51
|
Fujieda N, Umakoshi K, Ochi Y, Nishikawa Y, Yanagisawa S, Kubo M, Kurisu G, Itoh S. Copper–Oxygen Dynamics in the Tyrosinase Mechanism. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
52
|
Kondo T, Mutoh R, Tabe H, Kurisu G, Oh-Oka H, Fujiyoshi S, Matsushita M. Cryogenic Single-Molecule Spectroscopy of the Primary Electron Acceptor in the Photosynthetic Reaction Center. J Phys Chem Lett 2020; 11:3980-3986. [PMID: 32352789 DOI: 10.1021/acs.jpclett.0c00891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The photosynthetic reaction center (RC) converts light energy into electrochemical energy. The RC of heliobacteria (hRC) is a primitive homodimeric RC containing 58 bacteriochlorophylls and 2 chlorophyll as. The chlorophyll serves as the primary electron acceptor (Chl a-A0) responsible for light harvesting and charge separation. The single-molecule spectroscopy of Chl a-A0 can be used to investigate heterogeneities of the RC photochemical function, though the low fluorescence quantum yield (0.1%) makes it difficult. Here, we show the fluorescence excitation spectroscopy of individual Chl a-A0s in single hRCs at 6 K. The fluorescence quantum yield and absorption cross section of Chl a-A0 increase 2- and 4-fold, respectively, compared to those at room temperature. The two Chl a-A0s in single hRCs are identified as two distinct peaks in the fluorescence excitation spectrum, exhibiting different excitation polarization dependences. The spectral changes caused by photobleaching indicate the energy transfer across subunits in the hRC.
Collapse
|
53
|
Fujieda N, Ichihashi H, Yuasa M, Nishikawa Y, Kurisu G, Itoh S. Cupin Variants as a Macromolecular Ligand Library for Stereoselective Michael Addition of Nitroalkanes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
54
|
Yamamoto H, Mizoguchi T, Tsukatani Y, Tamiaki H, Kurisu G, Fujita Y. Chlorophyllide a oxidoreductase Preferentially Catalyzes 8-Vinyl Reduction over B-Ring Reduction of 8-Vinyl Chlorophyllide a in the Late Steps of Bacteriochlorophyll Biosynthesis. Chembiochem 2020; 21:1760-1766. [PMID: 32180325 DOI: 10.1002/cbic.201900785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/25/2020] [Indexed: 11/08/2022]
Abstract
Bacteriochlorophyll a (BChl) is an essential pigment for anoxygenic photosynthesis. In late steps of the BChl biosynthesis of Rhodobacter capsulatus, the C8 vinyl group and C7=C8 double bond of 8-vinyl chlorophyllide a (8 V-Chlide) are reduced by a C8 vinyl reductase (8VR), BciA, and a nitrogenase-like enzyme, chlorophyllide a oxidoreductase (COR), respectively, to produce 3-vinyl-bacteriochlorphyllide a. Recently, we discovered 8VR activity in COR. However, the kinetic parameters of the COR 8VR activity remain unknown, while those of the COR C7=C8 reductase activity and BciA have been reported. Here, we determined the kinetic parameters of COR 8VR activity by using 8 V-Chlide. The Km value for 8 V-Chlide was 1.4 μM, which is much lower than the 6.2 μM determined for the C7=C8 reduction of Chlide. The kinetic parameters of the dual activities of COR suggest that COR catalyzes the reduction of the C8 vinyl group of 8 V-Chlide preferentially over C7=C8 reduction when both substrates are supplied during BChl biosynthesis.
