51
|
Wilhelm I, Levit-Zerdoun E, Jakob J, Villringer S, Frensch M, Übelhart R, Landi A, Müller P, Imberty A, Thuenauer R, Claudinon J, Jumaa H, Reth M, Eibel H, Hobeika E, Römer W. Carbohydrate-dependent B cell activation by fucose-binding bacterial lectins. Sci Signal 2019; 12:12/571/eaao7194. [PMID: 30837305 DOI: 10.1126/scisignal.aao7194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacterial lectins are typically multivalent and bind noncovalently to specific carbohydrates on host tissues to facilitate bacterial adhesion. Here, we analyzed the effects of two fucose-binding lectins, BambL from Burkholderia ambifaria and LecB from Pseudomonas aeruginosa, on specific signaling pathways in B cells. We found that these bacterial lectins induced B cell activation, which, in vitro, was dependent on the cell surface expression of the B cell antigen receptor (BCR) and its co-receptor CD19, as well as on spleen tyrosine kinase (Syk) activity. The resulting release of intracellular Ca2+ was followed by an increase in the cell surface abundance of the activation marker CD86, augmented cytokine secretion, and subsequent cell death, replicating all of the events that are observed in vitro upon canonical and antigen-mediated B cell activation. Moreover, injection of BambL in mice resulted in a substantial, BCR-independent loss of B cells in the bone marrow with simultaneous, transient enlargement of the spleen (splenomegaly), as well as an increase in the numbers of splenic B cells and myeloid cells. Together, these data suggest that bacterial lectins can initiate polyclonal activation of B cells through their sole capacity to bind to fucose.
Collapse
|
52
|
Denavit V, Lainé D, Bouzriba C, Shanina E, Gillon É, Fortin S, Rademacher C, Imberty A, Giguère D. Stereoselective Synthesis of Fluorinated Galactopyranosides as Potential Molecular Probes for Galactophilic Proteins: Assessment of Monofluorogalactoside-LecA Interactions. Chemistry 2019; 25:4478-4490. [PMID: 30690814 DOI: 10.1002/chem.201806197] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 11/07/2022]
Abstract
The replacement of hydroxyl groups by fluorine atoms on hexopyranoside scaffolds may allow access to invaluable tools for studying various biochemical processes. As part of ongoing activities toward the preparation of fluorinated carbohydrates, a systematic investigation involving the synthesis and biological evaluation of a series of mono- and polyfluorinated galactopyranosides is described. Various monofluorogalactopyranosides, a trifluorinated, and a tetrafluorinated galactopyranoside have been prepared using a Chiron approach. Given the scarcity of these compounds in the literature, in addition to their synthesis, their biological profiles were evaluated. Firstly, the fluorinated compounds were investigated as antiproliferative agents using normal human and mouse cells in comparison with cancerous cells. Most of the fluorinated compounds showed no antiproliferative activity. Secondly, these carbohydrate probes were used as potential inhibitors of galactophilic lectins. The first transverse relaxation-optimized spectroscopy (TROSY) NMR experiments were performed on these interactions, examining chemical shift perturbations of the backbone resonances of LecA, a virulence factor from Pseudomonas aeruginosa. Moreover, taking advantage of the fluorine atom, the 19 F NMR resonances of the monofluorogalactopyranosides were directly monitored in the presence and absence of LecA to assess ligand binding. Lastly, these results were corroborated with the binding potencies of the monofluorinated galactopyranoside derivatives by isothermal titration calorimetry experiments. Analogues with fluorine atoms at C-3 and C-4 showed weaker affinities with LecA as compared to those with the fluorine atom at C-2 or C-6. This research has focused on the chemical synthesis of "drug-like" low-molecular-weight inhibitors that circumvent drawbacks typically associated with natural oligosaccharides.
