51
|
Gong M, Weschler CJ, Liu L, Shen H, Huang L, Sundell J, Zhang Y. Phthalate metabolites in urine samples from Beijing children and correlations with phthalate levels in their handwipes. INDOOR AIR 2015; 25:572-81. [PMID: 25557639 DOI: 10.1111/ina.12179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/21/2014] [Indexed: 05/23/2023]
Abstract
UNLABELLED Little attention has been paid to dermal absorption of phthalates even though modeling suggests that this pathway may contribute meaningfully to total uptake. We have concurrently collected handwipe and urine samples from 39 Beijing children (5-9 years) for the purpose of measuring levels of five phthalates in handwipes, corresponding concentrations of eight of their metabolites in urine, and to subsequently assess the contribution of dermal absorption to total uptake. In summer sampling, DEHP was the most abundant phthalate in handwipes (median: 1130 μg/m(2) ), while MnBP was the most abundant metabolite in urine (median: 232 ng/ml). We found significant associations between the parent phthalate in handwipes and its monoester metabolite in urine for DiBP (r = 0.41, P = 0.01), DnBP (r = 0.50, P = 0.002), BBzP (r = 0.48, P = 0.003), and DEHP (r = 0.36, P = 0.03). Assuming that no dermal uptake occurred under clothing-covered skin, we estimate that dermal absorption of DiBP, DnBP, BBzP, and DEHP contributed 6.9%, 4.6%, 6.9%, and 3.3%, respectively, to total uptake. Assuming that somewhat attenuated dermal uptake occurred under clothing-covered skin, these estimates increase to 19%, 14%, 17%, and 10%. The results indicate that absorption from skin surfaces makes a meaningful contribution to total phthalate uptake for children and should be considered in future risk assessments. PRACTICAL IMPLICATIONS This study indicates that children’s hands acquire substantial amounts of various phthalates. The levels measured in handwipes, although higher, are somewhat representative of levels on other body locations. Via dermal absorption, as well as hand-to-mouth activity, phthalates on hands and other body locations contribute to the overall body burden of these compounds. Dermal absorption from air and contact transfer from surfaces is expected to occur for many SVOCs commonly found indoors (e.g. bisphenols, synthetic musks, organophosphates). However, the dermal pathway has often been neglected in exposure assessments of indoor pollutants. Knowledge regarding phthalates and other SVOCs in handwipes can facilitate our understanding of risks and aid in the mitigation of adverse health effects resulting from indoor exposures. To make progress toward these goals, further studies are necessary, including investigations of phthalate level variability in skinwipes collected at different locations on the body and the impact of clothing on dermal absorption from air.
Collapse
|
52
|
Weschler CJ, Bekö G, Koch HM, Salthammer T, Schripp T, Toftum J, Clausen G. Transdermal Uptake of Diethyl Phthalate and Di(n-butyl) Phthalate Directly from Air: Experimental Verification. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:928-34. [PMID: 25850107 PMCID: PMC4590762 DOI: 10.1289/ehp.1409151] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 04/03/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Fundamental considerations indicate that, for certain phthalate esters, dermal absorption from air is an uptake pathway that is comparable to or greater than inhalation. Yet this pathway has not been experimentally evaluated and has been largely overlooked when assessing uptake of phthalate esters. OBJECTIVES This study investigated transdermal uptake, directly from air, of diethyl phthalate (DEP) and di(n-butyl) phthalate (DnBP) in humans. METHODS In a series of experiments, six human participants were exposed for 6 hr in a chamber containing deliberately elevated air concentrations of DEP and DnBP. The participants either wore a hood and breathed air with phthalate concentrations substantially below those in the chamber or did not wear a hood and breathed chamber air. All urinations were collected from initiation of exposure until 54 hr later. Metabolites of DEP and DnBP were measured in these samples and extrapolated to parent phthalate intakes, corrected for background and hood air exposures. RESULTS For DEP, the median dermal uptake directly from air was 4.0 μg/(μg/m(3) in air) compared with an inhalation intake of 3.8 μg/(μg/m(3) in air). For DnBP, the median dermal uptake from air was 3.1 μg/(μg/m(3) in air) compared with an inhalation intake of 3.9 μg/(μg/m(3) in air). CONCLUSIONS This study shows that dermal uptake directly from air can be a meaningful exposure pathway for DEP and DnBP. For other semivolatile organic compounds (SVOCs) whose molecular weight and lipid/air partition coefficient are in the appropriate range, direct absorption from air is also anticipated to be significant.
Collapse
|
53
|
Wallace LA, Ott WR, Weschler CJ. Ultrafine particles from electric appliances and cooking pans: experiments suggesting desorption/nucleation of sorbed organics as the primary source. INDOOR AIR 2015; 25:536-546. [PMID: 25250820 DOI: 10.1111/ina.12163] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/19/2014] [Indexed: 06/03/2023]
Abstract
Ultrafine particles are observed when metal surfaces, such as heating elements in electric appliances, or even empty cooking pans, are heated. The source of the particles has not been identified. We present evidence that particles >10 nm are not emitted directly from the heating elements or the metal surfaces. Using repeated heating of an electric burner, several types of cooking pans, and a steam iron, the increase in the number of particles (>10 nm) can be reduced to 0. After the devices are exposed to indoor air for several hours or days, subsequent heating results in renewed particle production, suggesting that organic matter has sorbed on their surfaces. Also, after a pan has been heated to the point that no increase in particles is observed, washing with detergent results in copious production of particles the next time the pan is heated. These observations suggest that detergent residue and organics sorbed from indoor air are the sources of the particles. We hypothesize that organic compounds are thermally desorbed from the hot surface as gaseous molecules; as they diffuse from the hot air near the pan into cooler air, selected compounds exceed their saturation concentration and nucleation occurs.
