51
|
Nicoli ER, Weston MR, Hackbarth M, Becerril A, Larson A, Zein WM, Baker PR, Burke JD, Dorward H, Davids M, Huang Y, Adams DR, Zerfas PM, Chen D, Markello TC, Toro C, Wood T, Elliott G, Vu M, Zheng W, Garrett LJ, Tifft CJ, Gahl WA, Day-Salvatore DL, Mindell JA, Malicdan MCV, Acosta MT, Adams DR, Agrawal P, Alejandro ME, Allard P, Alvey J, Andrews A, Ashley EA, Azamian MS, Bacino CA, Bademci G, Baker E, Balasubramanyam A, Baldridge D, Bale J, Barbouth D, Batzli GF, Bayrak-Toydemir P, Beggs AH, Bejerano G, Bellen HJ, Bernstein JA, Berry GT, Bican A, Bick DP, Birch CL, Bivona S, Bohnsack J, Bonnenmann C, Bonner D, Boone BE, Bostwick BL, Botto L, Briere LC, Brokamp E, Brown DM, Brush M, Burke EA, Burrage LC, Butte MJ, Carey J, Carrasquillo O, Chang TCP, Chao HT, Clark GD, Coakley TR, Cobban LA, Cogan JD, Cole FS, Colley HA, Cooper CM, Cope H, Craigen WJ, D'Souza P, Dasari S, Davids M, Dayal JG, Dell'Angelica EC, Dhar SU, Dorrani N, Dorset DC, Douine ED, Draper DD, Duncan L, Eckstein DJ, Emrick LT, Eng CM, Esteves C, Estwick T, Fernandez L, Ferreira C, Fieg EL, Fisher PG, Fogel BL, Forghani I, Fresard L, Gahl WA, Godfrey RA, Goldman AM, Goldstein DB, Gourdine JPF, Grajewski A, Groden CA, Gropman AL, Haendel M, Hamid R, Hanchard NA, Hayes N, High F, Holm IA, Hom J, Huang A, Huang Y, Isasi R, Jamal F, Jiang YH, Johnston JM, Jones AL, Karaviti L, Kelley EG, Kiley D, Koeller DM, Kohane IS, Kohler JN, Krakow D, Krasnewich DM, Korrick S, Koziura M, Krier JB, Kyle JE, Lalani SR, Lam B, Lanpher BC, Lanza IR, Lau CC, Lazar J, LeBlanc K, Lee BH, Lee H, Levitt R, Levy SE, Lewis RA, Lincoln SA, Liu P, Liu XZ, Longo N, Loo SK, Loscalzo J, Maas RL, Macnamara EF, MacRae CA, Maduro VV, Majcherska MM, Malicdan MCV, Mamounas LA, Manolio TA, Mao R, Markello TC, Marom R, Marth G, Martin BA, Martin MG, Martínez-Agosto JA, Marwaha S, May T, McCauley J, McConkie-Rosell A, McCormack CE, McCray AT, Metz TO, Might M, Morava-Kozicz E, Moretti PM, Morimoto M, Mulvihill JJ, Murdock DR, Nath A, Nelson SF, Newberry JS, Newman JH, Nicholas SK, Novacic D, Oglesbee D, Orengo JP, Pace L, Pak S, Pallais JC, Palmer CG, Papp JC, Parker NH, Phillips JA, Posey JE, Postlethwait JH, Potocki L, Pusey BN, Quinlan A, Raja AN, Renteria G, Reuter CM, Rives L, Robertson AK, Rodan LH, Rosenfeld JA, Rowley RK, Ruzhnikov M, Sacco R, Sampson JB, Samson SL, Saporta M, Schaechter J, Schedl T, Schoch K, Scott DA, Shakachite L, Sharma P, Shashi V, Shields K, Shin J, Signer R, Sillari CH, Silverman EK, Sinsheimer JS, Sisco K, Smith KS, Solnica-Krezel L, Spillmann RC, Stoler JM, Stong N, Sullivan JA, Sutton S, Sweetser DA, Tabor HK, Tamburro CP, Tan QKG, Tekin M, Telischi F, Thorson W, Tifft CJ, Toro C, Tran AA, Urv TK, Velinder M, Viskochil D, Vogel TP, Wahl CE, Walley NM, Walsh CA, Walker M, Wambach J, Wan J, Wang LK, Wangler MF, Ward PA, Waters KM, Webb-Robertson BJM, Wegner D, Westerfield M, Wheeler MT, Wise AL, Wolfe LA, Woods JD, Worthey EA, Yamamoto S, Yang J, Yoon AJ, Yu G, Zastrow DB, Zhao C, Zuchner S. Lysosomal Storage and Albinism Due to Effects of a De Novo CLCN7 Variant on Lysosomal Acidification. Am J Hum Genet 2019; 104:1127-1138. [PMID: 31155284 PMCID: PMC6562152 DOI: 10.1016/j.ajhg.2019.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
Optimal lysosome function requires maintenance of an acidic pH maintained by proton pumps in combination with a counterion transporter such as the Cl-/H+ exchanger, CLCN7 (ClC-7), encoded by CLCN7. The role of ClC-7 in maintaining lysosomal pH has been controversial. In this paper, we performed clinical and genetic evaluations of two children of different ethnicities. Both children had delayed myelination and development, organomegaly, and hypopigmentation, but neither had osteopetrosis. Whole-exome and -genome sequencing revealed a de novo c.2144A>G variant in CLCN7 in both affected children. This p.Tyr715Cys variant, located in the C-terminal domain of ClC-7, resulted in increased outward currents when it was heterologously expressed in Xenopus oocytes. Fibroblasts from probands displayed a lysosomal pH approximately 0.2 units lower than that of control cells, and treatment with chloroquine normalized the pH. Primary fibroblasts from both probands also exhibited markedly enlarged intracellular vacuoles; this finding was recapitulated by the overexpression of human p.Tyr715Cys CLCN7 in control fibroblasts, reflecting the dominant, gain-of-function nature of the variant. A mouse harboring the knock-in Clcn7 variant exhibited hypopigmentation, hepatomegaly resulting from abnormal storage, and enlarged vacuoles in cultured fibroblasts. Our results show that p.Tyr715Cys is a gain-of-function CLCN7 variant associated with developmental delay, organomegaly, and hypopigmentation resulting from lysosomal hyperacidity, abnormal storage, and enlarged intracellular vacuoles. Our data supports the hypothesis that the ClC-7 antiporter plays a critical role in maintaining lysosomal pH.
