 68:20-30. [PMID: 11772604 PMCID: PMC126539 DOI: 10.1128/aem.68.1.20-30.2002] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2001] [Accepted: 10/09/2001] [Indexed: 11/20/2022] Open
Abstract
The impact of soil management practices on ammonia oxidizer diversity and spatial heterogeneity was determined in improved (addition of N fertilizer), unimproved (no additions), and semi-improved (intermediate management) grassland pastures at the Sourhope Research Station in Scotland. Ammonia oxidizer diversity within each grassland soil was assessed by PCR amplification of microbial community DNA with both ammonia oxidizer-specific, 16S rRNA gene (rDNA) and functional, amoA, gene primers. PCR products were analysed by denaturing gradient gel electrophoresis, phylogenetic analysis of partial 16S rDNA and amoA sequences, and hybridization with ammonia oxidizer-specific oligonucleotide probes. Ammonia oxidizer populations in unimproved soils were more diverse than those in improved soils and were dominated by organisms representing Nitrosospira clusters 1 and 3 and Nitrosomonas cluster 7 (closely related phylogenetically to Nitrosomonas europaea). Improved soils were only dominated by Nitrosospira cluster 3 and Nitrosomonas cluster 7. These differences were also reflected in functional gene (amoA) diversity, with amoA gene sequences of both Nitrosomonas and Nitrosospira species detected. Replicate 0.5-g samples of unimproved soil demonstrated significant spatial heterogeneity in 16S rDNA-defined ammonia oxidizer clusters, which was reflected in heterogeneity in ammonium concentration and pH. Heterogeneity in soil characteristics and ammonia oxidizer diversity were lower in improved soils. The results therefore demonstrate significant effects of soil management on diversity and heterogeneity of ammonia oxidizer populations that are related to similar changes in relevant soil characteristics.
Collapse
|
39
|
Dionisi HM, Layton AC, Harms G, Gregory IR, Robinson KG, Sayler GS. Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Appl Environ Microbiol 2002; 68:245-53. [PMID: 11772633 PMCID: PMC126567 DOI: 10.1128/aem.68.1.245-253.2002] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Utilizing the principle of competitive PCR, we developed two assays to enumerate Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and nitrite-oxidizing bacteria belonging to the genus NITROSPIRA: The specificities of two primer sets, which were designed for two target regions, the amoA gene and Nitrospira 16S ribosomal DNA (rDNA), were verified by DNA sequencing. Both assays were optimized and applied to full-scale, activated sludge wastewater treatment plant (WWTP) samples. If it was assumed that there was an average of 3.6 copies of 16S rDNA per cell in the total population and two copies of the amoA gene per ammonia-oxidizing bacterial cell, the ammonia oxidizers examined represented 0.0033% +/- 0.0022% of the total bacterial population in a municipal WWTP. N. oligotropha-like ammonia-oxidizing bacteria were not detected in an industrial WWTP. If it was assumed that there was one copy of the 16S rDNA gene per nitrite-oxidizing bacterial cell, Nitrospira spp. represented 0.39% +/- 0.28% of the biosludge population in the municipal WWTP and 0.37% +/- 0.23% of the population in the industrial WWTP. The number of Nitrospira sp. cells in the municipal WWTP was more than 62 times greater than the number of N. oligotropha-like cells, based on a competitive PCR analysis. The results of this study extended our knowledge of the comparative compositions of nitrifying bacterial populations in wastewater treatment systems. Importantly, they also demonstrated that we were able to quantify these populations, which ultimately will be required for accurate prediction of process performance and stability for cost-effective design and operation of WWTPs.
