51
|
Schütz AK, Habenstein B, Luckgei N, Bousset L, Sourigues Y, Nielsen AB, Melki R, Böckmann A, Meier BH. Solid-state NMR sequential assignments of the amyloid core of full-length Sup35p. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:349-356. [PMID: 23943018 DOI: 10.1007/s12104-013-9515-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/01/2013] [Indexed: 06/02/2023]
Abstract
Sup35p is a yeast prion and is responsible for the [PSI(+)] trait in Saccharomyces cerevisiae. With 685 amino acids, full-length soluble and fibrillar Sup35p are challenging targets for structural biology as they cannot be investigated by X-ray crystallography or NMR in solution. We present solid-state NMR studies of fibrils formed by the full-length Sup35 protein. We detect an ordered and rigid core of the protein that gives rise to narrow and strong peaks, while large parts of the protein show either static disorder or dynamics on time scales which interfere with dipolar polarization transfer or shorten the coherence lifetime. Thus, only a small subset of resonances is observed in 3D spectra. Here we describe in detail the sequential assignments of the 22 residues for which resonances are observed in 3D spectra: their chemical shifts mostly corresponding to β-sheet secondary structure. We suspect that these residues form the amyloid core of the fibril.
Collapse
|
52
|
Chevelkov V, Habenstein B, Loquet A, Giller K, Becker S, Lange A. Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 242:180-188. [PMID: 24667274 DOI: 10.1016/j.jmr.2014.02.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
Proton-detected solid-state NMR was applied to a highly deuterated insoluble, non-crystalline biological assembly, the Salmonella typhimurium type iii secretion system (T3SS) needle. Spectra of very high resolution and sensitivity were obtained at a low protonation level of 10-20% at exchangeable amide positions. We developed efficient experimental protocols for resonance assignment tailored for this system and the employed experimental conditions. Using exclusively dipolar-based interspin magnetization transfers, we recorded two sets of 3D spectra allowing for an almost complete backbone resonance assignment of the needle subunit PrgI. The additional information provided by the well-resolved proton dimension revealed the presence of two sets of resonances in the N-terminal helix of PrgI, while in previous studies employing (13)C detection only a single set of resonances was observed.
Collapse
|
53
|
Shi C, Fasshuber HK, Chevelkov V, Xiang S, Habenstein B, Vasa SK, Becker S, Lange A. BSH-CP based 3D solid-state NMR experiments for protein resonance assignment. JOURNAL OF BIOMOLECULAR NMR 2014; 59:15-22. [PMID: 24584701 DOI: 10.1007/s10858-014-9820-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/20/2014] [Indexed: 05/10/2023]
Abstract
We have recently presented band-selective homonuclear cross-polarization (BSH-CP) as an efficient method for CO-CA transfer in deuterated as well as protonated solid proteins. Here we show how the BSH-CP CO-CA transfer block can be incorporated in a set of three-dimensional (3D) solid-state NMR (ssNMR) pulse schemes tailored for resonance assignment of proteins at high static magnetic fields and moderate magic-angle spinning rates. Due to the achieved excellent transfer efficiency of 33 % for BSH-CP, a complete set of 3D spectra needed for unambiguous resonance assignment could be rapidly recorded within 1 week for the model protein ubiquitin. Thus we expect that BSH-CP could replace the typically used CO-CA transfer schemes in well-established 3D ssNMR approaches for resonance assignment of solid biomolecules.
Collapse
|
54
|
Luckgei N, Habenstein B, Ravotti F, Megy S, Penin F, Marchand JB, Hill F, Böckmann A, Meier BH. Solid-state NMR sequential assignments of the C-terminal oligomerization domain of human C4b-binding protein. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:1-6. [PMID: 23138856 DOI: 10.1007/s12104-012-9440-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 10/31/2012] [Indexed: 06/01/2023]
Abstract
The complement 4 binding protein (C4bp) plays a crucial role in the inhibition of the complement cascade. It has an extraordinary seven-arm octopus-like structure with 7 tentacle-like identical chains, held together at their C-terminal end. The C-terminal domain does oligomerize in isolation, and is necessary and sufficient to oligomerize full-length C4bp. It is predicted to form a seven-helix coiled coil, and its multimerization properties make it a promising vaccine adjuvant, probably by enhancing the structural stability and binding affinity of the presented antigen. Here, we present the solid-state NMR resonance assignment of the human C4bp C-terminal oligomerization Domain, hC4pbOD, and the corresponding secondary chemical shifts.