Collapse
|
54
|
Bekö G, Allen JG, Weschler CJ, Vallarino J, Spengler JD. Impact of cabin ozone concentrations on passenger reported symptoms in commercial aircraft. PLoS One 2015; 10:e0128454. [PMID: 26011001 PMCID: PMC4444275 DOI: 10.1371/journal.pone.0128454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/27/2015] [Indexed: 11/20/2022] Open
Abstract
Due to elevated ozone concentrations at high altitudes, the adverse effect of ozone on air quality, human perception and health may be more pronounced in aircraft cabins. The association between ozone and passenger-reported symptoms has not been investigated under real conditions since smoking was banned on aircraft and ozone converters became more common. Indoor environmental parameters were measured at cruising altitude on 83 US domestic and international flights. Passengers completed a questionnaire about symptoms and satisfaction with the indoor air quality. Average ozone concentrations were relatively low (median: 9.5 ppb). On thirteen flights (16%) ozone levels exceeded 60 ppb, while the highest peak level reached 256 ppb for a single flight. The most commonly reported symptoms were dry mouth or lips (26%), dry eyes (22.1%) and nasal stuffiness (18.9%). 46% of passengers reported at least one symptom related to the eyes or mouth. A third of the passengers reported at least one upper respiratory symptom. Using multivariate logistic (individual symptoms) and linear (aggregated continuous symptom variables) regression, ozone was consistently associated with symptoms related to the eyes and certain upper respiratory endpoints. A concentration-response relationship was observed for nasal stuffiness and eye and upper respiratory symptom indicators. Average ozone levels, as opposed to peak concentrations, exhibited slightly weaker associations. Medium and long duration flights were significantly associated with more symptoms compared to short flights. The relationship between ultrafine particles and ozone on flights without meal service was indicative of ozone-initiated chemistry.
Collapse
|
55
|
Bekö G, Callesen M, Weschler CJ, Toftum J, Langer S, Sigsgaard T, Høst A, Kold Jensen T, Clausen G. Phthalate exposure through different pathways and allergic sensitization in preschool children with asthma, allergic rhinoconjunctivitis and atopic dermatitis. ENVIRONMENTAL RESEARCH 2015; 137:432-439. [PMID: 25625823 DOI: 10.1016/j.envres.2015.01.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/09/2014] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
Studies in rodents indicate that phthalates can function as adjuvants, increasing the potency of allergens. Meanwhile, epidemiological studies have produced inconsistent findings regarding relationships between phthalate exposures and allergic disease in humans. The present study examined phthalate exposure and allergic sensitization in a large group of 3-5 year old children: 300 random controls and 200 cases with asthma, rhinoconjunctivitis or atopic dermatitis as reported in questionnaires. The children were clinically examined to confirm their health status. Blood samples were analyzed for IgE sensitization to 20 allergens. Adjusted logistic regressions were used to look for associations between phthalate exposure indicators (mass fractions in dust from children's homes and daycares, metabolites in urine, and estimated daily indoor intakes from dust ingestion, inhalation and dermal absorption) and sensitization and allergic disease. No direct associations were found between phthalate exposures and asthma, rhinoconjunctivitis or atopic dermatitis. However, among children with these diseases, there were significant associations between non-dietary exposures to DnBP, BBzP and DEHP in the indoor environment (mass fractions in dust or daily indoor intakes from dust ingestion, inhalation and dermal absorption) and allergic sensitization. Some exposure pathways were more strongly associated with sensitization than others, although the results are not conclusive and require confirmation. A number of the associations depended on accounting for a child's exposure in more than one environment (i.e., daycare facility as well as home). Significant associations were not observed between phthalate metabolites in urine, which reflected exposure from diet as well as indoor pathways, and allergic sensitization.
Collapse
|
56
|
Liu C, Zhang Y, Weschler CJ. The impact of mass transfer limitations on size distributions of particle associated SVOCs in outdoor and indoor environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 497-498:401-411. [PMID: 25146909 DOI: 10.1016/j.scitotenv.2014.07.095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/18/2014] [Accepted: 07/24/2014] [Indexed: 06/03/2023]
Abstract
Semi-volatile organic compounds (SVOCs) partition between the gas phase and airborne particles. The size distribution of particle-associated SVOCs impacts their fate in outdoor and indoor environments, as well as human exposure to these compounds and subsequent health risks. Allen et al. (1996) previously proposed that the rate of mass transfer can impact polycyclic aromatic hydrocarbon (PAH) partitioning among different sized particles, especially for time scales relevant to urban aerosols. The present study quantitatively builds on this idea, presenting a model that incorporates dynamic SVOC/particle interaction and applying this model to typical outdoor and indoor scenarios. The model indicates that the impact of mass transfer limitations on the size distribution of a particle-associated SVOC can be evaluated by the ratio of the time to achieve gas-particle equilibrium relative to the residence time of particles. The higher this ratio, the greater the influence of mass transfer limitations on the size distribution of particle-associated SVOCs. The influence of such constraints is largest on the fraction of particle-associated SVOCs in the coarse mode (>2 μm). Predictions from the model have been found to be in reasonable agreement with size distributions measured for PAHs at roadside and suburban locations in Japan. The model also quantitatively explains shifts in the size distributions of particle associated SVOCs compared to those for particle mass, and the manner in which these shifts vary with temperature and an SVOC's molecular weight.