Collapse
|
55
|
Toda A, Nishikawa Y, Tanaka H, Yagi T, Kurisu G. The complex of outer-arm dynein light chain-1 and the microtubule-binding domain of the γ heavy chain shows how axonemal dynein tunes ciliary beating. J Biol Chem 2020; 295:3982-3989. [PMID: 32014992 PMCID: PMC7086020 DOI: 10.1074/jbc.ra119.011541] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/29/2020] [Indexed: 01/07/2023] Open
Abstract
Axonemal dynein is a microtubule-based molecular motor that drives ciliary/flagellar beating in eukaryotes. In axonemal dynein, the outer-arm dynein (OAD) complex, which comprises three heavy chains (α, β, and γ), produces the main driving force for ciliary/flagellar motility. It has recently been shown that axonemal dynein light chain-1 (LC1) binds to the microtubule-binding domain (MTBD) of OADγ, leading to a decrease in its microtubule-binding affinity. However, it remains unclear how LC1 interacts with the MTBD and controls the microtubule-binding affinity of OADγ. Here, we have used X-ray crystallography and pulldown assays to examine the interaction between LC1 and the MTBD, identifying two important sites of interaction in the MTBD. Solving the LC1-MTBD complex from Chlamydomonas reinhardtii at 1.7 Å resolution, we observed that one site is located in the H5 helix and that the other is located in the flap region that is unique to some axonemal dynein MTBDs. Mutational analysis of key residues in these sites indicated that the H5 helix is the main LC1-binding site. We modeled the ternary structure of the LC1-MTBD complex bound to microtubules based on the known dynein-microtubule complex. This enabled us to propose a structural basis for both formations of the ternary LC1-MTBD-microtubule complex and LC1-mediated tuning of MTBD binding to the microtubule, suggesting a molecular model for how axonemal dynein senses the curvature of the axoneme and tunes ciliary/flagellar beating.
Collapse
|
56
|
Fujieda N, Ichihashi H, Yuasa M, Nishikawa Y, Kurisu G, Itoh S. Cupin Variants as a Macromolecular Ligand Library for Stereoselective Michael Addition of Nitroalkanes. Angew Chem Int Ed Engl 2020; 59:7717-7720. [PMID: 32073197 DOI: 10.1002/anie.202000129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Indexed: 12/12/2022]
Abstract
Cupin superfamily proteins (TM1459) work as a macromolecular ligand framework with a double-stranded β-barrel structure ligating to a Cu ion through histidine side chains. Variegating the first coordination sphere of TM1459 revealed that H52A and H54A/H58A mutants effectively catalyzed the diastereo- and enantioselective Michael addition reaction of nitroalkanes to an α,β-unsaturated ketone. Moreover, calculated substrate docking signified C106N and F104W single-point mutations, which inverted the diastereoselectivity of H52A and further improved the stereoselectivity of H54A/H58A, respectively.
Collapse
|
57
|
Bekker GJ, Kawabata T, Kurisu G. The Biological Structure Model Archive (BSM-Arc): an archive for in silico models and simulations. Biophys Rev 2020; 12:371-375. [PMID: 32026396 PMCID: PMC7242595 DOI: 10.1007/s12551-020-00632-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
We present the Biological Structure Model Archive (BSM-Arc, https://bsma.pdbj.org), which aims to collect raw data obtained via in silico methods related to structural biology, such as computationally modeled 3D structures and molecular dynamics trajectories. Since BSM-Arc does not enforce a specific data format for the raw data, depositors are free to upload their data without any prior conversion. Besides uploading raw data, BSM-Arc enables depositors to annotate their data with additional explanations and figures. Furthermore, via our WebGL-based molecular viewer Molmil, it is possible to recreate 3D scenes as shown in the corresponding scientific article in an interactive manner. To submit a new entry, depositors require an ORCID ID to login, and to finally publish the data, an accompanying peer-reviewed paper describing the work must be associated with the entry. Submitting their data enables researchers to not only have an external backup but also provide an opportunity to promote their work via an interactive platform and to provide third-party researchers access to their raw data.
Collapse
|
58
|
Zakharov S, Misumi Y, Kurisu G, Cramer WA. Interaction of FNR with the Cytochrome b6f Complex: Thermodynamic Parameters. Biophys J 2020. [DOI: 10.1016/j.bpj.2019.11.852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
59
|
Hanson BS, Iida S, Read DJ, Harlen OG, Kurisu G, Nakamura H, Harris SA. Continuum mechanical parameterisation of cytoplasmic dynein from atomistic simulation. Methods 2020; 185:39-48. [PMID: 32007556 DOI: 10.1016/j.ymeth.2020.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 01/08/2023] Open
Abstract
Cytoplasmic dynein is responsible for intra-cellular transport in eukaryotic cells. Using Fluctuating Finite Element Analysis (FFEA), a novel algorithm that represents proteins as continuum viscoelastic solids subject to thermal noise, we are building computational tools to study the mechanics of these molecular machines. Here we present a methodology for obtaining the material parameters required to represent the flexibility of cytoplasmic dynein within FFEA from atomistic molecular dynamics (MD) simulations, and show that this continuum representation is sufficient to capture the principal dynamic properties of the motor.