Collapse
|
53
|
Portier F, Imberty A, Halila S. Expeditious Synthesis of C-Glycosyl Barbiturate Ligands of Bacterial Lectins: From Monomer Design to Glycoclusters and Glycopolymers. Bioconjug Chem 2018; 30:647-656. [DOI: 10.1021/acs.bioconjchem.8b00847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
54
|
Richard N, Marti L, Varrot A, Guillot L, Guitard J, Hennequin C, Imberty A, Corvol H, Chignard M, Balloy V. Human Bronchial Epithelial Cells Inhibit Aspergillus fumigatus Germination of Extracellular Conidia via FleA Recognition. Sci Rep 2018; 8:15699. [PMID: 30356167 PMCID: PMC6200801 DOI: 10.1038/s41598-018-33902-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/06/2018] [Indexed: 12/27/2022] Open
Abstract
Aspergillus fumigatus is an environmental filamentous fungus that may act as an opportunistic pathogen causing a variety of diseases, including asthma or allergic bronchopulmonary aspergillosis, and infection, ranging from asymptomatic colonization to invasive pulmonary form, especially in immunocompromised patients. This fungus is characterized by different morphotypes including conidia which are the infective propagules able to germinate into hyphae. Due to their small size (2–3 µm), conidia released in the air can reach the lower respiratory tract. The objective of this study was to characterize the interactions between conidia and bronchial epithelial cells. To this end, we studied the role of bronchial epithelial cells, i.e., the BEAS-2B cell line and human primary cells, in conidial germination of a laboratory strain and three clinical strains of A. fumigatus. Microscopic observations and galactomannan measurements demonstrated that contact between epithelial cells and conidia leads to the inhibition of conidia germination. We demonstrated that this fungistatic process is not associated with the release of any soluble components nor internalization by the epithelial cells. We highlight that this antifungal process involves the phosphoinositide 3-kinase pathway on the host cellular side and the lectin FleA on the fungal side. Collectively, our results show that bronchial epithelial cells attenuate fungal virulence by inhibiting germination of extracellular conidia, thus preventing the morphological change from conidia to filaments, which is responsible for tissue invasion.
Collapse
|
55
|
Soleilhac E, Brillet-Guéguen L, Roussel V, Prudent R, Touquet B, Dass S, Aci-Sèche S, Kasam V, Barette C, Imberty A, Breton V, Vantard M, Horvath D, Botté C, Tardieux I, Roy S, Maréchal E, Lafanechère L. Specific Targeting of Plant and Apicomplexa Parasite Tubulin through Differential Screening Using In Silico and Assay-Based Approaches. Int J Mol Sci 2018; 19:ijms19103085. [PMID: 30304836 PMCID: PMC6213459 DOI: 10.3390/ijms19103085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023] Open
Abstract
Dinitroanilines are chemical compounds with high selectivity for plant cell α-tubulin in which they promote microtubule depolymerization. They target α-tubulin regions that have diverged over evolution and show no effect on non-photosynthetic eukaryotes. Hence, they have been used as herbicides over decades. Interestingly, dinitroanilines proved active on microtubules of eukaryotes deriving from photosynthetic ancestors such as Toxoplasma gondii and Plasmodium falciparum, which are responsible for toxoplasmosis and malaria, respectively. By combining differential in silico screening of virtual chemical libraries on Arabidopsis thaliana and mammal tubulin structural models together with cell-based screening of chemical libraries, we have identified dinitroaniline related and non-related compounds. They inhibit plant, but not mammalian tubulin assembly in vitro, and accordingly arrest A. thaliana development. In addition, these compounds exhibit a moderate cytotoxic activity towards T. gondii and P. falciparum. These results highlight the potential of novel herbicidal scaffolds in the design of urgently needed anti-parasitic drugs.
Collapse
|
56
|
Tobola F, Lelimousin M, Varrot A, Gillon E, Darnhofer B, Blixt O, Birner-Gruenberger R, Imberty A, Wiltschi B. Effect of Noncanonical Amino Acids on Protein-Carbohydrate Interactions: Structure, Dynamics, and Carbohydrate Affinity of a Lectin Engineered with Fluorinated Tryptophan Analogs. ACS Chem Biol 2018; 13:2211-2219. [PMID: 29812892 PMCID: PMC6102642 DOI: 10.1021/acschembio.8b00377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Protein–carbohydrate
interactions play crucial roles in
biology. Understanding and modifying these interactions is of major
interest for fighting many diseases. We took a synthetic biology approach
and incorporated noncanonical amino acids into a bacterial lectin
to modulate its interactions with carbohydrates. We focused on tryptophan,
which is prevalent in carbohydrate binding sites. The exchange of
the tryptophan residues with analogs fluorinated at different positions
resulted in three distinctly fluorinated variants of the lectin from Ralstonia solanacearum. We observed differences in stability
and affinity toward fucosylated glycans and rationalized them by X-ray
and modeling studies. While fluorination decreased the aromaticity
of the indole ring and, therefore, the strength of carbohydrate–aromatic
interactions, additional weak hydrogen bonds were formed between fluorine
and the ligand hydroxyl groups. Our approach opens new possibilities
to engineer carbohydrate receptors.