Collapse
|
57
|
Schripp T, Salthammer T, Fauck C, Bekö G, Weschler CJ. Latex paint as a delivery vehicle for diethylphthalate and di-n-butylphthalate: predictable boundary layer concentrations and emission rates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 494-495:299-305. [PMID: 25058896 DOI: 10.1016/j.scitotenv.2014.06.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 06/03/2023]
Abstract
The description of emission processes of volatile and semi-volatile organic compounds (VOCs and SVOCs) from building products requires a detailed understanding of the material and the air flow conditions at the surface boundary. The mass flux between the surface of the material and air depends on the mass transfer coefficient (hm) through the boundary layer, the gas phase concentration of the target compound immediately adjacent to the material (y0), and the gas-phase concentration in bulk air (y(t)). In the present study emission experiments were performed in two chambers of quite different sizes (0.25 m(3) and 55 m(3)), and, in the larger chamber, at two different temperatures (23°C and 30°C). The emitting material was latex wall paint that had been doped with two plasticizers, diethylphthalate (DEP) and di-n-butylphthalate (DnBP). The phthalate content in the paint was varied in the small chamber experiment to evaluate the impact of the initial concentration in the bulk material (C0) on the emission rate. Boundary layer theory was applied to calculate hm for the specific phthalates from the Sherwood number (Sh) and the diffusion coefficient (Dair). Then y0 was determined based on the bulk gas-phase concentration at steady state (y¯). For both, DEP and DnBP, the y0 obtained was lower than the respective saturation vapor pressure (Ps). Furthermore, for both phthalates in latex paint, the material/air partition coefficient (C0/y0) was close in value to the octanol/air partition coefficient (KOA). This study provides a basis for designing phthalate emitting reference materials that mimic the emission behavior of common building materials.
Collapse
|
58
|
Gong M, Zhang Y, Weschler CJ. Measurement of phthalates in skin wipes: estimating exposure from dermal absorption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7428-7435. [PMID: 24911978 DOI: 10.1021/es501700u] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study has determined the levels of six phthalates (dimethyl phthalate (DMP), diethyl phthalate (DEP), di(isobutyl) phthalate (DiBP), di(n-butyl) phthalate (DnBP), butyl benzyl phthalate (BBzP), and di(2-ethylhexyl) phthalate (DEHP)) in skin wipes; examined factors that might influence the levels, including body location, time of sampling, and hand-washing; and estimated dermal absorption based on the measured levels. Skin wipes were collected from the forehead, forearm, back-of-hand, and palm of 20 participants using gauze pads moistened with isopropanol. DiBP, DnBP, and DEHP were most frequently detected; DEHP levels were substantially higher than DnBP and DiBP levels, and DnBP levels were somewhat lower than DiBP levels. The levels differed at different body locations, with palm > back-of-hand > forearm ≥ forehead. Repeated wipe sampling from six participants over a 1 month period indicated that levels at the same body location did not vary significantly. The estimated median total dermal absorption from skin surface lipids on the palm, back-of-hand, arm, and head are 0.48, 0.68, and 0.66 (μg/kg)/day for DiBP, DnBP, and DEHP, respectively. These estimates are roughly 10-20% of the total uptake reported for Chinese adults and suggest that dermal absorption contributes significantly to the uptake of these phthalates. Washing with soap and water removed more than 50% of the phthalates on the hands and may be a useful tool in decreasing aggregate phthalate exposure.