Collapse
|
52
|
Arbabi A, Adams DR, Fidler S, Brudno M. Identifying Clinical Terms in Medical Text Using Ontology-Guided Machine Learning. JMIR Med Inform 2019; 7:e12596. [PMID: 31094361 PMCID: PMC6533869 DOI: 10.2196/12596] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/20/2019] [Accepted: 03/29/2019] [Indexed: 01/22/2023] Open
Abstract
Background Automatic recognition of medical concepts in unstructured text is an important component of many clinical and research applications, and its accuracy has a large impact on electronic health record analysis. The mining of medical concepts is complicated by the broad use of synonyms and nonstandard terms in medical documents. Objective We present a machine learning model for concept recognition in large unstructured text, which optimizes the use of ontological structures and can identify previously unobserved synonyms for concepts in the ontology. Methods We present a neural dictionary model that can be used to predict if a phrase is synonymous to a concept in a reference ontology. Our model, called the Neural Concept Recognizer (NCR), uses a convolutional neural network to encode input phrases and then rank medical concepts based on the similarity in that space. It uses the hierarchical structure provided by the biomedical ontology as an implicit prior embedding to better learn embedding of various terms. We trained our model on two biomedical ontologies—the Human Phenotype Ontology (HPO) and Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT). Results We tested our model trained on HPO by using two different data sets: 288 annotated PubMed abstracts and 39 clinical reports. We achieved 1.7%-3% higher F1-scores than those for our strongest manually engineered rule-based baselines (P=.003). We also tested our model trained on the SNOMED-CT by using 2000 Intensive Care Unit discharge summaries from MIMIC (Multiparameter Intelligent Monitoring in Intensive Care) and achieved 0.9%-1.3% higher F1-scores than those of our baseline. The results of our experiments show high accuracy of our model as well as the value of using the taxonomy structure of the ontology in concept recognition. Conclusion Most popular medical concept recognizers rely on rule-based models, which cannot generalize well to unseen synonyms. In addition, most machine learning methods typically require large corpora of annotated text that cover all classes of concepts, which can be extremely difficult to obtain for biomedical ontologies. Without relying on large-scale labeled training data or requiring any custom training, our model can be efficiently generalized to new synonyms and performs as well or better than state-of-the-art methods custom built for specific ontologies.
Collapse
|
53
|
Onojafe IF, Megan LH, Melch MG, Aderemi JO, Alur RP, Abu-Asab MS, Chan CC, Bernardini IM, Albert JS, Cogliati T, Adams DR, Brooks BP. Minimal Efficacy of Nitisinone Treatment in a Novel Mouse Model of Oculocutaneous Albinism, Type 3. Invest Ophthalmol Vis Sci 2019; 59:4945-4952. [PMID: 30347088 PMCID: PMC6181301 DOI: 10.1167/iovs.16-20293] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Oral nitisinone has been shown to increase fur and ocular pigmentation in a mouse model of oculocutaneous albinism (OCA) due to hypomorphic mutations in tyrosinase (TYR), OCA1B. This study determines if nitisinone can improve ocular and/or fur pigmentation in a mouse model of OCA type 3 (OCA3), caused by mutation of the tyrosinase-related protein 1 (Tyrp1) gene. Methods Mice homozygous for a null allele in the Tyrp1 gene (C57BL/6J-Tyrp1 b-J/J) were treated with 8 mg/kg nitisinone or vehicle every other day by oral gavage. Changes in fur and ocular melanin pigmentation were monitored. Mature ocular melanosome number and size were quantified in pigmented ocular structures by electron microscopy. Results C57BL/6J-Tyrp1 b-J/J mice carry a novel c.403T>A; 404delG mutation in Tyrp1, predicted to result in premature truncation of the TYRP1 protein. Nitisinone treatment resulted in an approximately 7-fold increase in plasma tyrosine concentrations without overt toxicity. After 1 month of treatment, no change in the color of fur or pigmented ocular structures was observed. The distribution of melanosome cross-sectional area was unchanged in ocular tissues. There was no significant difference in the number of pigmented melanosomes in the RPE/choroid of nitisinone-treated and control groups. However, there was a significant difference in the number of pigmented melanosomes in the iris. Conclusions Treatment of a mouse model of OCA3 with oral nitisinone did not have a favorable clinical effect on melanin production and minimally affected the number of pigmented melanosomes in the iris stroma. As such, treatment of OCA3 patients with nitisinone is unlikely to be therapeutic.
Collapse
|
54
|
Sharma P, Reichert M, Lu Y, Markello TC, Adams DR, Steinbach PJ, Fuqua BK, Parisi X, Kaler SG, Vulpe CD, Anderson GJ, Gahl WA, Malicdan MCV. Biallelic HEPHL1 variants impair ferroxidase activity and cause an abnormal hair phenotype. PLoS Genet 2019; 15:e1008143. [PMID: 31125343 PMCID: PMC6534290 DOI: 10.1371/journal.pgen.1008143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/16/2019] [Indexed: 11/18/2022] Open
Abstract
Maintenance of the correct redox status of iron is functionally important for critical biological processes. Multicopper ferroxidases play an important role in oxidizing ferrous iron, released from the cells, into ferric iron, which is subsequently distributed by transferrin. Two well-characterized ferroxidases, ceruloplasmin (CP) and hephaestin (HEPH) facilitate this reaction in different tissues. Recently, a novel ferroxidase, Hephaestin like 1 (HEPHL1), also known as zyklopen, was identified. Here we report a child with compound heterozygous mutations in HEPHL1 (NM_001098672) who presented with abnormal hair (pili torti and trichorrhexis nodosa) and cognitive dysfunction. The maternal missense mutation affected mRNA splicing, leading to skipping of exon 5 and causing an in-frame deletion of 85 amino acids (c.809_1063del; p.Leu271_ala355del). The paternal mutation (c.3176T>C; p.Met1059Thr) changed a highly conserved methionine that is part of a typical type I copper binding site in HEPHL1. We demonstrated that HEPHL1 has ferroxidase activity and that the patient's two mutations exhibited loss of this ferroxidase activity. Consistent with these findings, the patient's fibroblasts accumulated intracellular iron and exhibited reduced activity of the copper-dependent enzyme, lysyl oxidase. These results suggest that the patient's biallelic variants are loss-of-function mutations. Hence, we generated a Hephl1 knockout mouse model that was viable and had curly whiskers, consistent with the hair phenotype in our patient. These results enhance our understanding of the function of HEPHL1 and implicate altered ferroxidase activity in hair growth and hair disorders.