Collapse
|
57
|
Ribeiro JP, Villringer S, Goyard D, Coche-Guerente L, Höferlin M, Renaudet O, Römer W, Imberty A. Tailor-made Janus lectin with dual avidity assembles glycoconjugate multilayers and crosslinks protocells. Chem Sci 2018; 9:7634-7641. [PMID: 30393524 PMCID: PMC6182566 DOI: 10.1039/c8sc02730g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/12/2018] [Indexed: 01/29/2023] Open
Abstract
The double-faced Janus lectin, designed by assembling sialic acid and fucose-specific lectin, organize multivalent heteroglyco compounds in mulitlayered material, and glycosylated protocells in prototissues.
We engineered the first chimeric, bispecific lectin, with two rationally oriented and distinct recognition surfaces. This lectin, coined Janus lectin in allusion to the two-faced roman god, is able to bind independently to both fucosylated and sialylated glycoconjugates. The multivalent presentation of binding sites on each face of the Janus lectin is very efficient, resulting in avidities in the low nanomolar range for both fucosylated and sialylated surfaces. Moreover, novel heterovalent, bifunctional glycoclusters were synthetized that match the topology of the Janus lectin. Based on these tools, we constructed organized and controlled supramolecular architectures by assembling Janus lectin and glycocompound layer-by-layer. Furthermore, the Janus lectin was employed as biomolecular linker to organize protocells made from giant unilamellar vesicles of different nature, to more complex prototissues. In summary, tailor-made Janus lectins open wide possibilities for creating biomimetic matrices or artificial tissues.
Collapse
|
58
|
Dingjan T, Gillon É, Imberty A, Pérez S, Titz A, Ramsland PA, Yuriev E. Virtual Screening Against Carbohydrate-Binding Proteins: Evaluation and Application to Bacterial Burkholderia ambifaria Lectin. J Chem Inf Model 2018; 58:1976-1989. [DOI: 10.1021/acs.jcim.8b00185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
59
|
Villringer S, Madl J, Sych T, Manner C, Imberty A, Römer W. Lectin-mediated protocell crosslinking to mimic cell-cell junctions and adhesion. Sci Rep 2018; 8:1932. [PMID: 29386533 PMCID: PMC5792463 DOI: 10.1038/s41598-018-20230-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023] Open
Abstract
Cell adhesion is a crucial feature of all multicellular organisms, as it allows cells to organise themselves into tissues to carry out specific functions. Here, we present a mimetic approach that uses multivalent lectins with opposing binding sites to crosslink glycan-functionalised giant unilamellar vesicles. The crosslinking process drives the progression from contact puncta into elongated protocellular junctions, which form the vesicles into polygonal clusters resembling tissues. Due to their carbohydrate specificity, different lectins can be engaged in parallel with both natural and synthetic glycoconjugates to generate complex interfaces with distinct lectin domains. In addition, the formation of protocellular junctions can be combined with adhesion to a functionalised support by other ligand-receptor interactions to render increased stability against fluid flow. Furthermore, we consider that adhesion is a complex process of attraction and repulsion by doping the vesicles with a PEG-modified lipid, and demonstrate a dose-dependent decrease of lectin binding and formation of protocellular junctions. We suggest that the engineering of prototissues through lectin-glycan interactions is an important step towards synthetic minimal tissues and in designing artificial systems to reconstruct the fundamental functions of biology.