Collapse
|
59
|
Gong M, Zhang Y, Weschler CJ. Predicting dermal absorption of gas-phase chemicals: transient model development, evaluation, and application. INDOOR AIR 2014; 24:292-306. [PMID: 24245588 DOI: 10.1111/ina.12079] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/13/2013] [Indexed: 05/27/2023]
Abstract
UNLABELLED A transient model is developed to predict dermal absorption of gas-phase chemicals via direct air-to-skin-to-blood transport under non-steady-state conditions. It differs from published models in that it considers convective mass-transfer resistance in the boundary layer of air adjacent to the skin. Results calculated with this transient model are in good agreement with the limited experimental results that are available for comparison. The sensitivity of the modeled estimates to key parameters is examined. The model is then used to estimate air-to-skin-to-blood absorption of six phthalate esters for scenarios in which (A) a previously unexposed occupant encounters gas-phase phthalates in three different environments over a single 24-h period; (B) the same as 'A', but the pattern is repeated for seven consecutive days. In the 24-h scenario, the transient model predicts more phthalate absorbed into skin and less absorbed into blood than would a steady-state model. In the 7-day scenario, results calculated by the transient and steady-state models converge over a time period that varies between 3 and 4 days for all but the largest phthalate (DEHP). Dermal intake is comparable to or larger than inhalation intake for DEP, DiBP, DnBP, and BBzP in Scenario 'A' and for all six phthalates in Scenario 'B'. PRACTICAL IMPLICATIONS Dermal absorption from air has often been overlooked in exposure assessments. However, our transient model suggests that dermal intake of certain gas-phase phthalate esters is comparable to, or larger than, inhalation intake under commonly occurring indoor conditions. This may also be the case for other organic chemicals that have physicochemical properties that favor dermal absorption directly from air. Consequently, this pathway should be included in aggregate exposure and risk assessments. Furthermore, under conditions where the exposure concentrations are changing or there is insufficient time to achieve steady-state, the transient model presented in this study is more appropriate for estimating dermal absorption than is a steady-state model.
Collapse
|
60
|
Callesen M, Bekö G, Weschler CJ, Sigsgaard T, Jensen TK, Clausen G, Toftum J, Norberg LA, Høst A. Associations between selected allergens, phthalates, nicotine, polycyclic aromatic hydrocarbons, and bedroom ventilation and clinically confirmed asthma, rhinoconjunctivitis, and atopic dermatitis in preschool children. INDOOR AIR 2014; 24:136-147. [PMID: 23869823 DOI: 10.1111/ina.12060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 07/12/2013] [Indexed: 06/02/2023]
Abstract
Previous studies, often using data from questionnaires, have reported associations between various characteristics of indoor environments and allergic disease. The aim of this study has been to investigate possible associations between objectively assessed indoor environmental factors and clinically confirmed asthma, rhinoconjunctivitis, and atopic dermatitis. The study is a cross-sectional case-control study of 500 children aged 3-5 years from Odense, Denmark. The 200 cases had at least two parentally reported allergic diseases, while the 300 controls were randomly selected from 2835 participating families. A single physician conducted clinical examinations of all 500 children. Children from the initially random control group with clinically confirmed allergic disease were subsequently excluded from the control group and admitted in the case group, leaving 242 in the healthy control group. For most children, specific IgE's against various allergens were determined. In parallel, dust samples were collected and air change rates were measured in the children's bedrooms. The dust samples were analyzed for phthalate esters, polycyclic aromatic hydrocarbons (PAH), nicotine, and various allergens. Among children diagnosed with asthma, concentrations of nicotine were higher (P < 0.05) and cat allergens were lower (P < 0.05) compared with the healthy controls; air change rates were lower for those sensitized (specific IgE+) compared with those not sensitized (specific IgE-, P < 0.05); and dust mite allergens were higher for specific IgE+ cases compared with healthy controls (P < 0.05). When disease status was based solely on questionnaire responses (as opposed to physician diagnosis), significant associations were found between di(2-ethylhexyl) phthalate (DEHP) and dog allergens in dust and current wheeze.
Collapse
|
61
|
Weschler CJ, Nazaroff WW. Dermal uptake of organic vapors commonly found in indoor air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1230-7. [PMID: 24328315 DOI: 10.1021/es405490a] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Transdermal uptake directly from air is a potentially important yet largely overlooked pathway for human exposure to organic vapors indoors. We recently reported (Indoor Air 2012, 22, 356) that transdermal uptake directly from air could be comparable to or larger than intake via inhalation for many semivolatile organic compounds (SVOCs). Here, we extend that analysis to approximately eighty organic compounds that (a) occur commonly indoors and (b) are primarily in the gas-phase rather than being associated with particles. For some compounds, the modeled ratio of dermal-to-inhalation uptake is large. In this group are common parabens, lower molecular weight phthalates, o-phenylphenol, Texanol, ethylene glycol, and α-terpineol. For other compounds, estimated dermal uptakes are small compared to inhalation. Examples include aliphatic hydrocarbons, single ring aromatics, terpenes, chlorinated solvents, formaldehyde, and acrolein. Analysis of published experimental data for human subjects for twenty different organic compounds substantiates these model predictions. However, transdermal uptake rates from air have not been measured for the indoor organics that have the largest modeled ratios of dermal-to-inhalation uptake; for such compounds, the estimates reported here require experimental verification. In accounting for total exposure to indoor organic pollutants and in assessing potential health consequences of such exposures, it is important to consider direct transdermal absorption from air.