Collapse
|
55
|
Adams DR, Tawati S, Berretta G, Rivas PL, Baiget J, Jiang Z, Alsfouk A, Mackay SP, Pyne NJ, Pyne S. Topographical Mapping of Isoform-Selectivity Determinants for J-Channel-Binding Inhibitors of Sphingosine Kinases 1 and 2. J Med Chem 2019; 62:3658-3676. [DOI: 10.1021/acs.jmedchem.9b00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
56
|
Power B, Ferreira CR, Chen D, Zein WM, O'Brien KJ, Introne WJ, Stephen J, Gahl WA, Huizing M, Malicdan MCV, Adams DR, Gochuico BR. Hermansky-Pudlak syndrome and oculocutaneous albinism in Chinese children with pigmentation defects and easy bruising. Orphanet J Rare Dis 2019; 14:52. [PMID: 30791930 PMCID: PMC6385472 DOI: 10.1186/s13023-019-1023-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/04/2019] [Indexed: 11/28/2022] Open
Abstract
Background Determining the etiology of oculocutaneous albinism is important for proper clinical management and to determine prognosis. The purpose of this study was to genotype and phenotype eight adopted Chinese children who presented with oculocutaneous albinism and easy bruisability. Results The patients were evaluated at a single center; their ages ranged from 3 to 8 years. Whole exome or direct sequencing showed that two of the children had Hermansky-Pudlak syndrome (HPS) type-1 (HPS-1), one had HPS-3, one had HPS-4, and four had non-syndromic oculocutaneous albinism associated with TYR variants (OCA1). Two frameshift variants in HPS1 (c.9delC and c.1477delA), one nonsense in HPS4 (c.416G > A), and one missense variant in TYR (c.1235C > T) were unreported. The child with HPS-4 is the first case with this subtype reported in the Chinese population. Hypopigmentation in patients with HPS was mild compared to that in OCA1 cases, who had severe pigment defects. Bruises, which may be more visible in patients with hypopigmentation, were found in all cases with either HPS or OCA1. Whole mount transmission electron microscopy demonstrated absent platelet dense granules in the HPS cases; up to 1.9 mean dense granules per platelet were found in those with OCA1. Platelet aggregation studies in OCA1 cases were inconclusive. Conclusions Clinical manifestations of oculocutaneous albinism and easy bruisability may be observed in children with HPS or OCA1. Establishing definitive diagnoses in children presenting with these phenotypic features is facilitated by genetic testing. Non-syndromic oculocutaneous albinism and various HPS subtypes, including HPS-4, are found in children of Chinese ancestry.
Collapse
|
57
|
Chin JJ, Behnam B, Davids M, Sharma P, Zein WM, Wang C, Chepa-Lotrea X, Gallantine WB, Toro C, Adams DR, Tifft CJ, Gahl WA, Malicdan MCV. Novel mutations in CLN6 cause late-infantile neuronal ceroid lipofuscinosis without visual impairment in two unrelated patients. Mol Genet Metab 2019; 126:188-195. [PMID: 30528883 DOI: 10.1016/j.ymgme.2018.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/02/2018] [Accepted: 12/02/2018] [Indexed: 12/25/2022]
Abstract
CLN6 is a transmembrane protein located in the endoplasmic reticulum that is involved in lysosomal acidification. Mutations in CLN6 cause late-infantile neuronal ceroid lipofuscinosis (LINCL), and teenage and adult onset NCL without visual impairment. Here we describe two pediatric patients with LINCL from unrelated families who were evaluated at the National Institutes of Health. Both children exhibited typical phenotypes associated with LINCL except that they lacked the expected visual impairment. Whole exome sequencing identified novel biallelic mutations in CLN6, i.e., c.218-220dupGGT (p.Trp73dup) and c.296A > G (p.Lys99Arg) in Proband 1 and homozygous c.723G > T (p.Met241Ile) in Proband 2. Expression analysis in dermal fibroblasts showed a small increase in CLN6 protein levels. Electron micrographs of these fibroblasts demonstrated large numbers of small membrane-bound vesicles, in addition to lipofuscin deposits. LysoTracker™ Red intensity was increased in fibroblasts from both patients. This study supports a role for CLN6 in lysosomal homeostasis, and highlights the importance of considering CLN6 mutations in the diagnosis of Batten Disease even in patients with normal vision.
Collapse
|
58
|
Gu F, Wu A, Gordon MG, Vlahos L, Macnamara S, Burke E, Malicdan MC, Adams DR, Tifft CJ, Toro C, Gahl WA, Markello TC. A suite of automated sequence analyses reduces the number of candidate deleterious variants and reveals a difference between probands and unaffected siblings. Genet Med 2019; 21:1772-1780. [PMID: 30700791 PMCID: PMC6669106 DOI: 10.1038/s41436-019-0434-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/03/2019] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Develop an automated exome analysis workflow that can produce a very small number of candidate variants yet still detect different numbers of deleterious variants between probands and unaffected siblings. METHODS Ninety-seven outbred nuclear families from the Undiagnosed Diseases Program/Network included single probands and the corresponding unaffected sibling(s). Single-nucleotide polymorphism (SNP) chip and exome analyses were performed on all, with proband and unaffected sibling considered independently as the target. The total burden of candidate genetic variants was summed for probands and siblings over all considered disease models. RESULTS Exome analysis workflow include automated programs for ethnicity-matched genotype calling, salvage pathway for Mendelian inconsistency, compound heterozygous recessive detection, BAM file regional curation, population frequency filtering, pedigree-aware BAM file noise evaluation, and exon deletion filtration. This workflow relied heavily on BAM file analysis. A greater average pathogenic variant number was found compared with unaffected siblings. This was significant (p < 0.05) when using published recommended thresholds, and implies that causal variants are retained in many probands' lists. CONCLUSION Using Mendelian and non-Mendelian models, this agnostic exome analysis shows a difference between a small group of probands and their unaffected siblings. This workflow produces candidate lists small enough to pursue with laboratory validation.