Collapse
|
60
|
Sommer R, Wagner S, Rox K, Varrot A, Hauck D, Wamhoff EC, Schreiber J, Ryckmans T, Brunner T, Rademacher C, Hartmann RW, Brönstrup M, Imberty A, Titz A. Glycomimetic, Orally Bioavailable LecB Inhibitors Block Biofilm Formation of Pseudomonas aeruginosa. J Am Chem Soc 2018; 140:2537-2545. [PMID: 29272578 DOI: 10.1021/jacs.7b11133] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The opportunistic Gram-negative bacterium Pseudomonas aeruginosa is a leading pathogen for infections of immuno-compromised patients and those suffering from cystic fibrosis. Its ability to switch from planktonic life to aggregates, forming the so-called biofilms, is a front-line mechanism of antimicrobial resistance. The bacterial carbohydrate-binding protein LecB is an integral component and necessary for biofilm formation. Here, we report a new class of drug-like low molecular weight inhibitors of the lectin LecB with nanomolar affinities and excellent receptor binding kinetics and thermodynamics. This class of glycomimetic inhibitors efficiently blocked biofilm formation of P. aeruginosa in vitro while the natural monovalent carbohydrate ligands failed. Furthermore, excellent selectivity and pharmacokinetic properties were achieved. Notably, two compounds showed good oral bioavailability, and high compound concentrations in plasma and urine were achieved in vivo.
Collapse
|
61
|
Donnier-Maréchal M, Abdullayev S, Bauduin M, Pascal Y, Fu MQ, He XP, Gillon E, Imberty A, Kipnis E, Dessein R, Vidal S. Tetraphenylethylene-based glycoclusters with aggregation-induced emission (AIE) properties as high-affinity ligands of bacterial lectins. Org Biomol Chem 2018; 16:8804-8809. [DOI: 10.1039/c8ob02035c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
TPE-based glycoclusters are fluorescent through aggregation induced emission (AIE) in water.
Collapse
|
62
|
Goyard D, Baldoneschi V, Varrot A, Fiore M, Imberty A, Richichi B, Renaudet O, Nativi C. Multivalent Glycomimetics with Affinity and Selectivity toward Fucose-Binding Receptors from Emerging Pathogens. Bioconjug Chem 2017; 29:83-88. [DOI: 10.1021/acs.bioconjchem.7b00616] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
63
|
Wagner S, Hauck D, Hoffmann M, Sommer R, Joachim I, Müller R, Imberty A, Varrot A, Titz A. Covalent Lectin Inhibition and Application in Bacterial Biofilm Imaging. Angew Chem Int Ed Engl 2017; 56:16559-16564. [PMID: 28960731 PMCID: PMC5767747 DOI: 10.1002/anie.201709368] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 12/12/2022]
Abstract
Biofilm formation by pathogenic bacteria is a hallmark of chronic infections. In many cases, lectins play key roles in establishing biofilms. The pathogen Pseudomonas aeruginosa often exhibiting various drug resistances employs its lectins LecA and LecB as virulence factors and biofilm building blocks. Therefore, inhibition of the function of these proteins is thought to have potential in developing "pathoblockers" preventing biofilm formation and virulence. A covalent lectin inhibitor specific to a carbohydrate binding site is described for the first time. Its application in the LecA-specific in vitro imaging of biofilms formed by P. aeruginosa is also reported.