Collapse
|
40
|
Burrell PC, Phalen CM, Hovanec TA. Identification of bacteria responsible for ammonia oxidation in freshwater aquaria. Appl Environ Microbiol 2001; 67:5791-800. [PMID: 11722936 PMCID: PMC93373 DOI: 10.1128/aem.67.12.5791-5800.2001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Culture enrichments and culture-independent molecular methods were employed to identify and confirm the presence of novel ammonia-oxidizing bacteria (AOB) in nitrifying freshwater aquaria. Reactors were seeded with biomass from freshwater nitrifying systems and enriched for AOB under various conditions of ammonia concentration. Surveys of cloned rRNA genes from the enrichments revealed four major strains of AOB which were phylogenetically related to the Nitrosomonas marina cluster, the Nitrosospira cluster, or the Nitrosomonas europaea-Nitrosococcus mobilis cluster of the beta subdivision of the class Proteobacteria. Ammonia concentration in the reactors determined which AOB strain dominated in an enrichment. Oligonucleotide probes and PCR primer sets specific for the four AOB strains were developed and used to confirm the presence of the AOB strains in the enrichments. Enrichments of the AOB strains were added to newly established aquaria to determine their ability to accelerate the establishment of ammonia oxidation. Enrichments containing the Nitrosomonas marina-like AOB strain were most efficient at accelerating ammonia oxidation in newly established aquaria. Furthermore, if the Nitrosomonas marina-like AOB strain was present in the original enrichment, even one with other AOB, only the Nitrosomonas marina-like AOB strain was present in aquaria after nitrification was established. Nitrosomonas marina-like AOB were 2% or less of the cells detected by fluorescence in situ hybridization analysis in aquaria in which nitrification was well established.
Collapse
|
41
|
Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Int J Syst Evol Microbiol 2001; 51:1945. [PMID: 11760931 DOI: 10.1099/00207713-51-6-1945] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Aakra A, Utåker JB, Pommerening-Röser A, Koops HP, Nes IF. Detailed phylogeny of ammonia-oxidizing bacteria determined by rDNA sequences and DNA homology values. Int J Syst Evol Microbiol 2001; 51:2021-2030. [PMID: 11760943 DOI: 10.1099/00207713-51-6-2021] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A comparison of the phylogeny of 38 isolates of chemolithoautotrophic ammonia-oxidizing bacteria (AOB) based on 16S rRNA gene sequences, 16S-235 rDNA intergenic spacer region (ISR) sequences and species affiliations based on DNA homology values was performed. The organisms studied all belong to the beta-subclass of the Proteobacteria and included representatives of Nitrosomonas, Nitrosococcus and Nitrosospira. The similarity values of the 16S rDNA sequences were high, particularly within the Nitrosospira genus, and based on these sequences it is difficult to determine the phylogenetic position of some AOB. As an alternative and supplement to 16S rRNA gene sequencing, the ISR was sequenced and analysed phylogenetically. Due to considerably lower similarity values, the ISR-based phylogeny gives a better resolution than the phylogeny based on the functional 16S rRNA gene. Since the ISR-based phylogeny of AOB is highly consistent with the 16S rDNA based phylogeny, ISR sequencing appears as a suitable tool for resolving the detailed phylogeny of AOB. The phylogenetic position of two isolates of the former genus 'Nitrosolobus' (now included in the Nitrosospira genus) is not clear. These organisms are close relatives of the former Nitrosospira spp. and 'Nitrosovibrio' spp. (now Nitrosospira), but based on their marginal positions in the phylogenetic trees, DNA-DNA hybridization data and phenotypic characteristics, it is suggested that 'Nitrosolobus' should be a separate genus. DNA homology determination of 11 Nitrosospira isolates revealed two new species of Nitrosospira. The phylogeny of AOB reflected in the trees based on the rDNA sequences is consistent with the species affiliations of AOB by DNA homology values. This observation will probably be important for the interpretation of results from studies of natural diversity of AOB.