Collapse
|
59
|
Adams DR, Menezes S, Jauregui R, Valivullah ZM, Power B, Abraham M, Jeffrey BG, Garced A, Alur RP, Cunningham D, Wiggs E, Merideth MA, Chiang PW, Bernstein S, Ito S, Wakamatsu K, Jack RM, Introne WJ, Gahl WA, Brooks BP. One-year pilot study on the effects of nitisinone on melanin in patients with OCA-1B. JCI Insight 2019; 4:124387. [PMID: 30674731 PMCID: PMC6413781 DOI: 10.1172/jci.insight.124387] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/06/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND. Oculocutaneous albinism (OCA) results in reduced melanin synthesis, skin hypopigmentation, increased risk of UV-induced malignancy, and developmental eye abnormalities affecting vision. No treatments exist. We have shown that oral nitisinone increases ocular and fur pigmentation in a mouse model of one form of albinism, OCA-1B, due to hypomorphic mutations in the Tyrosinase gene. METHODS. In this open-label pilot study, 5 adult patients with OCA-1B established baseline measurements of iris, skin, and hair pigmentation and were treated over 12 months with 2 mg/d oral nitisinone. Changes in pigmentation and visual function were evaluated at 3-month intervals. RESULTS. The mean change in iris transillumination, a marker of melanin, from baseline was 1.0 ± 1.54 points, representing no change. The method of iris transillumination grading showed a high intergrader reliability (intraclass correlation coefficient ≥ 0.88 at each visit). The number of letters read (visual acuity) improved significantly at month 12 for both eyes (right eye, OD, mean 4.2 [95% CI, 0.3, 8.1], P = 0.04) and left eye (OS, 5 [1.0, 9.1], P = 0.003). Skin pigmentation on the inner bicep increased (M index increase = 1.72 [0.03, 3.41], P = 0.047). Finally, hair pigmentation increased by both reflectometry (M index [17.3 {4.4, 30.2}, P = 0.01]) and biochemically. CONCLUSION. Nitisinone did not result in an increase in iris melanin content but may increase hair and skin pigmentation in patients with OCA-1B. The iris transillumination grading scale used in this study proved robust, with potential for use in future clinical trials. TRIAL REGISTRATION. ClinicalTrials.gov NCT01838655. FUNDING. Intramural program of the National Eye Institute. Oral nitisinone may improve melanin pigmentation in patients with the OCA-1B form of albinism due to hypomorphic mutations in the tyrosinase gene.
Collapse
|
60
|
Machol K, Rousseau J, Ehresmann S, Garcia T, Nguyen TTM, Spillmann RC, Sullivan JA, Shashi V, Jiang YH, Stong N, Fiala E, Willing M, Pfundt R, Kleefstra T, Cho MT, McLaughlin H, Rosello Piera M, Orellana C, Martínez F, Caro-Llopis A, Monfort S, Roscioli T, Nixon CY, Buckley MF, Turner A, Jones WD, van Hasselt PM, Hofstede FC, van Gassen KL, Brooks AS, van Slegtenhorst MA, Lachlan K, Sebastian J, Madan-Khetarpal S, Sonal D, Sakkubai N, Thevenon J, Faivre L, Maurel A, Petrovski S, Krantz ID, Tarpinian JM, Rosenfeld JA, Lee BH, Campeau PM, Adams DR, Alejandro ME, Allard P, Azamian MS, Bacino CA, Balasubramanyam A, Barseghyan H, Batzli GF, Beggs AH, Behnam B, Bican A, Bick DP, Birch CL, Bonner D, Boone BE, Bostwick BL, Briere LC, Brown DM, Brush M, Burke EA, Burrage LC, Chen S, Clark GD, Coakley TR, Cogan JD, Cooper CM, Cope H, Craigen WJ, D’Souza P, Davids M, Dayal JG, Dell’Angelica EC, Dhar SU, Dillon A, Dipple KM, Donnell-Fink LA, Dorrani N, Dorset DC, Douine ED, Draper DD, Eckstein DJ, Emrick LT, Eng CM, Eskin A, Esteves C, Estwick T, Ferreira C, Fogel BL, Friedman ND, Gahl WA, Glanton E, Godfrey RA, Goldstein DB, Gould SE, Gourdine JPF, Groden CA, Gropman AL, Haendel M, Hamid R, Hanchard NA, Handley LH, Herzog MR, Holm IA, Hom J, Howerton EM, Huang Y, Jacob HJ, Jain M, Jiang YH, Johnston JM, Jones AL, Kohane IS, Krasnewich DM, Krieg EL, Krier JB, Lalani SR, Lau CC, Lazar J, Lee BH, Lee H, Levy SE, Lewis RA, Lincoln SA, Lipson A, Loo SK, Loscalzo J, Maas RL, Macnamara EF, MacRae CA, Maduro VV, Majcherska MM, Malicdan MCV, Mamounas LA, Manolio TA, Markello TC, Marom R, Martínez-Agosto JA, Marwaha S, May T, McConkie-Rosell A, McCormack CE, McCray AT, Might M, Moretti PM, Morimoto M, Mulvihill JJ, Murphy JL, Muzny DM, Nehrebecky ME, Nelson SF, Newberry JS, Newman JH, Nicholas SK, Novacic D, Orange JS, Pallais JC, Palmer CG, Papp JC, Parker NH, Pena LD, Phillips JA, Posey JE, Postlethwait JH, Potocki L, Pusey BN, Reuter CM, Robertson AK, Rodan LH, Rosenfeld JA, Sampson JB, Samson SL, Schoch K, Schroeder MC, Scott DA, Sharma P, Shashi V, Signer R, Silverman EK, Sinsheimer JS, Smith KS, Spillmann RC, Splinter K, Stoler JM, Stong N, Sullivan JA, Sweetser DA, Tifft CJ, Toro C, Tran AA, Urv TK, Valivullah ZM, Vilain E, Vogel TP, Wahl CE, Walley NM, Walsh CA, Ward PA, Waters KM, Westerfield M, Wise AL, Wolfe LA, Worthey EA, Yamamoto S, Yang Y, Yu G, Zastrow DB, Zheng A. Expanding the Spectrum of BAF-Related Disorders: De Novo Variants in SMARCC2 Cause a Syndrome with Intellectual Disability and Developmental Delay. Am J Hum Genet 2019; 104:164-178. [PMID: 30580808 DOI: 10.1016/j.ajhg.2018.11.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022] Open
Abstract
SMARCC2 (BAF170) is one of the invariable core subunits of the ATP-dependent chromatin remodeling BAF (BRG1-associated factor) complex and plays a crucial role in embryogenesis and corticogenesis. Pathogenic variants in genes encoding other components of the BAF complex have been associated with intellectual disability syndromes. Despite its significant biological role, variants in SMARCC2 have not been directly associated with human disease previously. Using whole-exome sequencing and a web-based gene-matching program, we identified 15 individuals with variable degrees of neurodevelopmental delay and growth retardation harboring one of 13 heterozygous variants in SMARCC2, most of them novel and proven de novo. The clinical presentation overlaps with intellectual disability syndromes associated with other BAF subunits, such as Coffin-Siris and Nicolaides-Baraitser syndromes and includes prominent speech impairment, hypotonia, feeding difficulties, behavioral abnormalities, and dysmorphic features such as hypertrichosis, thick eyebrows, thin upper lip vermilion, and upturned nose. Nine out of the fifteen individuals harbor variants in the highly conserved SMARCC2 DNA-interacting domains (SANT and SWIRM) and present with a more severe phenotype. Two of these individuals present cardiac abnormalities. Transcriptomic analysis of fibroblasts from affected individuals highlights a group of differentially expressed genes with possible roles in regulation of neuronal development and function, namely H19, SCRG1, RELN, and CACNB4. Our findings suggest a novel SMARCC2-related syndrome that overlaps with neurodevelopmental disorders associated with variants in BAF-complex subunits.