Collapse
|
64
|
Wagner S, Hauck D, Hoffmann M, Sommer R, Joachim I, Müller R, Imberty A, Varrot A, Titz A. Covalent Lectin Inhibition and Application in Bacterial Biofilm Imaging. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
65
|
Dingjan T, Imberty A, Pérez S, Yuriev E, Ramsland PA. Molecular Simulations of Carbohydrates with a Fucose-Binding Burkholderia ambifaria Lectin Suggest Modulation by Surface Residues Outside the Fucose-Binding Pocket. Front Pharmacol 2017; 8:393. [PMID: 28680402 PMCID: PMC5478714 DOI: 10.3389/fphar.2017.00393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
Burkholderia ambifaria is an opportunistic respiratory pathogen belonging to the Burkholderia cepacia complex, a collection of species responsible for the rapidly fatal cepacia syndrome in cystic fibrosis patients. A fucose-binding lectin identified in the B. ambifaria genome, BambL, is able to adhere to lung tissue, and may play a role in respiratory infection. X-ray crystallography has revealed the bound complex structures for four fucosylated human blood group epitopes (blood group B, H type 1, H type 2, and Lex determinants). The present study employed computational approaches, including docking and molecular dynamics (MD), to extend the structural analysis of BambL-oligosaccharide complexes to include four additional blood group saccharides (A, Lea, Leb, and Ley) and a library of blood-group-related carbohydrates. Carbohydrate recognition is dominated by interactions with fucose via a hydrogen-bonding network involving Arg15, Glu26, Ala38, and Trp79 and a stacking interaction with Trp74. Additional hydrogen bonds to non-fucose residues are formed with Asp30, Tyr35, Thr36, and Trp74. BambL recognition is dominated by interactions with fucose, but also features interactions with other parts of the ligands that may modulate specificity or affinity. The detailed computational characterization of the BambL carbohydrate-binding site provides guidelines for the future design of lectin inhibitors.
Collapse
|
66
|
Heggelund JE, Varrot A, Imberty A, Krengel U. Histo-blood group antigens as mediators of infections. Curr Opin Struct Biol 2017; 44:190-200. [PMID: 28544984 DOI: 10.1016/j.sbi.2017.04.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/07/2023]
Abstract
The critical first step of a microbial infection is usually the attachment of pathogens to host cell glycans. Targets on host tissues are in particular the histo-blood group antigens (HBGAs), which are present in rich diversity in the mucus layer and on the underlying mucosa. Recent structural and functional studies have revealed significant new insight into the molecular mechanisms, explaining why individuals with certain blood groups are at increased risk of some infections. The most prominent example of blood-group-associated diseases is cholera, caused by infection with Vibrio cholerae. Many other microbial pathogens, for example Pseudomonas aeruginosa infecting the airways, and enterotoxigenic Escherichia coli (ETEC) causing traveler's diarrhea, also bind to histo-blood group antigens, but show a less clear correlation with blood group phenotype. Yet other pathogens, for example norovirus and Helicobacter pylori, recognize HBGAs differently depending on the strain. In all cases, milk oligosaccharides can aid the hosts' defenses, acting as natural receptor decoys, and anti-infectious therapy can be designed along similar strategies. In this review, we focus on important infections of humans, but the molecular mechanisms are of general relevance to a broad range of microbial infections of humans and animals.
Collapse
|
67
|
Machida T, Novoa A, Gillon É, Zheng S, Claudinon J, Eierhoff T, Imberty A, Römer W, Winssinger N. Dynamic Cooperative Glycan Assembly Blocks the Binding of Bacterial Lectins to Epithelial Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
68
|
Machida T, Novoa A, Gillon É, Zheng S, Claudinon J, Eierhoff T, Imberty A, Römer W, Winssinger N. Dynamic Cooperative Glycan Assembly Blocks the Binding of Bacterial Lectins to Epithelial Cells. Angew Chem Int Ed Engl 2017; 56:6762-6766. [PMID: 28504473 DOI: 10.1002/anie.201700813] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/20/2017] [Indexed: 11/06/2022]
Abstract
Pathogens frequently rely on lectins for adhesion and cellular entry into the host. Since these interactions typically result from multimeric binding of lectins to cell-surface glycans, novel therapeutic strategies are being developed with the use of glycomimetics as competitors of such interactions. Herein we study the benefit of nucleic acid based oligomeric assemblies with PNA-fucose conjugates. We demonstrate that the interactions of a lectin with epithelial cells can be inhibited with conjugates that do not form stable assemblies in solution but benefit from cooperativity between ligand-protein interactions and PNA hybridization to achieve high affinity. A dynamic dimeric assembly fully blocked the binding of the fucose-binding lectin BambL of Burkholderia ambifaria, a pathogenic bacterium, to epithelial cells with an efficiency of more than 700-fold compared to l-fucose.