Collapse
|
43
|
Gieseke A, Purkhold U, Wagner M, Amann R, Schramm A. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl Environ Microbiol 2001; 67:1351-62. [PMID: 11229931 PMCID: PMC92734 DOI: 10.1128/aem.67.3.1351-1362.2001] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microbial community structure and activity dynamics of a phosphate-removing biofilm from a sequencing batch biofilm reactor were investigated with special focus on the nitrifying community. O(2), NO(2)(-), and NO(3)(-) profiles in the biofilm were measured with microsensors at various times during the nonaerated-aerated reactor cycle. In the aeration period, nitrification was oxygen limited and restricted to the first 200 microm at the biofilm surface. Additionally, a delayed onset of nitrification after the start of the aeration was observed. Nitrate accumulating in the biofilm in this period was denitrified during the nonaeration period of the next reactor cycle. Fluorescence in situ hybridization (FISH) revealed three distinct ammonia-oxidizing populations, related to the Nitrosomonas europaea, Nitrosomonas oligotropha, and Nitrosomonas communis lineages. This was confirmed by analysis of the genes coding for 16S rRNA and for ammonia monooxygenase (amoA). Based upon these results, a new 16S rRNA-targeted oligonucleotide probe specific for the Nitrosomonas oligotropha lineage was designed. FISH analysis revealed that the first 100 microm at the biofilm surface was dominated by members of the N. europaea and the N. oligotropha lineages, with a minor fraction related to N. communis. In deeper biofilm layers, exclusively members of the N. oligotropha lineage were found. This separation in space and a potential separation of activities in time are suggested as mechanisms that allow coexistence of the different ammonia-oxidizing populations. Nitrite-oxidizing bacteria belonged exclusively to the genus Nitrospira and could be assigned to a 16S rRNA sequence cluster also found in other sequencing batch systems.
Collapse
|
44
|
Ivanova IA, Stephen JR, Chang YJ, Brüggemann J, Long PE, McKinley JP, Kowalchuk GA, White DC, Macnaughton SJ. A survey of 16S rRNA and amoA genes related to autotrophic ammonia-oxidizing bacteria of the beta-subdivision of the class proteobacteria in contaminated groundwater. Can J Microbiol 2000; 46:1012-20. [PMID: 11109489 DOI: 10.1139/w00-099] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we investigated the size and structure of autotrophic ammonia oxidizer (AAO) communities in the groundwater of a contamination plume originating from a mill-tailings disposal site. The site has high levels of dissolved N from anthropogenic sources, and exhibited wide variations in the concentrations of NO3- and NH3 + NH4+. Community structures were examined by PCR-DGGE targeting 16S rDNA with band excision and sequence analysis, and by analysis of amoA fragment clone libraries. AAO population sizes were estimated by competitive PCR targeting the gene amoA, and correlated significantly with nitrate concentration. Most samples revealed novel diversity in AAO 16S rDNA and amoA gene sequences. Both 16S rDNA and amoA analyses suggested that all samples were dominated by Nitrosomonas sp., Nitrosospira sp. being detected in only 3 of 15 samples. This study indicated numerical dominance of Nitrosomonas over Nitrosospira in groundwater, and suggests that groundwater ammonia oxidizers are more similar to those dominating freshwater sediments than bulk soil.
Collapse
|
45
|
Ward BB, Martino DP, Diaz MC, Joye SB. Analysis of ammonia-oxidizing bacteria from hypersaline Mono Lake, California, on the basis of 16S rRNA sequences. Appl Environ Microbiol 2000; 66:2873-81. [PMID: 10877781 PMCID: PMC92086 DOI: 10.1128/aem.66.7.2873-2881.2000] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/1999] [Accepted: 05/02/2000] [Indexed: 11/20/2022] Open
Abstract
Ammonia-oxidizing bacteria were detected by PCR amplification of DNA extracted from filtered water samples throughout the water column of Mono Lake, California. Ammonia-oxidizing members of the beta subdivision of the division Proteobacteria (beta-subdivision Proteobacteria) were detected using previously characterized PCR primers; target sequences were detected by direct amplification in both surface water and below the chemocline. Denaturing gradient gel electrophoresis analysis indicated the presence of at least four different beta-subdivision ammonia oxidizers in some samples. Subsequent sequencing of amplified 16S rDNA fragments verified the presence of sequences very similar to those of cultured Nitrosomonas strains. Two separate analyses, carried out under different conditions (different reagents, locations, PCR machines, sequencers, etc.), 2 years apart, detected similar ranges of sequence diversity in these samples. It seems likely that the physiological diversity of nitrifiers exceeds the diversity of their ribosomal sequences and that these sequences represent members of the Nitrosomonas europaea group that are acclimated to alkaline, high-salinity environments. Primers specific for Nitrosococcus oceanus, a marine ammonia-oxidizing bacterium in the gamma subdivision of the Proteobacteria, did not amplify target from any samples.
