51
|
Ablikim M, Achasov MN, Adlarson P, Aliberti R, Amoroso A, An MR, An Q, Bai Y, Bakina O, Balossino I, Ban Y, Batozskaya V, Begzsuren K, Berger N, Berlowski M, Bertani M, Bettoni D, Bianchi F, Bianco E, Bloms J, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang TT, Chang WL, Che GR, Chelkov G, Chen C, Chen C, Chen G, Chen HS, Chen ML, Chen SJ, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen YQ, Chen ZJ, Cheng WS, Choi SK, Chu X, Cibinetto G, Coen SC, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding B, Ding XX, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du SX, Duan ZH, Egorov P, Fan YL, Fang J, Fang SS, Fang WX, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fischer K, Fritsch M, Fritzsch C, Fu CD, Fu JL, Fu YW, Gao H, Gao YN, Gao Y, Garbolino S, Garzia I, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Gramigna S, Greco M, Gu MH, Gu YT, Guan CY, Guan ZL, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Hou XT, Han TT, Han WY, Hao XQ, Harris FA, He KK, He KL, Heinsius FHH, Heinz CH, Heng YK, Herold C, Holtmann T, Hong PC, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Hussain T, Hüsken N, Imoehl W, Irshad M, Jackson J, Jaeger S, Janchiv S, Jeong JH, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jia ZK, Jiang PC, Jiang SS, Jiang TJ, Jiang XS, Jiang Y, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, Kui X, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Khoukaz A, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuessner MK, Kupsc A, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei TT, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li HB, Li HJ, Li HN, Li H, Li JR, Li JS, Li JW, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li SX, Li T, Li WD, Li WG, Li XH, Li XL, Li X, Li YG, Li ZJ, Li ZX, Li ZY, Liang C, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin DX, Lin T, Liu BJ, Liu BX, Liu C, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LC, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma HL, Ma JL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XY, Ma Y, Maas FE, Maggiora M, Maldaner S, Malde S, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Muchnoi NY, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pei YP, Pelizaeus M, Peng HP, Peters K, Ping JL, Ping RG, Plura S, Pogodin S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qin JJ, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Redmer CF, Ren KJ, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Ruan SN, Salone N, Sarantsev A, Schelhaas Y, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi HC, Shi JL, Shi JY, Shi QQ, Shi RS, Shi X, Song JJ, Song TZ, Song WM, Song YJ, Song YX, Sosio S, Spataro S, Stieler F, Su YJ, Sun GB, Sun GX, Sun H, Sun HK, Sun JF, Sun K, Sun L, Sun SS, Sun T, Sun WY, Sun Y, Sun YJ, Sun YZ, Sun ZT, Tan YX, Tang CJ, Tang GY, Tang J, Tang YA, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian WH, Tian ZF, Uman I, Wang B, Wang BL, Wang B, Wang CW, Wang DY, Wang F, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang M, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XJ, Wang XL, Wang Y, Wang YD, Wang YF, Wang YH, Wang YN, Wang YQ, Wang Y, Wang Y, Wang Z, Wang ZL, Wang ZY, Wang Z, Wei D, Wei DH, Weidner F, Wen SP, Wenzel CW, Wiedner UW, Wilkinson G, Wolke M, Wollenberg L, Wu C, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YJ, Wu Z, Xia L, Xian XM, Xiang T, Xiao D, Xiao GY, Xiao H, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu QJ, Xu QN, Xu W, Xu WL, Xu XP, Xu YC, Xu ZP, Xu ZS, Yan F, Yan L, Yan WB, Yan WC, Yan XQ, Yang HJ, Yang HL, Yang HX, Yang T, Yang Y, Yang YF, Yang YX, Yang Y, Yang ZW, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu T, Yu XD, Yuan CZ, Yuan L, Yuan SC, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng X, Zeng Y, Zeng YJ, Zhai XY, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang HH, Zhang HH, Zhang HQ, Zhang HY, Zhang JJ, Zhang JL, Zhang JQ, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang P, Zhang QY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang XY, Zhang Y, Zhang Y, Zhang YT, Zhang YH, Zhang Y, Zhang Y, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong X, Zhou H, Zhou LP, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu L, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WJ, Zhu YC, Zhu ZA, Zou JH, Zu J. First Experimental Study of the Purely Leptonic Decay D_{s}^{*+}→e^{+}ν_{e}. PHYSICAL REVIEW LETTERS 2023; 131:141802. [PMID: 37862669 DOI: 10.1103/physrevlett.131.141802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 09/05/2023] [Indexed: 10/22/2023]
Abstract
Using 7.33 fb^{-1} of e^{+}e^{-} collision data taken with the BESIII detector at the BEPCII collider, we report the first experimental study of the purely leptonic decay D_{s}^{*+}→e^{+}ν_{e}. Our data contain a signal of this decay with a statistical significance of 2.9σ. The branching fraction of D_{s}^{*+}→e^{+}ν_{e} is measured to be (2.1_{-0.9_{stat}}^{+1.2}±0.2_{syst})×10^{-5}, corresponding to an upper limit of 4.0×10^{-5} at the 90% confidence level. Taking the total width of the D_{s}^{*+} [(0.070±0.028) keV] predicted with the radiative D_{s}^{*+} decay from the lattice QCD calculation as input, the decay constant of the D_{s}^{*+} is determined to be f_{D_{s}^{*+}}=(214_{-46_{stat}}^{+61}±44_{syst}) MeV, corresponding to an upper limit of 354 MeV at the 90% confidence level.