Collapse
|
69
|
Zheng S, Eierhoff T, Aigal S, Brandel A, Thuenauer R, de Bentzmann S, Imberty A, Römer W. The Pseudomonas aeruginosa lectin LecA triggers host cell signalling by glycosphingolipid-dependent phosphorylation of the adaptor protein CrkII. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1236-1245. [PMID: 28428058 DOI: 10.1016/j.bbamcr.2017.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022]
Abstract
The human pathogen Pseudomonas aeruginosa induces phosphorylation of the adaptor protein CrkII by activating the non-receptor tyrosine kinase Abl to promote its uptake into host cells. So far, specific factors of P. aeruginosa, which induce Abl/CrkII signalling, are entirely unknown. In this research, we employed human lung epithelial cells H1299, Chinese hamster ovary cells and P. aeruginosa wild type strain PAO1 to study the invasion process of P. aeruginosa into host cells by using microbiological, biochemical and cell biological approaches such as Western Blot, immunofluorescence microscopy and flow cytometry. Here, we demonstrate that the host glycosphingolipid globotriaosylceramide, also termed Gb3, represents a signalling receptor for the P. aeruginosa lectin LecA to induce CrkII phosphorylation at tyrosine 221. Alterations in Gb3 expression and LecA function correlate with CrkII phosphorylation. Interestingly, phosphorylation of CrkIIY221 occurs independently of Abl kinase. We further show that Src family kinases transduce the signal induced by LecA binding to Gb3, leading to CrkY221 phosphorylation. In summary, we identified LecA as a bacterial factor, which utilizes a so far unrecognized mechanism for phospho-CrkIIY221 induction by binding to the host glycosphingolipid receptor Gb3. The LecA/Gb3 interaction highlights the potential of glycolipids to mediate signalling processes across the plasma membrane and should be further elucidated to gain deeper insights into this non-canonical mechanism of activating host cell processes.
Collapse
|
70
|
Ribeiro JP, Ali Abol Hassan M, Rouf R, Tiralongo E, May TW, Day CJ, Imberty A, Tiralongo J, Varrot A. Biophysical characterization and structural determination of the potent cytotoxic Psathyrella asperospora lectin. Proteins 2017; 85:969-975. [PMID: 28168856 DOI: 10.1002/prot.25265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/03/2023]
Abstract
A lectin with strong cytotoxic effect on human colon cancer HT29 and monkey kidney VERO cells was recently identified from the Australian indigenous mushroom Psathyrella asperospora and named PAL. We herein present its biochemical and structural analysis using a multidisciplinary approach. Glycan arrays revealed binding preference towards N-acetylglucosamine (GlcNAc) and, to a lesser extent, towards sialic acid (Neu5Ac). Submicromolar and millimolar affinity was measured by surface plasmon resonance for GlcNAc and NeuAc, respectively. The structure of PAL was resolved by X-ray crystallography, elucidating both the protein's amino acid sequence as well as the molecular basis rationalizing its binding specificity. Proteins 2017; 85:969-975. © 2016 Wiley Periodicals, Inc.
Collapse
|
71
|
Donnier-Maréchal M, Galanos N, Grandjean T, Pascal Y, Ji DK, Dong L, Gillon E, He XP, Imberty A, Kipnis E, Dessein R, Vidal S. Perylenediimide-based glycoclusters as high affinity ligands of bacterial lectins: synthesis, binding studies and anti-adhesive properties. Org Biomol Chem 2017; 15:10037-10043. [DOI: 10.1039/c7ob02749d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rapid access to perylenediimide-based glycoclusters allowed their evaluation as high affinity ligands of bacterial lectins and their potential as anti-adhesive antibacterials.