Collapse
|
61
|
Splinter K, Adams DR, Bacino CA, Bellen HJ, Bernstein JA, Cheatle-Jarvela AM, Eng CM, Esteves C, Gahl WA, Hamid R, Jacob HJ, Kikani B, Koeller DM, Kohane IS, Lee BH, Loscalzo J, Luo X, McCray AT, Metz TO, Mulvihill JJ, Nelson SF, Palmer CGS, Phillips JA, Pick L, Postlethwait JH, Reuter C, Shashi V, Sweetser DA, Tifft CJ, Walley NM, Wangler MF, Westerfield M, Wheeler MT, Wise AL, Worthey EA, Yamamoto S, Ashley EA. Effect of Genetic Diagnosis on Patients with Previously Undiagnosed Disease. N Engl J Med 2018; 379:2131-2139. [PMID: 30304647 PMCID: PMC6481166 DOI: 10.1056/nejmoa1714458] [Citation(s) in RCA: 254] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Many patients remain without a diagnosis despite extensive medical evaluation. The Undiagnosed Diseases Network (UDN) was established to apply a multidisciplinary model in the evaluation of the most challenging cases and to identify the biologic characteristics of newly discovered diseases. The UDN, which is funded by the National Institutes of Health, was formed in 2014 as a network of seven clinical sites, two sequencing cores, and a coordinating center. Later, a central biorepository, a metabolomics core, and a model organisms screening center were added. METHODS We evaluated patients who were referred to the UDN over a period of 20 months. The patients were required to have an undiagnosed condition despite thorough evaluation by a health care provider. We determined the rate of diagnosis among patients who subsequently had a complete evaluation, and we observed the effect of diagnosis on medical care. RESULTS A total of 1519 patients (53% female) were referred to the UDN, of whom 601 (40%) were accepted for evaluation. Of the accepted patients, 192 (32%) had previously undergone exome sequencing. Symptoms were neurologic in 40% of the applicants, musculoskeletal in 10%, immunologic in 7%, gastrointestinal in 7%, and rheumatologic in 6%. Of the 382 patients who had a complete evaluation, 132 received a diagnosis, yielding a rate of diagnosis of 35%. A total of 15 diagnoses (11%) were made by clinical review alone, and 98 (74%) were made by exome or genome sequencing. Of the diagnoses, 21% led to recommendations regarding changes in therapy, 37% led to changes in diagnostic testing, and 36% led to variant-specific genetic counseling. We defined 31 new syndromes. CONCLUSIONS The UDN established a diagnosis in 132 of the 382 patients who had a complete evaluation, yielding a rate of diagnosis of 35%. (Funded by the National Institutes of Health Common Fund.).
Collapse
|
62
|
Morimoto M, Waller-Evans H, Ammous Z, Song X, Strauss KA, Pehlivan D, Gonzaga-Jauregui C, Puffenberger EG, Holst CR, Karaca E, Brigatti KW, Maguire E, Coban-Akdemir ZH, Amagata A, Lau CC, Chepa-Lotrea X, Macnamara E, Tos T, Isikay S, Nehrebecky M, Overton JD, Klein M, Markello TC, Posey JE, Adams DR, Lloyd-Evans E, Lupski JR, Gahl WA, Malicdan MCV. Bi-allelic CCDC47 Variants Cause a Disorder Characterized by Woolly Hair, Liver Dysfunction, Dysmorphic Features, and Global Developmental Delay. Am J Hum Genet 2018; 103:794-807. [PMID: 30401460 PMCID: PMC6218603 DOI: 10.1016/j.ajhg.2018.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/26/2018] [Indexed: 01/06/2023] Open
Abstract
Ca2+ signaling is vital for various cellular processes including synaptic vesicle exocytosis, muscle contraction, regulation of secretion, gene transcription, and cellular proliferation. The endoplasmic reticulum (ER) is the largest intracellular Ca2+ store, and dysregulation of ER Ca2+ signaling and homeostasis contributes to the pathogenesis of various complex disorders and Mendelian disease traits. We describe four unrelated individuals with a complex multisystem disorder characterized by woolly hair, liver dysfunction, pruritus, dysmorphic features, hypotonia, and global developmental delay. Through whole-exome sequencing and family-based genomics, we identified bi-allelic variants in CCDC47 that encodes the Ca2+-binding ER transmembrane protein CCDC47. CCDC47, also known as calumin, has been shown to bind Ca2+ with low affinity and high capacity. In mice, loss of Ccdc47 leads to embryonic lethality, suggesting that Ccdc47 is essential for early development. Characterization of cells from individuals with predicted likely damaging alleles showed decreased CCDC47 mRNA expression and protein levels. In vitro cellular experiments showed decreased total ER Ca2+ storage, impaired Ca2+ signaling mediated by the IP3R Ca2+ release channel, and reduced ER Ca2+ refilling via store-operated Ca2+ entry. These results, together with the previously described role of CCDC47 in Ca2+ signaling and development, suggest that bi-allelic loss-of-function variants in CCDC47 underlie the pathogenesis of this multisystem disorder.