Collapse
|
62
|
Gligorovski S, Weschler CJ. The oxidative capacity of indoor atmospheres. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13905-13906. [PMID: 24303900 DOI: 10.1021/es404928t] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
63
|
Callesen M, Bekö G, Weschler CJ, Langer S, Brive L, Clausen G, Toftum J, Sigsgaard T, Høst A, Jensen TK. Phthalate metabolites in urine and asthma, allergic rhinoconjunctivitis and atopic dermatitis in preschool children. Int J Hyg Environ Health 2013; 217:645-52. [PMID: 24388279 DOI: 10.1016/j.ijheh.2013.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
Phthalate esters are among the most ubiquitous of indoor pollutants and have been associated with various adverse health effects. In the present study we assessed the cross-sectional association between eight different phthalate metabolites in urine and allergic disease in young children. As part of the Danish Indoor Environment and Children's Health study, urine samples were collected from 440 children aged 3-5 years, of whom 222 were healthy controls, 68 were clinically diagnosed with asthma, 76 with rhinoconjunctivitis and 81 with atopic dermatitis (disease subgroups are not mutually exclusive; some children had more than one disease). There were no statistically significant differences in the urine concentrations of phthalate metabolites between cases and healthy controls with the exception of MnBP and MECPP, which were higher in healthy controls compared with the asthma case group. In the crude analysis MnBP and MiBP were negatively associated with asthma. In the analysis adjusted for multiple factors, only a weak positive association between MEP in urine and atopic dermatitis was found; there were no positive associations between any phthalate metabolites in urine and either asthma or rhinoconjunctivitis. These findings appear to contradict earlier studies. Differences may be due to higher exposures to certain phthalates (e.g., BBzP) via non-dietary pathways in earlier studies, phthalates serving as surrogates for an agent associated with asthma (e.g., PVC flooring) in previous studies but not the present study or altered cleaning habits and the use of "allergy friendly" products by parents of children with allergic disease in the current study in contrast to studies conducted earlier.
Collapse
|
64
|
Bekö G, Weschler CJ, Wierzbicka A, Karottki DG, Toftum J, Loft S, Clausen G. Ultrafine particles: exposure and source apportionment in 56 Danish homes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10240-10248. [PMID: 23957328 DOI: 10.1021/es402429h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Particle number (PN) concentrations (10-300 nm in size) were continuously measured over a period of ~45 h in 56 residences of nonsmokers in Copenhagen, Denmark. The highest concentrations were measured when occupants were present and awake (geometric mean, GM: 22.3 × 10(3) cm(-3)), the lowest when the homes were vacant (GM: 6.1 × 10(3) cm(-3)) or the occupants were asleep (GM: 5.1 × 10(3) cm(-3)). Diary entries regarding occupancy and particle related activities were used to identify source events and apportion the daily integrated exposure among sources. Source events clearly resulted in increased PN concentrations and decreased average particle diameter. For a given event, elevated particle concentrations persisted for several hours after the emission of fresh particles ceased. The residential daily integrated PN exposure in the 56 homes ranged between 37 × 10(3) and 6.0 × 10(6) particles per cm(3)·h/day (GM: 3.3 × 10(5) cm(-3)·h/day). On average, ~90% of this exposure occurred outside of the period from midnight to 6 a.m. Source events, especially candle burning, cooking, toasting, and unknown activities, were responsible on average for ~65% of the residential integrated exposure (51% without the unknown activities). Candle burning occurred in half of the homes where, on average, it was responsible for almost 60% of the integrated exposure.
Collapse
|
65
|
Zhang Y, Mo J, Weschler CJ. Reducing health risks from indoor exposures in rapidly developing urban China. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:751-5. [PMID: 23665813 PMCID: PMC3701998 DOI: 10.1289/ehp.1205983] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 04/23/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND Over the past two decades there has been a large migration of China's population from rural to urban regions. At the same time, residences in cities have changed in character from single-story or low-rise buildings to high-rise structures constructed and furnished with many synthetic materials. As a consequence, indoor exposures (to pollutants with outdoor and indoor sources) have changed significantly. OBJECTIVES We briefly discuss the inferred impact that urbanization and modernization have had on indoor exposures and public health in China. We argue that growing adverse health costs associated with these changes are not inevitable, and we present steps that could be taken to reduce indoor exposures to harmful pollutants. DISCUSSION As documented by China's Ministry of Health, there have been significant increases in morbidity and mortality among urban residents over the past 20 years. Evidence suggests that the population's exposure to air pollutants has contributed to increases in lung cancer, cardiovascular disease, pulmonary disease, and birth defects. Whether a pollutant has an outdoor or an indoor source, most exposure to the pollutant occurs indoors. Going forward, indoor exposures can be reduced by limiting the ingress of outdoor pollutants (while providing adequate ventilation with clean air), minimizing indoor sources of pollutants, updating government policies related to indoor pollution, and addressing indoor air quality during a building's initial design. CONCLUSIONS Taking the suggested steps could lead to significant reductions in morbidity and mortality, greatly reducing the societal costs associated with pollutant derived ill health.
Collapse
|
66
|
Weisel C, Weschler CJ, Mohan K, Vallarino J, Spengler JD. Ozone and ozone byproducts in the cabins of commercial aircraft. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:4711-7. [PMID: 23517299 PMCID: PMC3683839 DOI: 10.1021/es3046795] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The aircraft cabin represents a unique indoor environment due to its high surface-to-volume ratio, high occupant density, and the potential for high ozone concentrations at cruising altitudes. Ozone was continuously measured and air was sampled on sorbent traps, targeting carbonyl compounds, on 52 transcontinental U.S. or international flights between 2008 and 2010. The sampling was predominantly on planes that did not have ozone scrubbers (catalytic converters). Peak ozone levels on aircraft without catalytic convertors exceeded 100 ppb, with some flights having periods of more than an hour when the ozone levels were >75 ppb. Ozone was greatly reduced on relatively new aircraft with catalytic convertors, but ozone levels on two flights whose aircraft had older convertors were similar to those on planes without catalytic convertors. Hexanal, heptanal, octanal, nonanal, decanal, and 6-methyl-5-hepten-2-one (6-MHO) were detected in the aircraft cabin at sub- to low ppb levels. Linear regression models that included the log transformed mean ozone concentration, percent occupancy, and plane type were statistically significant and explained between 18 and 25% of the variance in the mixing ratio of these carbonyls. Occupancy was also a significant factor for 6-MHO, but not the linear aldehydes, consistent with 6-MHO's formation from the reaction between ozone and squalene, which is present in human skin oils.