Collapse
|
46
|
Aakra A, Utåker JB, Nes IF, Bakken LR. An evaluated improvement of the extinction dilution method for isolation of ammonia-oxidizing bacteria. J Microbiol Methods 1999; 39:23-31. [PMID: 10579504 DOI: 10.1016/s0167-7012(99)00094-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An improved method for isolation of ammonia-oxidizing bacteria (AOB) by the extinction dilution technique is described. It is important to prevent the growth of heterotrophic organisms, which may easily outnumber the AOB in mixed cultures. This was achieved by careful elimination of C sources in the medium and by sealing the cultures from contact with the atmosphere, thus excluding air-borne, volatile compounds which support growth of heterotrophs. The sealing of the cultures reduced the number of heterotrophs by a factor of 10, thus grossly increasing the chances of obtaining pure AOB cultures. Another important factor is to use actively growing 'late log' cultures during the final isolation step. This was achieved by adjusting the buffer capacity to ensure a clearly visible pH indicator shift at a stage when one-third to one-half of the ammonia had been oxidized. By this improved isolation procedure, AOB were isolated from three different locations: an arable soil, a lead-contaminated soil and an animal house. For an unknown reason, several attempts to isolate pure cultures from a forest soil were unsuccessful, despite the presence of AOB in the primary extinction dilution cultures. The isolates from soils were all Nitrosospira spp. For isolation of AOB from the animal house, two growth media were used, one containing ammonium sulfate, and one containing urea. From the cultures with ammonium sulfate, Nitrosomonas spp. were isolated, whereas Nitrosospira spp. were isolated from the cultures with urea as the main ammonia source. The identifications of all isolates are based on morphology and 16S rDNA sequences.
Collapse
|
47
|
Whitby CB, Saunders JR, Rodriguez J, Pickup RW, McCarthy A. Phylogenetic differentiation of two closely related Nitrosomonas spp. That inhabit different sediment environments in an oligotrophic freshwater lake. Appl Environ Microbiol 1999; 65:4855-62. [PMID: 10543796 PMCID: PMC91654 DOI: 10.1128/aem.65.11.4855-4862.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The population of ammonia-oxidizing bacteria in a temperate oligotrophic freshwater lake was analyzed by recovering 16S ribosomal DNA (rDNA) from lakewater and sediment samples taken throughout a seasonal cycle. Nitrosospira and Nitrosomonas 16S rRNA genes were amplified in a nested PCR, and the identity of the products was confirmed by oligonucleotide hybridization. Nitrosospira DNA was readily identified in all samples, and nitrosomonad DNA of the Nitrosomonas europaea-Nitrosomonas eutropha lineage was also directly detected, but during the summer months only. Phylogenetic delineation with partial (345 bp) 16S rRNA gene sequences of clones obtained from sediments confirmed the fidelity of the amplified nitrosomonad DNA and identified two sequence clusters closely related to either N. europaea or N. eutropha that were equated with the littoral and profundal sediment sites, respectively. Determination of 701-bp sequences for 16S rDNA clones representing each cluster confirmed this delineation. A PCR-restriction fragment length polymorphism (RFLP) system was developed that enabled identification of clones containing N. europaea and N. eutropha 16S rDNA sequences, including subclasses therein. It proved possible to analyze 16S rDNA amplified directly from sediment samples to determine the relative abundance of each species compared with that of the other. N. europaea and N. eutropha are very closely related, and direct evidence for their presence in lake systems is limited. The correlation of each species with a distinct spatial location in sediment is an unusual example of niche adaptation by two genotypically similar bacteria. Their occurrence and relative distribution can now be routinely monitored in relation to environmental variation by the application of PCR-RFLP analysis.