Collapse
|
63
|
|
64
|
Marcogliese PC, Shashi V, Spillmann RC, Stong N, Rosenfeld JA, Koenig MK, Martínez-Agosto JA, Herzog M, Chen AH, Dickson PI, Lin HJ, Vera MU, Salamon N, Graham JM, Ortiz D, Infante E, Steyaert W, Dermaut B, Poppe B, Chung HL, Zuo Z, Lee PT, Kanca O, Xia F, Yang Y, Smith EC, Jasien J, Kansagra S, Spiridigliozzi G, El-Dairi M, Lark R, Riley K, Koeberl DD, Golden-Grant K, Yamamoto S, Wangler MF, Mirzaa G, Hemelsoet D, Lee B, Nelson SF, Goldstein DB, Bellen HJ, Pena LD, Callens S, Coucke P, Dermaut B, Hemelsoet D, Poppe B, Steyaert W, Terryn W, Van Coster R, Adams DR, Alejandro ME, Allard P, Azamian MS, Bacino CA, Balasubramanyam A, Barseghyan H, Batzli GF, Beggs AH, Behnam B, Bican A, Bick DP, Birch CL, Bonner D, Boone BE, Bostwick BL, Briere LC, Brown DM, Brush M, Burke EA, Burrage LC, Chen S, Clark GD, Coakley TR, Cogan JD, Cooper CM, Cope H, Craigen WJ, D’Souza P, Davids M, Dayal JG, Dell’Angelica EC, Dhar SU, Dillon A, Dipple KM, Donnell-Fink LA, Dorrani N, Dorset DC, Douine ED, Draper DD, Eckstein DJ, Emrick LT, Eng CM, Eskin A, Esteves C, Estwick T, Ferreira C, Fogel BL, Friedman ND, Gahl WA, Glanton E, Godfrey RA, Goldstein DB, Gould SE, Gourdine JPF, Groden CA, Gropman AL, Haendel M, Hamid R, Hanchard NA, Handley LH, Herzog MR, Holm IA, Hom J, Howerton EM, Huang Y, Jacob HJ, Jain M, Jiang YH, Johnston JM, Jones AL, Kohane IS, Krasnewich DM, Krieg EL, Krier JB, Lalani SR, Lau CC, Lazar J, Lee BH, Lee H, Levy SE, Lewis RA, Lincoln SA, Lipson A, Loo SK, Loscalzo J, Maas RL, Macnamara EF, MacRae CA, Maduro VV, Majcherska MM, Malicdan MCV, Mamounas LA, Manolio TA, Markello TC, Marom R, Martínez-Agosto JA, Marwaha S, May T, McConkie-Rosell A, McCormack CE, McCray AT, Might M, Moretti PM, Morimoto M, Mulvihill JJ, Murphy JL, Muzny DM, Nehrebecky ME, Nelson SF, Newberry JS, Newman JH, Nicholas SK, Novacic D, Orange JS, Pallais JC, Palmer CG, Papp JC, Parker NH, Pena LD, Phillips JA, Posey JE, Postlethwait JH, Potocki L, Pusey BN, Reuter CM, Robertson AK, Rodan LH, Rosenfeld JA, Sampson JB, Samson SL, Schoch K, Schroeder MC, Scott DA, Sharma P, Shashi V, Signer R, Silverman EK, Sinsheimer JS, Smith KS, Spillmann RC, Splinter K, Stoler JM, Stong N, Sullivan JA, Sweetser DA, Tifft CJ, Toro C, Tran AA, Urv TK, Valivullah ZM, Vilain E, Vogel TP, Wahl CE, Walley NM, Walsh CA, Ward PA, Waters KM, Westerfield M, Wise AL, Wolfe LA, Worthey EA, Yamamoto S, Yang Y, Yu G, Zastrow DB, Zheng A. IRF2BPL Is Associated with Neurological Phenotypes. Am J Hum Genet 2018; 103:456. [PMID: 30193138 PMCID: PMC6128320 DOI: 10.1016/j.ajhg.2018.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
65
|
El Buri A, Adams DR, Smith D, Tate RJ, Mullin M, Pyne S, Pyne NJ. The sphingosine 1-phosphate receptor 2 is shed in exosomes from breast cancer cells and is N-terminally processed to a short constitutively active form that promotes extracellular signal regulated kinase activation and DNA synthesis in fibroblasts. Oncotarget 2018; 9:29453-29467. [PMID: 30034630 PMCID: PMC6047680 DOI: 10.18632/oncotarget.25658] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/04/2018] [Indexed: 12/21/2022] Open
Abstract
We demonstrate here that the G protein-coupled receptor (GPCR), sphingosine 1-phosphate receptor 2 (S1P2, Mr = 40 kDa) is shed in hsp70+ and CD63+ containing exosomes from MDA-MB-231 breast cancer cells. The receptor is taken up by fibroblasts, where it is N-terminally processed to a shorter form (Mr = 36 kDa) that appears to be constitutively active and able to stimulate the extracellular signal regulated kinase-1/2 (ERK-1/2) pathway and DNA synthesis. An N-terminally truncated construct of S1P2, which may correspond to the processed form of the receptor generated in fibroblasts, was found to be constitutively active when over-expressed in HEK293 cells. Analysis based on the available crystal structure of the homologous S1P1 receptor suggests that, in the inactive-state, the N-terminus of S1P2 may tension TM1 so as to maintain a compressive action on TM7. This in turn may stabilise a closed basal state interface between the intracellular ends of TM7 and TM6. Cleavage and removal of the S1P2 N-terminal peptide is postulated to facilitate relaxation of TM1 and accompanying separation of TM6 and TM7. The latter transition is one of the key elements of G protein engagement and is required to open the intracellular coupling interface beneath the GPCR helix bundle. Therefore, removal at the N-terminus of S1P2 is likely to enhance G protein coupling. These findings provide the first evidence that S1P2 is released from breast cancer cells in exosomes and is processed by fibroblasts to promote ERK signaling and proliferation of these cells.
Collapse
|
66
|
Yalla K, Elliott C, Day JP, Findlay J, Barratt S, Hughes ZA, Wilson L, Whiteley E, Popiolek M, Li Y, Dunlop J, Killick R, Adams DR, Brandon NJ, Houslay MD, Hao B, Baillie GS. FBXW7 regulates DISC1 stability via the ubiquitin-proteosome system. Mol Psychiatry 2018; 23:1278-1286. [PMID: 28727686 PMCID: PMC5984089 DOI: 10.1038/mp.2017.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/27/2023]
Abstract
Disrupted in schizophrenia 1 (DISC1) is a multi-functional scaffolding protein that has been associated with neuropsychiatric disease. The role of DISC1 is to assemble protein complexes that promote neural development and signaling, hence tight control of the concentration of cellular DISC1 in neurons is vital to brain function. Using structural and biochemical techniques, we show for we believe the first time that not only is DISC1 turnover elicited by the ubiquitin proteasome system (UPS) but that it is orchestrated by the F-Box protein, FBXW7. We present the structure of FBXW7 bound to the DISC1 phosphodegron motif and exploit this information to prove that disruption of the FBXW7-DISC1 complex results in a stabilization of DISC1. This action can counteract DISC1 deficiencies observed in neural progenitor cells derived from induced pluripotent stem cells from schizophrenia patients with a DISC1 frameshift mutation. Thus manipulation of DISC1 levels via the UPS may provide a novel method to explore DISC1 function.