Collapse
|
67
|
Bekö G, Weschler CJ, Langer S, Callesen M, Toftum J, Clausen G. Children's phthalate intakes and resultant cumulative exposures estimated from urine compared with estimates from dust ingestion, inhalation and dermal absorption in their homes and daycare centers. PLoS One 2013; 8:e62442. [PMID: 23626820 PMCID: PMC3633888 DOI: 10.1371/journal.pone.0062442] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/21/2013] [Indexed: 11/24/2022] Open
Abstract
Total daily intakes of diethyl phthalate (DEP), di(n-butyl) phthalate (DnBP), di(isobutyl) phthalate (DiBP), butyl benzyl phthalate (BBzP) and di(2-ethylhexyl) phthalate (DEHP) were calculated from phthalate metabolite levels measured in the urine of 431 Danish children between 3 and 6 years of age. For each child the intake attributable to exposures in the indoor environment via dust ingestion, inhalation and dermal absorption were estimated from the phthalate levels in the dust collected from the child's home and daycare center. Based on the urine samples, DEHP had the highest total daily intake (median: 4.42 µg/d/kg-bw) and BBzP the lowest (median: 0.49 µg/d/kg-bw). For DEP, DnBP and DiBP, exposures to air and dust in the indoor environment accounted for approximately 100%, 15% and 50% of the total intake, respectively, with dermal absorption from the gas-phase being the major exposure pathway. More than 90% of the total intake of BBzP and DEHP came from sources other than indoor air and dust. Daily intake of DnBP and DiBP from all exposure pathways, based on levels of metabolites in urine samples, exceeded the Tolerable Daily Intake (TDI) for 22 and 23 children, respectively. Indoor exposures resulted in an average daily DiBP intake that exceeded the TDI for 14 children. Using the concept of relative cumulative Tolerable Daily Intake (TDI(cum)), which is applicable for phthalates that have established TDIs based on the same health endpoint, we examined the cumulative total exposure to DnBP, DiBP and DEHP from all pathways; it exceeded the tolerable levels for 30% of the children. From the three indoor pathways alone, several children had a cumulative intake that exceeded TDI(cum). Exposures to phthalates present in the air and dust indoors meaningfully contribute to a child's total intake of certain phthalates. Such exposures, by themselves, may lead to intakes exceeding current limit values.
Collapse
|
68
|
Fadeyi MO, Weschler CJ, Tham KW, Wu WY, Sultan ZM. Impact of human presence on secondary organic aerosols derived from ozone-initiated chemistry in a simulated office environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3933-3941. [PMID: 23488675 DOI: 10.1021/es3050828] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Several studies have documented reductions in indoor ozone levels that occur as a consequence of its reactions with the exposed skin, hair and clothing of human occupants. One would anticipate that consumption of ozone via such reactions would impact co-occurring products derived from ozone's reactions with various indoor pollutants. The present study examines this possibility for secondary organic aerosols (SOA) derived from ozone-initiated chemistry with limonene, a commonly occurring indoor terpene. The experiments were conducted at realistic ozone and limonene concentrations in a 240 m(3) chamber configured to simulate a typical open office environment. During an experiment the chamber was either unoccupied or occupied with 18-20 workers. Ozone and particle levels were continuously monitored using a UV photometric ozone analyzer and a fast mobility particle sizer (FMPS), respectively. Under otherwise identical conditions, when workers were present in the simulated office the ozone concentrations were approximately two-thirds and the SOA mass concentrations were approximately one-half of those measured when the office was unoccupied. This was observed whether new or used filters were present in the air handling system. These results illustrate the importance of accounting for occupancy when estimating human exposure to pollutants in various indoor settings.