Collapse
|
60
|
Schuller JM, Saura P, Thiemann J, Schuller SK, Gamiz-Hernandez AP, Kurisu G, Nowaczyk MM, Kaila VRI. Redox-coupled proton pumping drives carbon concentration in the photosynthetic complex I. Nat Commun 2020; 11:494. [PMID: 31980611 PMCID: PMC6981117 DOI: 10.1038/s41467-020-14347-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/22/2019] [Indexed: 11/25/2022] Open
Abstract
Photosynthetic organisms capture light energy to drive their energy metabolism, and employ the chemical reducing power to convert carbon dioxide (CO2) into organic molecules. Photorespiration, however, significantly reduces the photosynthetic yields. To survive under low CO2 concentrations, cyanobacteria evolved unique carbon-concentration mechanisms that enhance the efficiency of photosynthetic CO2 fixation, for which the molecular principles have remained unknown. We show here how modular adaptations enabled the cyanobacterial photosynthetic complex I to concentrate CO2 using a redox-driven proton-pumping machinery. Our cryo-electron microscopy structure at 3.2 Å resolution shows a catalytic carbonic anhydrase module that harbours a Zn2+ active site, with connectivity to proton-pumping subunits that are activated by electron transfer from photosystem I. Our findings illustrate molecular principles in the photosynthetic complex I machinery that enabled cyanobacteria to survive in drastically changing CO2 conditions.
Collapse
|
61
|
Charoenwattanasatien R, Zinzius K, Scholz M, Wicke S, Tanaka H, Brandenburg JS, Marchetti GM, Ikegami T, Matsumoto T, Oda T, Sato M, Hippler M, Kurisu G. Calcium sensing via EF-hand 4 enables thioredoxin activity in the sensor-responder protein calredoxin in the green alga Chlamydomonas reinhardtii. J Biol Chem 2020; 295:170-180. [PMID: 31776187 PMCID: PMC6952598 DOI: 10.1074/jbc.ra119.008735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
Calcium (Ca2+) and redox signaling enable cells to quickly adapt to changing environments. The signaling protein calredoxin (CRX) from the green alga Chlamydomonas reinhardtii is a chloroplast-resident thioredoxin having Ca2+-dependent activity and harboring a unique combination of an EF-hand domain connected to a typical thioredoxin-fold. Using small-angle X-ray scattering (SAXS), FRET, and NMR techniques, we found that Ca2+-binding not only induces a conformational change in the EF-hand domain, but also in the thioredoxin domain, translating into the onset of thioredoxin redox activity. Functional analyses of CRX with genetically altered EF-hands revealed that EF-hand 4 is important for mediating the communication between the two domains. Moreover, we crystallized a variant (C174S) of the CRX target protein peroxiredoxin 1 (PRX1) at 2.4 Å resolution, modeled the interaction complex of the two proteins, and analyzed it by cross-linking and MS analyses, revealing that the interaction interface is located close to the active sites of both proteins. Our findings shed light on the Ca2+ binding-induced changes in CRX structure in solution at the level of the overall protein and individual domains and residues.
Collapse
|
62
|
Seo D, Muraki N, Kurisu G. Kinetic and structural insight into a role of the re-face Tyr328 residue of the homodimer type ferredoxin-NADP + oxidoreductase from Rhodopseudomonas palustris in the reaction with NADP +/NADPH. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148140. [PMID: 31838096 DOI: 10.1016/j.bbabio.2019.148140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/08/2019] [Accepted: 12/05/2019] [Indexed: 11/28/2022]
Abstract
Among the thioredoxin reductase-type ferredoxin-NAD(P)+ oxidoreductase (FNR) family, FNR from photosynthetic purple non‑sulfur bacterium Rhodopseudomonas palustris (RpFNR) is distinctive because the predicted residue on the re-face of the isoalloxazine ring portion of the FAD prosthetic group is a tyrosine. Here, we report the crystal structure of wild type RpFNR and kinetic analyses of the reaction of wild type, and Y328F, Y328H and Y328S mutants with NADP+/NADPH using steady state and pre-steady state kinetic approaches. The obtained crystal structure of wild type RpFNR confirmed the presence of Tyr328 on the re-face of the isoalloxazine ring of the FAD prosthetic group through the unique hydrogen bonding of its hydroxyl group. In the steady state assays, the substitution results in the decrease of Kd for NADP+ and KM for NADPH in the diaphorase assay; however, the kcat values also decreased significantly. In the stopped-flow spectrophotometry, mixing oxidized RpFNRs with NADPH and reduced RpFNRs with NADP+ resulted in rapid charge transfer complex formation followed by hydride transfer. The observed rate constants for the hydride transfer in both directions were comparable (>400 s-1). The substitution did not drastically affect the rate of hydride transfer, but substantially slowed down the subsequent release and re-association of NADP+/NADPH in both directions. The obtained results suggest that Tyr328 stabilizes the stacking of C-terminal residues on the isoalloxazine ring portion of the FAD prosthetic group, which impedes the access of NADP+/NADPH on the isoalloxazine ring portions, in turn, enhancing the release of the NADP+/NADPH and/or reaction with electron transfer proteins.