Collapse
|
67
|
Clarke E, Jarvis CI, Goncalves MB, Kalindjian SB, Adams DR, Brown JT, Shiers JJ, Taddei DM, Ravier E, Barlow S, Miller I, Smith V, Borthwick AD, Corcoran JP. Design and synthesis of a potent, highly selective, orally bioavailable, retinoic acid receptor alpha agonist. Bioorg Med Chem 2018; 26:798-814. [PMID: 29288071 PMCID: PMC5823845 DOI: 10.1016/j.bmc.2017.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 11/16/2022]
Abstract
A ligand-based virtual screening exercise examining likely bioactive conformations of AM 580 (2) and AGN 193836 (3) was used to identify the novel, less lipophilic RARα agonist 4-(3,5-dichloro-4-ethoxybenzamido)benzoic acid 5, which has good selectivity over the RARβ, and RARγ receptors. Analysis of the medicinal chemistry parameters of the 3,5-substituents of derivatives of template 5 enabled us to design a class of drug-like molecules with lower intrinsic clearance and higher oral bioavailability which led to the novel RARα agonist 4-(3-chloro-4-ethoxy-5-isopropoxybenzamido)-2-methylbenzoic acid 56 that has high RARα potency and excellent selectivity versus RARβ (2 orders of magnitude) and RARγ (4 orders of magnitude) at both the human and mouse RAR receptors with improved drug-like properties. This RARα specific agonist 56 has high oral bioavailability (>80%) in both mice and dogs with a good PK profile and was shown to be inactive in cytotoxicity and genotoxicity screens.
Collapse
|
68
|
Toro C, Hori RT, Malicdan MCV, Tifft CJ, Goldstein A, Gahl WA, Adams DR, Fauni HB, Wolfe LA, Xiao J, Khan MM, Tian J, Hope KA, Reiter LT, Tremblay MG, Moss T, Franks AL, Balak C, LeDoux MS. A recurrent de novo missense mutation in UBTF causes developmental neuroregression. Hum Mol Genet 2018; 27:691-705. [PMID: 29300972 PMCID: PMC5886272 DOI: 10.1093/hmg/ddx435] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
UBTF (upstream binding transcription factor) exists as two isoforms; UBTF1 regulates rRNA transcription by RNA polymerase 1, whereas UBTF2 regulates mRNA transcription by RNA polymerase 2. Herein, we describe 4 patients with very similar patterns of neuroregression due to recurrent de novo mutations in UBTF (GRCh37/hg19, NC_000017.10: g.42290219C > T, NM_014233.3: c.628G > A) resulting in the same amino acid change in both UBTF1 and UBTF2 (p.Glu210Lys [p.E210K]). Disease onset in our cohort was at 2.5 to 3 years and characterized by slow progression of global motor, cognitive and behavioral dysfunction. Notable early features included hypotonia with a floppy gait, high-pitched dysarthria and hyperactivity. Later features included aphasia, dystonia, and spasticity. Speech and ambulatory ability were lost by the early teens. Magnetic resonance imaging showed progressive generalized cerebral atrophy (supratentorial > infratentorial) with involvement of both gray and white matter. Patient fibroblasts showed normal levels of UBTF transcripts, increased expression of pre-rRNA and 18S rRNA, nucleolar abnormalities, markedly increased numbers of DNA breaks, defective cell-cycle progression, and apoptosis. Expression of mutant human UBTF1 in Drosophila neurons was lethal. Although no loss-of-function variants are reported in the Exome Aggregation Consortium (ExAC) database and Ubtf-/- is early embryonic lethal in mice, Ubtf+/- mice displayed only mild motor and behavioral dysfunction in adulthood. Our data underscore the importance of including UBTF E210K in the differential diagnosis of neuroregression and suggest that mainly gain-of-function mechanisms contribute to the pathogenesis of the UBTF E210K neuroregression syndrome.
Collapse
|
69
|
Toro C, Hori RT, Malicdan MCV, Tifft CJ, Goldstein A, Gahl WA, Adams DR, Fauni HB, Wolfe LA, Xiao J, Khan MM, Tian J, Hope KA, Reiter LT, Tremblay MG, Moss T, Franks AL, Balak C, LeDoux MS. A recurrent de novo missense mutation in UBTF causes developmental neuroregression. Hum Mol Genet 2018; 27:1310. [PMID: 29447355 PMCID: PMC6093340 DOI: 10.1093/hmg/ddy049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
70
|
Burke EA, Frucht SJ, Thompson K, Wolfe LA, Yokoyama T, Bertoni M, Huang Y, Sincan M, Adams DR, Taylor RW, Gahl WA, Toro C, Malicdan MCV. Biallelic mutations in mitochondrial tryptophanyl-tRNA synthetase cause Levodopa-responsive infantile-onset Parkinsonism. Clin Genet 2018; 93:712-718. [PMID: 29120065 PMCID: PMC5828974 DOI: 10.1111/cge.13172] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/30/2017] [Accepted: 11/05/2017] [Indexed: 12/30/2022]
Abstract
Mitochondrial aminoacyl‐tRNA synthetases (mtARSs) are essential, ubiquitously expressed enzymes that covalently attach amino acids to their corresponding tRNA molecules during translation of mitochondrial genes. Deleterious variants in the mtARS genes cause a diverse array of phenotypes, many of which involve the nervous system. Moreover, distinct mutations in mtARSs often cause different clinical manifestations. Recently, the gene encoding mitochondrial tryptophanyl tRNA synthetase (WARS2) was reported to cause 2 different neurological phenotypes, a form of autosomal recessive intellectual disability and a syndrome of severe infantile‐onset leukoencephalopathy. Here, we report the case of a 17‐year‐old boy with compound heterozygous mutations in WARS2 (p.Trp13Gly, p.Ser228Trp) who presented with infantile‐onset, Levodopa‐responsive Parkinsonism at the age of 2 years. Analysis of patient‐derived dermal fibroblasts revealed decreased steady‐state WARS2 protein and normal OXPHOS content. Muscle mitochondrial studies suggested mitochondrial proliferation without obvious respiratory chain deficiencies at the age of 9 years. This case expands the phenotypic spectrum of WARS2 deficiency and emphasizes the importance of mitochondrial protein synthesis in the pathogenesis of Parkinsonism.