Collapse
|
55
|
Gath J, Bousset L, Habenstein B, Melki R, Böckmann A, Meier BH. Unlike twins: an NMR comparison of two α-synuclein polymorphs featuring different toxicity. PLoS One 2014; 9:e90659. [PMID: 24599158 PMCID: PMC3944079 DOI: 10.1371/journal.pone.0090659] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/05/2014] [Indexed: 11/18/2022] Open
Abstract
We structurally compare, using solid-state NMR, two different polymorphs of α-synuclein which, as established recently, display contrasting biochemical properties, toxicity, and tropism for cells. We show that both forms, which can each be produced as a pure polymorph, are greatly different in secondary structure. While β-sheets are the dominating secondary structure elements for both polymorphs, they are markedly divergent in terms of number of elements, as well as their distribution. We demonstrate that all identified β-sheets feature an in-register parallel stacking for both polymorphs. The two forms show a different molecular arrangement in the unit cell and distinct dynamic features, while sharing a highly flexible C-terminal domain. The use of reproducible, well-identified conditions for sample preparation and the recording of identical NMR experiments allows for a direct comparison of the results.
Collapse
|
56
|
Loquet A, Habenstein B, Chevelkov V, Vasa SK, Giller K, Becker S, Lange A. Atomic Structure and Handedness of the Building Block of a Biological Assembly. J Am Chem Soc 2013; 135:19135-8. [DOI: 10.1021/ja411362q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
57
|
Luckgei N, Schütz AK, Bousset L, Habenstein B, Sourigues Y, Gardiennet C, Meier BH, Melki R, Böckmann A. Die Konformation der Prionendomäne von Sup35: isoliert und im Kontext des Volllängen-Proteins. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
58
|
Luckgei N, Schütz AK, Bousset L, Habenstein B, Sourigues Y, Gardiennet C, Meier BH, Melki R, Böckmann A. The Conformation of the Prion Domain of Sup35 p in Isolation and in the Full-Length Protein. Angew Chem Int Ed Engl 2013; 52:12741-4. [DOI: 10.1002/anie.201304699] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/24/2013] [Indexed: 11/08/2022]
|
59
|
Loquet A, Habenstein B, Lange A. Structural investigations of molecular machines by solid-state NMR. Acc Chem Res 2013; 46:2070-9. [PMID: 23496894 DOI: 10.1021/ar300320p] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Essential biological processes such as cell motion, signaling,protein synthesis, and pathogen-host interactions rely on multifunctional molecular machines containing supramolecular assemblies, that is, noncovalently assembled protein subunits. Scientists would like to acquire a detailed atomic view of the complete molecular machine to understand its assembly process and functions. Structural biologists have used various approaches to obtain structural information such as X-ray crystallography, solution NMR, and electron microscopy. The inherent insolubility and large size of these multicomponent assemblies restrict the use of solution NMR, and their noncrystallinity and elongated shapes present obstacles to X-ray crystallography studies. Not limited by molecular weight or crystallinity, solid-state NMR (ssNMR) allows for structural investigations of supramolecular assemblies such as helical filaments, cross-β fibrils, or membrane-embedded oligomeric proteins. In this Account, we describe recent progress in the application of ssNMR to the elucidation of atomic structures of supramolecular assemblies. We highlight ssNMR methods to determine the subunit interfaces in symmetric arrangements. Our use of [1-(13)C]- or [2-(13)C]-glucose as a carbon source during bacterial protein expression results in significant (13)C spin dilution that drastically improves the spectral quality and enables us to detect meaningful structural restraints. Moreover, we can unequivocally determine intermolecular restraints using mixed [(1:1)1-(13)C/2-(13)C]-glucose labeled assemblies. We recently illustrated the power of this methodology with the structure determination of the type III secretion system (T3SS) needle. One crucial aspect in elucidating the atomic structure of these large multicomponent complexes is to determine the subunit-subunit interfaces. Notably, we could probe the needle subunit interfaces by collecting (13)C-(13)C intermolecular restraints. In contrast, these interfaces are not accessible via high-resolution cryo-EM. This approach is readily applicable to other supramolecular assemblies containing symmetrically repeating protein subunits, and could be combined with other techniques to get a more complete picture of multicomponent structures. To determine near-atomic structures of assemblies of biological interest, researchers could combine ssNMR data collected at the subunit interfaces with the envelope obtained from cryo-EM and potentially with monomeric subunit crystal structures.