Collapse
|
63
|
Berman HM, Adams PD, Bonvin AA, Burley SK, Carragher B, Chiu W, DiMaio F, Ferrin TE, Gabanyi MJ, Goddard TD, Griffin PR, Haas J, Hanke CA, Hoch JC, Hummer G, Kurisu G, Lawson CL, Leitner A, Markley JL, Meiler J, Montelione GT, Phillips GN, Prisner T, Rappsilber J, Schriemer DC, Schwede T, Seidel CAM, Strutzenberg TS, Svergun DI, Tajkhorshid E, Trewhella J, Vallat B, Velankar S, Vuister GW, Webb B, Westbrook JD, White KL, Sali A. Federating Structural Models and Data: Outcomes from A Workshop on Archiving Integrative Structures. Structure 2019; 27:1745-1759. [PMID: 31780431 DOI: 10.1016/j.str.2019.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/23/2022]
Abstract
Structures of biomolecular systems are increasingly computed by integrative modeling. In this approach, a structural model is constructed by combining information from multiple sources, including varied experimental methods and prior models. In 2019, a Workshop was held as a Biophysical Society Satellite Meeting to assess progress and discuss further requirements for archiving integrative structures. The primary goal of the Workshop was to build consensus for addressing the challenges involved in creating common data standards, building methods for federated data exchange, and developing mechanisms for validating integrative structures. The summary of the Workshop and the recommendations that emerged are presented here.
Collapse
|
64
|
Zardecki C, Young J, Westbrook J, Feng Z, Peisach E, Persikova I, Liang Y, Gutmanas A, Berrisford J, Ikegawa Y, Chen M, Burley SK, Valenkar S, Kurisu G. Enabling depositor-initiated PDB coordinate replacement through file versioning. Acta Crystallogr A Found Adv 2019. [DOI: 10.1107/s0108767319099744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
65
|
Grabsztunowicz M, Mulo P, Baymann F, Mutoh R, Kurisu G, Sétif P, Beyer P, Krieger-Liszkay A. Electron transport pathways in isolated chromoplasts from Narcissus pseudonarcissus L. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:245-256. [PMID: 30888718 DOI: 10.1111/tpj.14319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
During daffodil flower development, chloroplasts differentiate into photosynthetically inactive chromoplasts having lost functional photosynthetic reaction centers. Chromoplasts exhibit a respiratory activity reducing oxygen to water and generating ATP. Immunoblots revealed the presence of the plastid terminal oxidase (PTOX), the NAD(P)H dehydrogenase (NDH) complex, the cytochrome b6 f complex, ATP synthase and several isoforms of ferredoxin-NADP+ oxidoreductase (FNR), and ferredoxin (Fd). Fluorescence spectroscopy allowed the detection of chlorophyll a in the cytochrome b6 f complex. Here we characterize the electron transport pathway of chromorespiration by using specific inhibitors for the NDH complex, the cytochrome b6 f complex, FNR and redox-inactive Fd in which the iron was replaced by gallium. Our data suggest an electron flow via two separate pathways, both reducing plastoquinone (PQ) and using PTOX as oxidase. The first oxidizes NADPH via FNR, Fd and cytochrome bh of the cytochrome b6 f complex, and does not result in the pumping of protons across the membrane. In the second, electron transport takes place via the NDH complex using both NADH and NADPH as electron donor. FNR and Fd are not involved in this pathway. The NDH complex is responsible for the generation of the proton gradient. We propose a model for chromorespiration that may also be relevant for the understanding of chlororespiration and for the characterization of the electron input from Fd to the cytochrome b6 f complex during cyclic electron transport in chloroplasts.