Collapse
|
69
|
Langer S, Bekö G, Weschler CJ, Brive LM, Toftum J, Callesen M, Clausen G. Phthalate metabolites in urine samples from Danish children and correlations with phthalates in dust samples from their homes and daycare centers. Int J Hyg Environ Health 2013; 217:78-87. [PMID: 23623597 DOI: 10.1016/j.ijheh.2013.03.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/19/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
Abstract
Around the world humans use products that contain phthalates, and human exposure to certain of these phthalates has been associated with various adverse health effects. The aim of the present study has been to determine the concentrations of the metabolites of diethyl phthalate (DEP), di(n-butyl) phthalate (DnBP), di(iso-butyl) phthalate (DiBP), butyl benzyl phthalate (BBzP) and di(2-ethylhexyl) phthalate (DEHP) in urine samples from 441 Danish children (3-6 years old). These children were subjects in the Danish Indoor Environment and Children's Health study. As part of each child's medical examination, a sample from his or her first morning urination was collected. These samples were subsequently analyzed for metabolites of the targeted phthalates. The measured concentrations of each metabolite were approximately log-normally distributed, and the metabolite concentrations significantly correlated with one another. Additionally, the mass fractions of DEP, DnBP, DiBP and BBzP in dust collected from the children's bedrooms and daycare centers significantly correlated with the concentrations of these phthalates' metabolites (monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP) and monobenzyl phthalate (MBzP), respectively) in the children's urine. Such correlations indicate that indoor exposures meaningfully contributed to the Danish children's intake of DEP, DnBP, DiBP and BBzP. This was not the case for DEHP. The urine concentrations of the phthalate metabolites measured in the present study were remarkably similar to those measured in urine samples from children living in countries distributed over four continents. These similarities reflect the globalization of children's exposure to phthalate containing products.
Collapse
|
70
|
Nazaroff W, Weschler CJ, Little JC, Hubal EAC. Intake to production ratio: a measure of exposure intimacy for manufactured chemicals. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1678-83. [PMID: 23222017 PMCID: PMC3546365 DOI: 10.1289/ehp.1204992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 09/25/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND Limited data are available to assess human exposure to thousands of chemicals currently in commerce. Information that relates human intake of a chemical to its production and use can help inform understanding of mechanisms and pathways that control exposure and support efforts to protect public health. OBJECTIVES We introduce the intake-to-production ratio (IPR) as an economy-wide quantitative indicator of the extent to which chemical production results in human exposure. METHODS The IPR was evaluated as the ratio of two terms: aggregate rate of chemical uptake in a human population (inferred from urinary excretion data) divided by the rate that chemical is produced in or imported into that population's economy. We used biomonitoring data from the U.S. Centers for Disease Control and Prevention along with chemical manufacturing data reported by the U.S. Environmental Protection Agency, as well as other published data, to estimate the IPR for nine chemicals in the United States. Results are reported in units of parts per million, where 1 ppm indicates 1 g of chemical uptake for every million grams of economy-wide use. RESULTS Estimated IPR values for the studied compounds span many orders of magnitude from a low of 0.6 ppm for bisphenol A to a high of > 180,000 ppm for methyl paraben. Intermediate results were obtained for five phthalates and two chlorinated aromatic compounds: 120 ppm for butyl benzyl phthalate, 670 ppm for di(2-ethylhexyl) phthalate, 760 ppm for di(n-butyl) phthalate, 1,040 ppm for para-dichlorobenzene, 6,800 ppm for di(isobutyl) phthalate, 7,700 ppm for diethyl phthalate, and 8,000-24,000 ppm (range) for triclosan. CONCLUSION The IPR is well suited as an aggregate metric of exposure intensity for characterizing population-level exposure to synthesized chemicals, particularly those that move fairly rapidly from manufacture to human intake and have relatively stable production and intake rates.
Collapse
|
71
|
Little JC, Weschler CJ, Nazaroff WW, Liu Z, Cohen Hubal EA. Rapid methods to estimate potential exposure to semivolatile organic compounds in the indoor environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11171-8. [PMID: 22856628 DOI: 10.1021/es301088a] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A systematic and efficient strategy is needed to assess and manage potential risks to human health that arise from the manufacture and use of thousands of chemicals. Among available tools for rapid assessment of large numbers of chemicals, significant gaps are associated with the capability to evaluate exposures that occur indoors. For semivolatile organic compounds (SVOCs), exposure is strongly influenced by the types of products in which these SVOCs occur. We propose methods for obtaining screening-level estimates for two primary SVOC source classes: additives in products used indoors and ingredients in products sprayed or applied to interior surfaces. Accounting for product use, emission characteristics, and the properties of the SVOCs, we estimate exposure via inhalation of SVOCs in the gas-phase, inhalation of SVOCs sorbed to airborne particles, ingestion of SVOCs sorbed to dust, and dermal sorption of SVOCs from the air into the blood. We also evaluate how exposure to the general public will change if chemical substitutions are made. Further development of a comprehensive set of models including the other SVOC-containing products and the other SVOC exposure pathways, together with appropriate methods for estimating or measuring the key parameters (in particular, the gas-phase concentration in equilibrium with the material-phase concentration of the SVOC in the product, or y(0)), is needed. When combined with rapid toxicity estimates, screening-level exposure estimates can contribute to health-risk-based prioritization of a wide range of chemicals of concern.