Collapse
|
71
|
Barker G, Parnell E, van Basten B, Buist H, Adams DR, Yarwood SJ. The Potential of a Novel Class of EPAC-Selective Agonists to Combat Cardiovascular Inflammation. J Cardiovasc Dev Dis 2017; 4:jcdd4040022. [PMID: 29367551 PMCID: PMC5753123 DOI: 10.3390/jcdd4040022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/23/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023] Open
Abstract
The cyclic 3′,5′-adenosine monophosphate (cAMP) sensor enzyme, EPAC1, is a candidate drug target in vascular endothelial cells (VECs) due to its ability to attenuate proinflammatory cytokine signalling normally associated with cardiovascular diseases (CVDs), including atherosclerosis. This is through the EPAC1-dependent induction of the suppressor of cytokine signalling gene, SOCS3, which targets inflammatory signalling proteins for ubiquitinylation and destruction by the proteosome. Given this important role for the EPAC1/SOCS3 signalling axis, we have used high throughput screening (HTS) to identify small molecule EPAC1 regulators and have recently isolated the first known non-cyclic nucleotide (NCN) EPAC1 agonist, I942. I942 therefore represents the first in class, isoform selective EPAC1 activator, with the potential to suppress pro-inflammatory cytokine signalling with a reduced risk of side effects associated with general cAMP-elevating agents that activate multiple response pathways. The development of augmented I942 analogues may therefore provide improved research tools to validate EPAC1 as a potential therapeutic target for the treatment of chronic inflammation associated with deadly CVDs.
Collapse
|
72
|
Oprescu SN, Chepa-Lotrea X, Takase R, Golas G, Markello TC, Adams DR, Toro C, Gropman AL, Hou YM, Malicdan MCV, Gahl WA, Tifft CJ, Antonellis A. Cover Image, Volume 38, Issue 10. Hum Mutat 2017. [DOI: 10.1002/humu.23317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
73
|
Pyne NJ, El Buri A, Adams DR, Pyne S. Sphingosine 1-phosphate and cancer. Adv Biol Regul 2017; 68:97-106. [PMID: 28942351 DOI: 10.1016/j.jbior.2017.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 01/08/2023]
Abstract
The bioactive lipid, sphingosine 1-phosphate (S1P) is produced by phosphorylation of sphingosine and this is catalysed by two sphingosine kinase isoforms (SK1 and SK2). Here we discuss structural functional aspects of SK1 (which is a dimeric quaternary enzyme) that relate to coordinated coupling of membrane association with phosphorylation of Ser225 in the 'so-called' R-loop, catalytic activity and protein-protein interactions (e.g. TRAF2, PP2A and Gq). S1P formed by SK1 at the plasma-membrane is released from cells via S1P transporters to act on S1P receptors to promote tumorigenesis. We discuss here an additional novel mechanism that can operate between cancer cells and fibroblasts and which involves the release of the S1P receptor, S1P2 in exosomes from breast cancer cells that regulates ERK-1/2 signalling in fibroblasts. This novel mechanism of signalling might provide an explanation for the role of S1P2 in promoting metastasis of cancer cells and which is dependent on the micro-environmental niche.
Collapse
|
74
|
Wang C, Brancusi F, Valivullah ZM, Anderson MG, Cunningham D, Hedberg-Buenz A, Power B, Simeonov D, Gahl WA, Zein WM, Adams DR, Brooks B. A novel iris transillumination grading scale allowing flexible assessment with quantitative image analysis and visual matching. Ophthalmic Genet 2017; 39:41-45. [PMID: 28742462 DOI: 10.1080/13816810.2017.1342134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To develop a sensitive scale of iris transillumination suitable for clinical and research use, with the capability of either quantitative analysis or visual matching of images. METHODS Iris transillumination photographic images were used from 70 study subjects with ocular or oculocutaneous albinism. Subjects represented a broad range of ocular pigmentation. A subset of images was subjected to image analysis and ranking by both expert and nonexpert reviewers. Quantitative ordering of images was compared with ordering by visual inspection. Images were binned to establish an 8-point scale. Ranking consistency was evaluated using the Kendall rank correlation coefficient (Kendall's tau). Visual ranking results were assessed using Kendall's coefficient of concordance (Kendall's W) analysis. RESULTS There was a high degree of correlation among the image analysis, expert-based and non-expert-based image rankings. Pairwise comparisons of the quantitative ranking with each reviewer generated an average Kendall's tau of 0.83 ± 0.04 (SD). Inter-rater correlation was also high with Kendall's W of 0.96, 0.95, and 0.95 for nonexpert, expert, and all reviewers, respectively. CONCLUSIONS The current standard for assessing iris transillumination is expert assessment of clinical exam findings. We adapted an image-analysis technique to generate quantitative transillumination values. Quantitative ranking was shown to be highly similar to a ranking produced by both expert and nonexpert reviewers. This finding suggests that the image characteristics used to quantify iris transillumination do not require expert interpretation. Inter-rater rankings were also highly similar, suggesting that varied methods of transillumination ranking are robust in terms of producing reproducible results.
Collapse
|
75
|
Oprescu SN, Chepa-Lotrea X, Takase R, Golas G, Markello TC, Adams DR, Toro C, Gropman AL, Hou YM, Malicdan MCV, Gahl WA, Tifft CJ, Antonellis A. Compound heterozygosity for loss-of-function GARS variants results in a multisystem developmental syndrome that includes severe growth retardation. Hum Mutat 2017; 38:1412-1420. [PMID: 28675565 DOI: 10.1002/humu.23287] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/17/2017] [Accepted: 06/16/2017] [Indexed: 01/25/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed enzymes that ligate amino acids onto tRNA molecules. Genes encoding ARSs have been implicated in myriad dominant and recessive disease phenotypes. Glycyl-tRNA synthetase (GARS) is a bifunctional ARS that charges tRNAGly in the cytoplasm and mitochondria. GARS variants have been associated with dominant Charcot-Marie-Tooth disease but have not been convincingly implicated in recessive phenotypes. Here, we describe a patient from the NIH Undiagnosed Diseases Program with a multisystem, developmental phenotype. Whole-exome sequence analysis revealed that the patient is compound heterozygous for one frameshift (p.Glu83Ilefs*6) and one missense (p.Arg310Gln) GARS variant. Using in vitro and in vivo functional studies, we show that both GARS variants cause a loss-of-function effect: the frameshift variant results in depleted protein levels and the missense variant reduces GARS tRNA charging activity. In support of GARS variant pathogenicity, our patient shows striking phenotypic overlap with other patients having ARS-related recessive diseases, including features associated with variants in both cytoplasmic and mitochondrial ARSs; this observation is consistent with the essential function of GARS in both cellular locations. In summary, our clinical, genetic, and functional analyses expand the phenotypic spectrum associated with GARS variants.
Collapse
|