Collapse
|
66
|
Adams PD, Afonine PV, Baskaran K, Berman HM, Berrisford J, Bricogne G, Brown DG, Burley SK, Chen M, Feng Z, Flensburg C, Gutmanas A, Hoch JC, Ikegawa Y, Kengaku Y, Krissinel E, Kurisu G, Liang Y, Liebschner D, Mak L, Markley JL, Moriarty NW, Murshudov GN, Noble M, Peisach E, Persikova I, Poon BK, Sobolev OV, Ulrich EL, Velankar S, Vonrhein C, Westbrook J, Wojdyr M, Yokochi M, Young JY. Announcing mandatory submission of PDBx/mmCIF format files for crystallographic depositions to the Protein Data Bank (PDB). Acta Crystallogr D Struct Biol 2019; 75:451-454. [PMID: 30988261 PMCID: PMC6465986 DOI: 10.1107/s2059798319004522] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/03/2019] [Indexed: 11/10/2022] Open
Abstract
This letter announces that PDBx/mmCIF format files will become mandatory for crystallographic depositions to the Protein Data Bank (PDB).
Collapse
|
67
|
Burley SK, Berman HM, Bhikadiya C, Bi C, Chen L, Costanzo LD, Christie C, Duarte JM, Dutta S, Feng Z, Ghosh S, Goodsell DS, Green RK, Guranovic V, Guzenko D, Hudson BP, Liang Y, Lowe R, Peisach E, Periskova I, Randle C, Rose A, Sekharan M, Shao C, Tao YP, Valasatava Y, Voigt M, Westbrook J, Young J, Zardecki C, Zhuravleva M, Kurisu G, Nakamura H, Kengaku Y, Cho H, Sato J, Kim JY, Ikegawa Y, Nakagawa A, Yamashita R, Kudou T, Bekker GJ, Suzuki H, Iwata T, Yokochi M, Kobayashi N, Fujiwara T, Velankar S, Kleywegt GJ, Anyango S, Armstrong DR, Berrisford JM, Conroy MJ, Dana JM, Deshpande M, Gane P, Gáborová R, Gupta D, Gutmanas A, Koča J, Mak L, Mir S, Mukhopadhyay A, Nadzirin N, Nair S, Patwardhan A, Paysan-Lafosse T, Pravda L, Salih O, Sehnal D, Varadi M, Vařeková R, Markley JL, Hoch JC, Romero PR, Baskaran K, Maziuk D, Ulrich EL, Wedell JR, Yao H, Livny M, Ioannidis YE. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res 2019; 47:D520-D528. [PMID: 30357364 PMCID: PMC6324056 DOI: 10.1093/nar/gky949] [Citation(s) in RCA: 571] [Impact Index Per Article: 114.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 01/10/2023] Open
Abstract
The Protein Data Bank (PDB) is the single global archive of experimentally determined three-dimensional (3D) structure data of biological macromolecules. Since 2003, the PDB has been managed by the Worldwide Protein Data Bank (wwPDB; wwpdb.org), an international consortium that collaboratively oversees deposition, validation, biocuration, and open access dissemination of 3D macromolecular structure data. The PDB Core Archive houses 3D atomic coordinates of more than 144 000 structural models of proteins, DNA/RNA, and their complexes with metals and small molecules and related experimental data and metadata. Structure and experimental data/metadata are also stored in the PDB Core Archive using the readily extensible wwPDB PDBx/mmCIF master data format, which will continue to evolve as data/metadata from new experimental techniques and structure determination methods are incorporated by the wwPDB. Impacts of the recently developed universal wwPDB OneDep deposition/validation/biocuration system and various methods-specific wwPDB Validation Task Forces on improving the quality of structures and data housed in the PDB Core Archive are described together with current challenges and future plans.
Collapse
|
68
|
Schuller JM, Birrell JA, Tanaka H, Konuma T, Wulfhorst H, Cox N, Schuller SK, Thiemann J, Lubitz W, Sétif P, Ikegami T, Engel BD, Kurisu G, Nowaczyk MM. Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer. Science 2018; 363:257-260. [PMID: 30573545 DOI: 10.1126/science.aau3613] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
Abstract
Photosynthetic complex I enables cyclic electron flow around photosystem I, a regulatory mechanism for photosynthetic energy conversion. We report a 3.3-angstrom-resolution cryo-electron microscopy structure of photosynthetic complex I from the cyanobacterium Thermosynechococcus elongatus. The model reveals structural adaptations that facilitate binding and electron transfer from the photosynthetic electron carrier ferredoxin. By mimicking cyclic electron flow with isolated components in vitro, we demonstrate that ferredoxin directly mediates electron transfer between photosystem I and complex I, instead of using intermediates such as NADPH (the reduced form of nicotinamide adenine dinucleotide phosphate). A large rate constant for association of ferredoxin to complex I indicates efficient recognition, with the protein subunit NdhS being the key component in this process.