Collapse
|
72
|
Sommer R, Hauck D, Varrot A, Imberty A, Künzler M, Titz A. O-Alkylated heavy atom carbohydrate probes for protein X-ray crystallography: Studies towards the synthesis of methyl 2- O-methyl-L-selenofucopyranoside. Beilstein J Org Chem 2016; 12:2828-2833. [PMID: 28144356 PMCID: PMC5238581 DOI: 10.3762/bjoc.12.282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/09/2016] [Indexed: 11/23/2022] Open
Abstract
Selenoglycosides are used as reactive glycosyl donors in the syntheses of oligosaccharides. In addition, such heavy atom analogs of natural glycosides are useful tools for structure determination of their lectin receptors using X-ray crystallography. Some lectins, e.g., members of the tectonin family, only bind to carbohydrate epitopes with O-alkylated ring hydroxy groups. In this context, we report the first synthesis of an O-methylated selenoglycoside, specifically methyl 2-O-methyl-L-selenofucopyranoside, a ligand of the lectin tectonin-2 from the mushroom Laccaria bicolor. The synthetic route required a strategic revision and further optimization due to the intrinsic lability of alkyl selenoglycosides, in particular for the labile fucose. Here, we describe a successful synthetic access to methyl 2-O-methyl-L-selenofucopyranoside in 9 linear steps and 26% overall yield starting from allyl L-fucopyranoside.
Collapse
|
73
|
Müller SK, Wilhelm I, Schubert T, Zittlau K, Imberty A, Madl J, Eierhoff T, Thuenauer R, Römer W. Gb3-binding lectins as potential carriers for transcellular drug delivery. Expert Opin Drug Deliv 2016; 14:141-153. [PMID: 27935765 DOI: 10.1080/17425247.2017.1266327] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Epithelial cell layers as well as endothelia forming the blood-brain barrier can drastically reduce the efficiency of drug targeting. Our goal was to investigate lectins recognizing the glycosphingolipid globotriaosylceramide (Gb3) for their potential as carriers for transcytotic drug delivery. METHODS We utilized an in vitro model based on Madin-Darby canine kidney cells transfected with Gb3 synthase to characterize transcytosis of the Gb3-binding lectins LecA from Pseudomonas aeruginosa and the B-subunit of Shiga toxin (StxB). RESULTS Both lectins were rapidly transcytosed from the apical to the basolateral plasma membrane and vice versa. Whereas StxB proceeded on retrograde and transcytotic routes, LecA avoided retrograde transport. This differential trafficking could be explained by our observation that LecA and StxB segregated into different domains during endocytosis. Furthermore, inhibiting the small GTPase Rab11a, which organizes trafficking through apical recycling endosomes, blocked basolateral to apical transcytosis of both lectins. CONCLUSIONS Gb3-binding lectins are promising candidates for transcytotic drug delivery. Our findings highlight that LecA and StxB, which both bind Gb3 but exhibit dissimilar valence and molecular structures of their carbohydrate binding sites and can take divergent intracellular trafficking routes. This opens up the possibility of developing tailor-made glycosphingolipid-binding carrier lectins, which take optimized trafficking pathways.
Collapse
|
74
|
Pifferi C, Goyard D, Gillon E, Imberty A, Renaudet O. Synthesis of Mannosylated Glycodendrimers and Evaluation against BC2L-A Lectin from Burkholderia Cenocepacia. Chempluschem 2016; 82:390-398. [PMID: 31962032 DOI: 10.1002/cplu.201600569] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 01/29/2023]
Abstract
Chronic colonization of lungs by opportunist bacteria is the major cause of mortality for cystic fibrosis patients. Among these pathogens, Burkholderia cenocepacia is responsible for cepacia syndrome, a deadly exacerbation of infection that is the main cause of poor outcomes of lung transplantation. This bacterium contains three soluble carbohydrate-binding proteins, including the B. cenocepacia lectin A (BC2L-A), which is proposed to bind to oligomannose-type N-glycan structures to adhere to host tissues. In this work, several mannosylated glycoclusters and glycodendrimers with valencies ranging from four to 24 were prepared and their interactions with BC2L-A were thermodynamically characterized by isothermal titration calorimetry. The results show that a 24-valent structure binds to BC2L-A at nanomolar concentration, which makes this compound the highest affinity monodisperse ligand for this lectin.
Collapse
|
75
|
Galanos N, Chen Y, Michael ZP, Gillon E, Dutasta JP, Star A, Imberty A, Martinez A, Vidal S. Cyclotriveratrylene-Based Glycoclusters as High Affinity Ligands of Bacterial Lectins fromPseudomonas aeruginosaandBurkholderia ambifaria. ChemistrySelect 2016. [DOI: 10.1002/slct.201601324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|