Collapse
|
52
|
Lin Y, Zhang W, Prezado Y, Traneus E, Johnson D, Li W, Gan GN, Chen RC, Gao H. Towards Clinical Proton Minibeam Radiation Therapy (pMBRT): Development of Clinical pMBRT System Prototype and pMBRT-Specific Treatment Planning Method. Int J Radiat Oncol Biol Phys 2023; 117:S38. [PMID: 37784487 DOI: 10.1016/j.ijrobp.2023.06.307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
PURPOSE/OBJECTIVE(S) Proton minibeam radiation therapy (pMBRT) is an emerging spatially fractionated RT (SFRT) modality that can provide very high therapeutic index compared to conventional radiotherapy methods and clinically-available SFRT methods (GRID and LATTICE). The biological data collected thus far encourage the preparation of clinical trials in pMBRT. This work is to facilitate the clinical translation of pMBRT by developing (1) the first clinical pMBRT system prototype worldwide, readily available for both small-animal biology studies and large-animal pMBRT trials; (2) pMBRT-specific treatment planning method with peak-valley dose ratio (PVDR) optimization capability for large animal and patient pMBRT trials, which is currently unavailable. MATERIALS/METHODS The pMBRT system is based on clinically-used pencil-beam-scanning proton machine equipped with large-field clinical-size pMBRT collimator, pMBRT-dedicated treatment planning system, and KV/CBCT imaging guidance. The multi-slit brass collimator has 10 × 10 cm field size, 0.4mm width per slit and 4 mm center-to-center distance. The divergence of slits is tailed to the divergence of the proton beam. A unique universal collimator design is implemented, so that we can keep the outer fitting to the snout and conveniently inter-change collimators as needed. The pMBRT-specific treatment planning method jointly optimizes PVDR and dose objectives, to meet a minimal PVDR threshold and maximize PVDR, to avoid the situations where meeting dose objectives can compromise PVDR when PVDR were not optimized. In addition, the survival fraction for organs at risk is also optimized. The dose calculation engine is based on the Monte Carlo method using TOPAS. The optimization algorithm utilizes total variation and L1 sparsity regularization to maximize PVDR and iterative convex relaxation method to solve the optimization problem. RESULTS Monte Carlo simulations via TOPAS were performed to design this large-field multi-slit collimator, using the beam structure and the beam data specific to our proton system, with mean dose rate of 8 Gy/min under clinical condition with the collimator in place. The feasibility of using this pMBRT system for small-animal studies has been demonstrated, with customized 3D printed holder for immobilizing small animals, on-board KV imaging system for accurate small-animal positioning, and the GAFchromic film for verifying radiation dose and PVDR. On the other hand, the efficacy of pMBRT-specific treatment planning method (with PVDR optimization capability) to improve PVDR has been demonstrated using retrospective patient planning studies in comparison with standard proton treatment planning method (without PVDR optimization capability). CONCLUSION The initial development of a clinical pMBRT system prototype and pMBRT-specific treatment planning method of PVDR optimization capability has been completed with ongoing efforts to make this system ready for large-animal pMBRT studies.