Collapse
|
60
|
Schmidt E, Gath J, Habenstein B, Ravotti F, Székely K, Huber M, Buchner L, Böckmann A, Meier BH, Güntert P. Automated solid-state NMR resonance assignment of protein microcrystals and amyloids. JOURNAL OF BIOMOLECULAR NMR 2013; 56:243-54. [PMID: 23689812 DOI: 10.1007/s10858-013-9742-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/06/2013] [Indexed: 05/26/2023]
Abstract
Solid-state NMR is an emerging structure determination technique for crystalline and non-crystalline protein assemblies, e.g., amyloids. Resonance assignment constitutes the first and often very time-consuming step to a structure. We present ssFLYA, a generally applicable algorithm for automatic assignment of protein solid-state NMR spectra. Application to microcrystals of ubiquitin and the Ure2 prion C-terminal domain, as well as amyloids of HET-s(218-289) and α-synuclein yielded 88-97 % correctness for the backbone and side-chain assignments that are classified as self-consistent by the algorithm, and 77-90 % correctness if also assignments classified as tentative by the algorithm are included.
Collapse
|
61
|
Bousset L, Pieri L, Ruiz-Arlandis G, Gath J, Jensen PH, Habenstein B, Madiona K, Olieric V, Böckmann A, Meier BH, Melki R. Structural and functional characterization of two alpha-synuclein strains. Nat Commun 2013; 4:2575. [PMID: 24108358 PMCID: PMC3826637 DOI: 10.1038/ncomms3575] [Citation(s) in RCA: 646] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 09/09/2013] [Indexed: 12/21/2022] Open
Abstract
α-Synuclein aggregation is implicated in a variety of diseases including Parkinson's disease, dementia with Lewy bodies, pure autonomic failure and multiple system atrophy. The association of protein aggregates made of a single protein with a variety of clinical phenotypes has been explained for prion diseases by the existence of different strains that propagate through the infection pathway. Here we structurally and functionally characterize two polymorphs of α-synuclein. We present evidence that the two forms indeed fulfil the molecular criteria to be identified as two strains of α-synuclein. Specifically, we show that the two strains have different structures, levels of toxicity, and in vitro and in vivo seeding and propagation properties. Such strain differences may account for differences in disease progression in different individuals/cell types and/or types of synucleinopathies.
Collapse
|
62
|
Loquet A, Habenstein B, Demers JP, Becker S, Lange A. Structure d’une nanomachine bactérienne. Med Sci (Paris) 2012; 28:926-8. [DOI: 10.1051/medsci/20122811008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
63
|
Daebel V, Chinnathambi S, Biernat J, Schwalbe M, Habenstein B, Loquet A, Akoury E, Tepper K, Müller H, Baldus M, Griesinger C, Zweckstetter M, Mandelkow E, Vijayan V, Lange A. β-Sheet Core of Tau Paired Helical Filaments Revealed by Solid-State NMR. J Am Chem Soc 2012; 134:13982-9. [DOI: 10.1021/ja305470p] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
64
|
Habenstein B, Bousset L, Sourigues Y, Kabani M, Loquet A, Meier BH, Melki R, Böckmann A. A Native-Like Conformation for the C-Terminal Domain of the Prion Ure2p within its Fibrillar Form. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
65
|
Habenstein B, Bousset L, Sourigues Y, Kabani M, Loquet A, Meier BH, Melki R, Böckmann A. A Native-Like Conformation for the C-Terminal Domain of the Prion Ure2p within its Fibrillar Form. Angew Chem Int Ed Engl 2012; 51:7963-6. [DOI: 10.1002/anie.201202093] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/30/2012] [Indexed: 11/08/2022]
|
66
|
Gath J, Habenstein B, Bousset L, Melki R, Meier BH, Böckmann A. Solid-state NMR sequential assignments of α-synuclein. BIOMOLECULAR NMR ASSIGNMENTS 2012; 6:51-55. [PMID: 21744165 DOI: 10.1007/s12104-011-9324-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 06/27/2011] [Indexed: 05/31/2023]
Abstract
Parkinson's disease is amongst the most frequent and most devastating neurodegenerative diseases. It is tightly associated with the assembly of proteins into high-molecular weight protein species, which propagate between neurons in the central nervous system. The principal protein involved in this process is α-synuclein which is a structural component of the Lewy bodies observed in diseased brain. We here present the solid-state NMR sequential assignments of a new fibrillar form of this protein, the first one with a well-ordered and rigid N-terminal part.