Collapse
|
69
|
Young JY, Westbrook JD, Feng Z, Peisach E, Persikova I, Sala R, Sen S, Berrisford JM, Swaminathan GJ, Oldfield TJ, Gutmanas A, Igarashi R, Armstrong DR, Baskaran K, Chen L, Chen M, Clark AR, Di Costanzo L, Dimitropoulos D, Gao G, Ghosh S, Gore S, Guranovic V, Hendrickx PMS, Hudson BP, Ikegawa Y, Kengaku Y, Lawson CL, Liang Y, Mak L, Mukhopadhyay A, Narayanan B, Nishiyama K, Patwardhan A, Sahni G, Sanz-García E, Sato J, Sekharan MR, Shao C, Smart OS, Tan L, van Ginkel G, Yang H, Zhuravleva MA, Markley JL, Nakamura H, Kurisu G, Kleywegt GJ, Velankar S, Berman HM, Burley SK. Worldwide Protein Data Bank biocuration supporting open access to high-quality 3D structural biology data. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:4844086. [PMID: 29688351 PMCID: PMC5804564 DOI: 10.1093/database/bay002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 11/24/2022]
Abstract
The Protein Data Bank (PDB) is the single global repository for experimentally determined 3D structures of biological macromolecules and their complexes with ligands. The worldwide PDB (wwPDB) is the international collaboration that manages the PDB archive according to the FAIR principles: Findability, Accessibility, Interoperability and Reusability. The wwPDB recently developed OneDep, a unified tool for deposition, validation and biocuration of structures of biological macromolecules. All data deposited to the PDB undergo critical review by wwPDB Biocurators. This article outlines the importance of biocuration for structural biology data deposited to the PDB and describes wwPDB biocuration processes and the role of expert Biocurators in sustaining a high-quality archive. Structural data submitted to the PDB are examined for self-consistency, standardized using controlled vocabularies, cross-referenced with other biological data resources and validated for scientific/technical accuracy. We illustrate how biocuration is integral to PDB data archiving, as it facilitates accurate, consistent and comprehensive representation of biological structure data, allowing efficient and effective usage by research scientists, educators, students and the curious public worldwide. Database URL: https://www.wwpdb.org/
Collapse
|
70
|
Kubota-Kawai H, Mutoh R, Shinmura K, Sétif P, Nowaczyk MM, Rögner M, Ikegami T, Tanaka H, Kurisu G. X-ray structure of an asymmetrical trimeric ferredoxin-photosystem I complex. NATURE PLANTS 2018; 4:218-224. [PMID: 29610537 DOI: 10.1038/s41477-018-0130-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/06/2018] [Indexed: 05/03/2023]
Abstract
Photosystem I (PSI), a large protein complex located in the thylakoid membrane, mediates the final step in light-driven electron transfer to the stromal electron carrier protein ferredoxin (Fd). Here, we report the first structural description of the PSI-Fd complex from Thermosynechococcus elongatus. The trimeric PSI complex binds three Fds in a non-equivalent manner. While each is recognized by a PSI protomer in a similar orientation, the distances between Fds and the PSI redox centres differ. Fd binding thus entails loss of the exact three-fold symmetry of the PSI's soluble subunits, inducing structural perturbations which are transferred to the lumen through PsaF. Affinity chromatography and nuclear magnetic resonance analyses of PSI-Fd complexes support the existence of two different Fd-binding states, with one Fd being more tightly bound than the others. We propose a dynamic structural basis for productive complex formation, which supports fast electron transfer between PSI and Fd.
Collapse
|
71
|
Burley SK, Kurisu G, Markley JL, Nakamura H, Velankar S, Berman HM, Sali A, Schwede T, Trewhella J. PDB-Dev: a Prototype System for Depositing Integrative/Hybrid Structural Models. Structure 2018; 25:1317-1318. [PMID: 28877501 DOI: 10.1016/j.str.2017.08.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 10/18/2022]
Abstract
Burley et al. (leadership of the Worldwide PDB [wwPDB] Partnership [wwpdb.org] and the wwPDB Integrative/Hybrid Methods Task Force) announce public release of a prototype system for depositing integrative/hybrid structural models, PDB-Development (PDB-Dev; https://pdb-dev.wwpdb.org).