Collapse
|
53
|
Hu D, Zhang Y, Li W, Zhang W, Reddy K, Chen Y, Gao H. SEA-Net: Structure-Enhanced Attention Network for Limited-Angle CBCT Reconstruction of Clinical Projection Data. Int J Radiat Oncol Biol Phys 2023; 117:S178-S179. [PMID: 37784443 DOI: 10.1016/j.ijrobp.2023.06.2523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
PURPOSE/OBJECTIVE(S) Limited-angle CBCT (LA-CBCT) is of great clinical interest, because the scanning time and the patient dose are proportional to the scanning range of gantry rotation angles of CBCT. However, the image reconstruction for LA-CBCT remains technically challenging, which suffers from severe wedge artifacts and image distortions. This work aims to improve LA-CBCT by developing deep learning (DL) methods for real clinical CBCT projection data, which is the first feasibility study of clinical-projection-data-based LA-CBCT, to the best of our knowledge. MATERIALS/METHODS Targeting at real clinical projection data, we have explored various DL methods such as image/data/hybrid-domain methods and finally developed a so-called Structure-Enhanced Attention Network (SEA-Net) method that has the best image quality from clinical projection data among the DL methods we have implemented. Specifically, the proposed SEA-Net employs a specialized structure enhancement sub-network to promote texture preservation. Based on the observation that the distribution of wedge artifacts in reconstruction images is non-uniform, the spatial attention module is utilized to emphasize the relevant regions while ignores the irrelevant ones, which leads to more accurate texture restoration. RESULTS SEA-Net was validated in comparison with analytic (FDK), iterative (TV), image-domain DL (DDNet and FED-INet, data-domain DL (DCAR), dual-domain DL (Sam'Net), and various unrolling DL (hdNet, CTNet, FSR-Net, CasRedSCAN) methods. Among all methods, the SEA-Net had the best image reconstruction quality as quantified by root-mean-square error (RMSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM), for various LA-CBCT problems of 90°-180° projection data. In addition, LA-CBCT via SEA-Net provided comparable accuracy for both patient setup (quantified by image registration accuracy from planning CT (pCT) to CBCT) and dose calculation (see the table), with full-view CBCT. CONCLUSION We explored various DL methods and developed an image-domain-based method termed SEA-Net that provided the best image quality for clinical projection data. To the best of our knowledge, this is the first feasibility study of the real clinical-projection-data-based LA-CBCT. Moreover, LA-CBCT via SEA-Net can potentially provide comparable accuracy for patient setup and dose calculation, with full-view CBCT.
Collapse
|
54
|
Morgan D, Spiess C, Millington G, Schmidt A, Smith H, Okwuone DDD, Berggren K, Lominska CE, Markiewicz MA, Yelder T, Gao H, Wang J, Gan GN. Investigating the Role of MK2 in Head and Neck Squamous Cell Carcinoma Growth, Metastasis and STING Pathway Activation. Int J Radiat Oncol Biol Phys 2023; 117:S159. [PMID: 37784399 DOI: 10.1016/j.ijrobp.2023.06.587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
PURPOSE/OBJECTIVE(S) Our prior work demonstrated that inhibition of MAPKAPK2 (MK2) can enhance radiation (RT)-mediated in vivo head and neck squamous cell carcinoma (HNSCC) tumor control and survival in preclinical immune incompetent models. The cytosolic DNA sensor cyclic GMP-AMP synthetase (cGAS) and its downstream adaptor protein, stimulator of interferon genes (STING), are conserved proteins within the innate immune signaling pathways and are important for mediating host defense against microbial infection and can play a role in anti-cancer immunity. We hypothesized that loss of MK2 enhances radiation-induced cGAS-STING pathway activation leading to improved tumor control and survival. MATERIALS/METHODS MK2 shRNA knockdown human (Tu167, CAL27) and MK2 Cas9/CRISPR knockout (KO) syngeneic murine (Ly2, MLM3) HNSCC cell lines were treated with 10 Gy irradiation. Micronuclei were quantitated by DAPI-immunofluorescence (IF). Protein changes in cGAS-STING were evaluated by immunoblot. Inflammatory cytokine production including Type I IFNβ1 were evaluated by RT-qPCR. Ly2 and MLM3 cells were orthotopically or flank engrafted into immune competent mice (Balb/c, C57Bl/6, respectively) for animal tumor control-survival studies. Tumor immune cell infiltrate was examined using FACS and immunohistochemistry. Selected drug studies using the MK2 inhibitor, ATI-450, were performed with RT. RESULTS Loss of MK2 in HNSCC (Tu167, CAL27, Ly2, MLM3) treated with RT led to a significant increase in micronuclei formation compared to control cells. MK2-enhanced micronuclei generation following RT could be inhibited with the actin filament polymerization inhibitor, cytochalasin B. RT treatment of MK2 shRNA cells led to increased cGAS and phospho-STING levels compared to either treatment alone. IFNβ1 levels were significantly higher in HNSCC cell lines treated with RT and with MK2 inhibited by an MK2 inhibitor (ATI-450) or genetic reduction compared to either treatment alone. In-vivo implantation of MLM3 cells into C57Bl/6 comparing control vs MK2 KO tumors treated with ±8 Gy RT demonstrated improved mouse survival favoring RT+MK2 KO over RT, MK2 KO or parental (63, 58, 58.5, 35 days, respectively). FACS analysis of MLM3 WT v KO tumors 3 days post RT showed an overall increase in the number of CD3/CD8 T-cells infiltrating into the tumor in all groups except for parental tumors. Further analysis demonstrated that loss of MK2 reversed CD8 T-cell exhaustion and when combined with radiotherapy led to increased CD8 T-cell activation. Furthermore, activated CD4 and CD8 T cells were reduced in WT+RT cells compared to WT tumors whereas no reduction was seen in the KO or KO+RT. CONCLUSION HNSCC tumor MK2 inhibition enhances RT-mediated micronuclei formation and subsequent cGAS-STING-IFNβ1 levels. Loss of HNSCC MK2 leads to increased CD4-CD8 T-cell infiltration into the tumor and this effect is enhanced following RT. Targeting tumor MK2 may facilitate improved tumor control.