Collapse
|
48
|
Phillips CJ, Smith Z, Embley TM, Prosser JI. Phylogenetic differences between particle-associated and planktonic ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the Northwestern Mediterranean Sea. Appl Environ Microbiol 1999; 65:779-86. [PMID: 9925616 PMCID: PMC91095 DOI: 10.1128/aem.65.2.779-786.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/1998] [Accepted: 11/16/1998] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to determine if there were differences between the types of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria associated with particulate material and planktonic samples obtained from the northwestern Mediterranean Sea. A nested PCR procedure performed with ammonia oxidizer-selective primers was used to amplify 16S rRNA genes from extracted DNA. The results of partial and full-length sequence analyses of 16S rRNA genes suggested that different groups of ammonia-oxidizing bacteria were associated with the two sample types. The particle-associated sequences were predominantly related to Nitrosomonas eutropha, while the sequences obtained from the planktonic samples were related to a novel marine Nitrosospira group (cluster 1) for which there is no cultured representative yet. A number of oligonucleotide probes specific for different groups of ammonia oxidizers were used to estimate the relative abundance of sequence types in samples of clone libraries. The planktonic libraries contained lower proportions of ammonia oxidizer clones (0 to 26%) than the particulate material libraries (9 to 83%). Samples of the planktonic and particle-associated libraries showed that there were depth-related differences in the ammonia oxidizer populations, with the highest number of positive clones in the particle-associated sample occurring at a depth of 700 m. The greatest difference between planktonic and particle-associated populations occurred at a depth of 400 m, where only 4% of the clones in the planktonic library were identified as Nitrosomonas clones, while 96% of these clones were identified as clones that were related to the marine Nitrosospira species. Conversely, all ammonia oxidizer-positive clones obtained from the particle-associated library were members of the Nitrosomonas group. This is the first indication that Nitrosomonas species and Nitrosospira species may occupy at least two distinct environmental niches in marine environments. The occurrence of these groups in different niches may result from differences in physiological properties and, coupled with the different environmental conditions associated with these niches, may lead to significant differences in the nature and rates of nitrogen cycling in these environments.
Collapse
|
49
|
Mahony TJ, Miller DJ. Linkage of genes encoding enolase (eno) and CTP synthase (pyrG) in the beta-subdivision proteobacterium Nitrosomonas europaea. FEMS Microbiol Lett 1998; 165:153-7. [PMID: 9711852 DOI: 10.1111/j.1574-6968.1998.tb13140.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The gene encoding enolase (eno) from the ammonia oxidising bacterium Nitrosomonas europaea has been cloned and sequenced. The deduced amino acid sequence for enolase from N. europaea was 65% identical (76% similar) to its Bacillus subtilis orthologue. An incomplete open reading frame located 432 bp 5' of eno was identified as pyrG, which encodes CTP synthase. These two genes are therefore organised in N. europaea, a beta-subdivision proteobacterium, in the same way as in the gamma-subdivision proteobacterium Escherichia coli.
Collapse
|
50
|
Speksnijder AG, Kowalchuk GA, Roest K, Laanbroek HJ. Recovery of a Nitrosomonas-like 16S rDNA sequence group from freshwater habitats. Syst Appl Microbiol 1998; 21:321-30. [PMID: 9704117 DOI: 10.1016/s0723-2020(98)80040-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to study the diversity of ammonia-oxidising bacteria in freshwater habitats, including sediments, a molecular approach focused on the sequencing of 16S rDNA was adopted. 16S rDNA sequences showing affinity with the beta-subgroup of ammonia-oxidising bacteria were recovered by specific PCR of directly isolated DNA from freshwater samples, and samples from brackish water and Glyceria maxima rhizosphere were included in the analysis for comparison. The ammonia oxidiser-like sequences recovered from several locations, which exhibit differences in the composition of their total microbial communities as indicated by denaturing gradient gel electrophoresis, formed a strong monophyletic cluster including Nitrosomonas ureae. This is the first report presenting sequences from an apparently dominant group of Nitrosomonas-like organisms among the beta-subdivision of ammonia-oxidising bacteria in freshwater environments. This group of sequences extends the known diversity within the beta-subgroup of ammonia-oxidisers. The new sequences related to Nitrosomonas ureae do not match with some published primers and probes designed for the detection of Nitrosomonas species, which may explain why these sequences have not previously been detected in freshwater habitats. The sequence diversity detected within this group of sequences was minimal across the environments examined, and no patterns of distribution were indicated with respect to environmental factors such as sediment depth or location.
Collapse
|