Collapse
|
72
|
Charoenwattanasatien R, Tanaka H, Zinzius K, Hochmal AK, Mutoh R, Yamamoto D, Hippler M, Kurisu G. X-ray crystallographic and high-speed AFM studies of peroxiredoxin 1 from Chlamydomonas reinhardtii. Acta Crystallogr F Struct Biol Commun 2018; 74:86-91. [PMID: 29400317 PMCID: PMC5947678 DOI: 10.1107/s2053230x17018507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/30/2017] [Indexed: 11/10/2022] Open
Abstract
Peroxiredoxins (PRXs) are a group of antioxidant enzymes that are found in all organisms, including plants and green algae. The 2-Cys PRX from Chlamydomonas reinhardtii (CrPRX1) is a chloroplast-localized protein that is critical for clearing reactive oxygen species in chloroplasts. CrPRX1 is reduced by thioredoxins or calredoxin (CrCRX), a recently identified calcium-dependent redox protein. The molecular interaction between PRXs and thioredoxin/CrCRX is functionally important, but discussion has been limited owing to a lack of structural information on CrPRX1, especially regarding its oligomeric state. In this study, high-speed atomic force microscopy (HS-AFM) images of CrPRX1 and an X-ray crystallographic analysis have enabled examination of the oligomeric state of CrPRX1. Diffraction data from a crystal of the Cys174Ser mutant of CrPRX1 indicate the existence of noncrystallographic fivefold symmetry. HS-AFM images of CrPRX1 further show that CrPRX1 particles form rings with pentagonal rotational symmetry. On the basis of these findings, the oligomeric state of CrPRX1 is discussed and it is concluded that this PRX exists in a ring-shaped decameric form comprising a pentamer of dimers.
Collapse
|
73
|
Suzuki H, Bekker GJ, Kawabata T, Kurisu G, Nakamura H. Searching and viewing hybrid structure data. Acta Crystallogr A Found Adv 2017. [DOI: 10.1107/s2053273317086004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
74
|
Kurisu G, Burley SK, Markley JL, Nakamura H, Velankar S. Small-molecule ligand/drug representation and validation in the Protein Data Bank. Acta Crystallogr A Found Adv 2017. [DOI: 10.1107/s2053273317095250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
75
|
Shinohara F, Kurisu G, Hanke G, Bowsher C, Hase T, Kimata-Ariga Y. Structural basis for the isotype-specific interactions of ferredoxin and ferredoxin: NADP + oxidoreductase: an evolutionary switch between photosynthetic and heterotrophic assimilation. PHOTOSYNTHESIS RESEARCH 2017; 134:281-289. [PMID: 28093652 DOI: 10.1007/s11120-016-0331-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/21/2016] [Indexed: 05/16/2023]
Abstract
In higher plants, ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) are each present as distinct isoproteins of photosynthetic type (leaf type) and non-photosynthetic type (root type). Root-type Fd and FNR are considered to facilitate the electron transfer from NADPH to Fd in the direction opposite to that occurring in the photosynthetic processes. We previously reported the crystal structure of the electron transfer complex between maize leaf FNR and Fd (leaf FNR:Fd complex), providing insights into the molecular interactions of the two proteins. Here we show the 2.49 Å crystal structure of the maize root FNR:Fd complex, which reveals that the orientation of FNR and Fd remarkably varies from that of the leaf FNR:Fd complex, giving a structural basis for reversing the redox path. Root FNR was previously shown to interact preferentially with root Fd over leaf Fd, while leaf FNR retains similar affinity for these two types of Fds. The structural basis for such differential interaction was investigated using site-directed mutagenesis of the isotype-specific amino acid residues on the interface of Fd and FNR, based on the crystal structures of the FNR:Fd complexes from maize leaves and roots. Kinetic and physical binding analyses of the resulting mutants lead to the conclusion that the rearrangement of the charged amino acid residues on the Fd-binding surface of FNR confers isotype-specific interaction with Fd, which brings about the evolutional switch between photosynthetic and heterotrophic redox cascades.
Collapse
|