Collapse
|
67
|
Habenstein B, Wasmer C, Bousset L, Sourigues Y, Schütz A, Loquet A, Meier BH, Melki R, Böckmann A. Extensive de novo solid-state NMR assignments of the 33 kDa C-terminal domain of the Ure2 prion. JOURNAL OF BIOMOLECULAR NMR 2011; 51:235-243. [PMID: 21805376 DOI: 10.1007/s10858-011-9530-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 07/11/2011] [Indexed: 05/31/2023]
Abstract
We present the de novo resonance assignments for the crystalline 33 kDa C-terminal domain of the Ure2 prion using an optimized set of five 3D solid-state NMR spectra. We obtained, using a single uniformly (13)C, (15)N labeled protein sample, sequential chemical-shift information for 74% of the N, Cα, Cβ triples, and for 80% of further side-chain resonances for these spin systems. We describe the procedures and protocols devised, and discuss possibilities and limitations of the assignment of this largest protein assigned today by solid-state NMR, and for which no solution-state NMR shifts were available. A comparison of the NMR chemical shifts with crystallographic data reveals that regions with high crystallographic B-factors are particularly difficult to assign. While the secondary structure elements derived from the chemical shift data correspond mainly to those present in the X-ray crystal structure, we detect an additional helical element and structural variability in the protein crystal, most probably originating from the different molecules in the asymmetric unit, with the observation of doubled resonances in several parts, including entire stretches, of the protein. Our results provide the point of departure towards an atomic-resolution structural analysis of the C-terminal Ure2p domain in the context of the full-length prion fibrils.
Collapse
|
68
|
Radicke M, Mende J, Kofahl AL, Wild J, Ulucay D, Habenstein B, Deimling M, Trautner P, Weber B, Maier K. Acoustic radiation contrast in MR images for breast cancer diagnostics--initial phantom study. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:253-261. [PMID: 21257089 DOI: 10.1016/j.ultrasmedbio.2010.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 10/29/2010] [Accepted: 11/08/2010] [Indexed: 05/30/2023]
Abstract
Acoustic radiation contrast in magnetic resonance images is an approach to visualize the changes in ultrasonic loss and viscoelastic changes of the sample with the resolution of a magnetic resonance imaging (MRI) system. By irradiating ultrasound (US) into a tissue-mimicking sample, a displacement along the US beam path caused by the acoustic radiation force is obtained. This displacement varies with the US intensity, the duration of irradiation, the US attenuation and the viscoelastic properties of the sample. US pulses of 2.5 MHz with a duration of 20 ms and an intensity of <17 W/cm(2) are used. An MRI sequence was programmed to produce images in which the magnitude of the displacement is visualized by gray value changes. In addition, a finite element simulation of the measurements was performed to demonstrate the feasibility of the method. Through examination of the measurements and the simulations, information about viscoelastic changes was achieved. In this work, measurements on different breast phantoms are presented.
Collapse
|
69
|
Schuetz A, Wasmer C, Habenstein B, Verel R, Greenwald J, Riek R, Böckmann A, Meier BH. Protocols for the Sequential Solid-State NMR Spectroscopic Assignment of a Uniformly Labeled 25 kDa Protein: HET-s(1-227). Chembiochem 2010; 11:1543-51. [DOI: 10.1002/cbic.201000124] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
70
|
Loquet A, Bousset L, Gardiennet C, Sourigues Y, Wasmer C, Habenstein B, Schütz A, Meier BH, Melki R, Böckmann A. Prion Fibrils of Ure2p Assembled under Physiological Conditions Contain Highly Ordered, Natively Folded Modules. J Mol Biol 2009; 394:108-18. [DOI: 10.1016/j.jmb.2009.09.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/07/2009] [Accepted: 09/08/2009] [Indexed: 11/25/2022]
|