Collapse
|
72
|
Abstract
UNLABELLED This paper critically examines indoor exposure to semivolatile organic compounds (SVOCs) via dermal pathways. First, it demonstrates that--in central tendency--an SVOC's abundance on indoor surfaces and in handwipes can be predicted reasonably well from gas-phase concentrations, assuming that thermodynamic equilibrium prevails. Then, equations are developed, based upon idealized mass-transport considerations, to estimate transdermal penetration of an SVOC either from its concentration in skin-surface lipids or its concentration in air. Kinetic constraints limit air-to-skin transport in the case of SVOCs that strongly sorb to skin-surface lipids. Air-to-skin transdermal uptake is estimated to be comparable to or larger than inhalation intake for many SVOCs of current or potential interest indoors, including butylated hydroxytoluene, chlordane, chlorpyrifos, diethyl phthalate, Galaxolide, geranyl acetone, nicotine (in free-base form), PCB28, PCB52, Phantolide, Texanol and Tonalide. Although air-to-skin transdermal uptake is anticipated to be slow for bisphenol A, we find that transdermal permeation may nevertheless be substantial following its transfer to skin via contact with contaminated surfaces. The paper concludes with explorations of the influence of particles and dust on dermal exposure, the role of clothing and bedding as transport vectors, and the potential significance of hair follicles as transport shunts through the epidermis. PRACTICAL IMPLICATIONS Human exposure to indoor pollutants can occur through dietary and nondietary ingestion, inhalation, and dermal absorption. Many factors influence the relative importance of these pathways, including physical and chemical properties of the pollutants. This paper argues that exposure to indoor semivolatile organic compounds (SVOCs) through the dermal pathway has often been underestimated. Transdermal permeation of SVOCs can be substantially greater than is commonly assumed. Transport of SVOCs from the air to and through the skin is typically not taken into account in exposure assessments. Yet, for certain SVOCs, intake through skin is estimated to be substantially larger than intake through inhalation. Exposure scientists, risk assessors, and public health officials should be mindful of the dermal pathway when estimating exposures to indoor SVOCs. Also, they should recognize that health consequences vary with exposure pathway. For example, an SVOC that enters the blood through the skin does not encounter the same detoxifying enzymes that an ingested SVOC would experience in the stomach, intestines, and liver before it enters the blood.
Collapse
|
73
|
Weschler CJ, Kelty SP, Lingousky JE. The Effect of Building Fan Operation on Indoor-Outdoor Dust Relationships. ACTA ACUST UNITED AC 2012. [DOI: 10.1080/00022470.1983.10465619] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
74
|
Chen C, Zhao B, Weschler CJ. Assessing the influence of indoor exposure to "outdoor ozone" on the relationship between ozone and short-term mortality in U.S. communities. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:235-40. [PMID: 22100611 PMCID: PMC3279450 DOI: 10.1289/ehp.1103970] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 11/18/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND City-to-city differences have been reported for the increase in short-term mortality associated with a given increase in ozone concentration (ozone mortality coefficient). Although ozone concentrations are monitored at central outdoor locations, a large fraction of total ozone exposure occurs indoors. OBJECTIVES To clarify the influence of indoor exposure to ozone of outdoor origin on short-term mortality, we conducted an analysis to determine whether variation in ozone mortality coefficients among U.S. cities might be partly explained by differences in total ozone exposure (from both outdoor and indoor exposures) resulting from the same outdoor ozone concentration. METHODS We estimated average annual air change rates (the overall rate at which indoor air is replaced with outdoor air) and used these to estimate the change in total ozone exposure per unit change in outdoor ozone exposure (ozone exposure coefficient) for 18 cities that had been included in the National Morbidity and Mortality Air Pollution Study (NMMAPS). We then examined associations between both parameters and published ozone mortality coefficients. RESULTS For the 18 targeted NMMAPS cities, the association between ozone mortality coefficients and ozone exposure coefficients was strong (1-hr ozone metric: R2 = 0.58, p < 0.001; 8-hr ozone: R2 = 0.56, p < 0.001; 24-hr ozone: R2 = 0.48, p = 0.001). When extended to another 72 NMMAPS cities, the associations remained strong (R2 = 0.47-0.63; p < 0.001). CONCLUSIONS Differences in ozone mortality coefficients among cities appear to partially reflect differences in total ozone exposure resulting from differences in the amount of outdoor ozone that is transported indoors.
Collapse
|
75
|
Clausen G, Bekö G, Corsi RL, Gunnarsen L, Nazaroff WW, Olesen BW, Sigsgaard T, Sundell J, Toftum J, Weschler CJ. Reflections on the state of research: indoor environmental quality. INDOOR AIR 2011; 21:219-230. [PMID: 21204991 DOI: 10.1111/j.1600-0668.2010.00706.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
UNLABELLED More than 30 years after the First International Indoor Climate Symposium, ten researchers from the USA, Slovakia, Sweden, and Denmark gathered to review the current status of indoor environmental research. We initiated our review with discussions during the 1-day meeting and followed that with parallel research and writing efforts culminating with internal review and revision cycles. In this paper, we present our choices for the most important research findings on indoor environmental quality from the past three decades followed by a discussion of the most important research questions in our field today. We then continue with a discussion on whether there are research areas for which we can 'close the book' and say that we already know what is needed. Finally, we discuss whether we can maintain our identity in the future or it is time to team up with new partners. PRACTICAL IMPLICATIONS In the early years of this field, the accumulated knowledge was small and it was possible for any researcher to acquire a complete understanding. To do so has become impossible today as what we know has grown to exceed the learning capacity of any person. These circumstances challenge us to work collectively to synthesize what we do know and to define clearly what remains to be learned. If we fail to do these things well, we risk repeating research without memory, an inefficiency that we cannot afford.
Collapse
|