Collapse
|
55
|
Li W, Lin Y, Li H, Rotondo R, Gao H. Proton LET Optimization Via Iterative Convex Relaxation Method. Int J Radiat Oncol Biol Phys 2023; 117:S142-S143. [PMID: 37784364 DOI: 10.1016/j.ijrobp.2023.06.554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
PURPOSE/OBJECTIVE(S) If not optimized, the LET distribution can greatly impact normal tissue toxicity near tumor targets, because the LET often peaks at the distal edge of Bragg peak. LET optimization can account for biological effectiveness of protons during treatment planning, for minimizing biological proton dose and hot spots to normal tissues. However, the LET optimization is nonlinear and nonconvex to solve, which poses a great challenge in optimization. This work will develop an effective LET optimization method via iterative convex relaxation (ICR). MATERIALS/METHODS In contrast to the generic nonlinear optimization method, such as Quasi-Newton (QN) method, that does not account for specific characteristics of LET optimization, ICR is tailored to LET modeling and optimization in order to effectively and efficiently solve the LET problem. Specifically, nonlinear dose-averaged LET term is iteratively linearized and becomes convex during ICR, while nonconvex dose-volume constraint and minimum-monitor-unit constraint are also handled by ICR, so that the solution for LET optimization is obtained by solving a sequence of convex and linearized convex subproblems. Since the high LET mostly occurs near the target, a 1cm normal-tissue expansion of clinical target volume (CTV) (excluding CTV), i.e., CTV1cm, is defined to as an auxiliary structure during treatment planning, where LET is minimized. RESULTS ICR was validated in comparison with QN for abdomen, lung, and head-and-neck (HN) cases. ICR was effective for LET optimization, as ICR substantially reduced the LET and biological dose in CTV1cm the ring, with preserved dose conformality to CTV. Compared to QN, ICR had smaller LET, physical and biological dose in CTV1cm, and higher conformity index values; ICR was also computationally more efficient, which was about 3 times faster than QN. A lung case is presented in the table, where the quantities from top to bottom are computational time T (unit: second); total objective F, dose objective Fd and LET objective FL (unit: 10-3); conformity index for physical dose CId and biological dose CIb; mean LET L (unit: keV/μm), mean physical dose d and mean biological dose b (in ratio to prescription dose) for CTV1cm; mean LET L (unit: keV/μm), mean physical dose d and mean biological dose b (in ratio to prescription dose; unit: 10-1) for the heart. CONCLUSION A LET-specific optimization method based on ICR has been developed for solving proton LET optimization, which has been shown to be more computationally efficient than generic nonlinear optimizer via QN, with better plan quality in terms of LET, biological and physical dose conformality.
Collapse
|
56
|
Zhang W, Traneus E, Lin Y, Gan GN, Chen RC, Gao H. Virtual-Collimator Based Spatial Dose Modulation for Proton GRID Therapy. Int J Radiat Oncol Biol Phys 2023; 117:e747. [PMID: 37786164 DOI: 10.1016/j.ijrobp.2023.06.2287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
PURPOSE/OBJECTIVE(S) Compared to conventional proton therapy, the proton GRID therapy can substantially improve normal tissue protection (with the delivery of spatially-modulated peak-valley dose pattern to normal tissues) while maintaining the tumor control efficacy (with the delivery of uniform dose pattern to tumor targets). The realization of proton GRID often relies on the use of physical collimators to shape the spatial dose distribution. However, the physical collimator may increase neutron dose, decrease delivery efficiency, and limit the freedom for patient positioning. Here we propose a virtual-collimator (VC) method for proton GRID. This new approach can generate peak-to-valley pattern with high peak-to-valley dose ratio (PVDR), without using a physical collimator. MATERIALS/METHODS The principle behind the VC method to modulate the spatial dose distribution consists of two major steps: (1) the primary beam is essentially halved, i.e., the beamlets are interleaved, so that the organ-at-risk (OAR) plane has the peak-valley dose pattern, while the target plane also has the valley dose; (2) the complementary beam is added with half complementary beamlets to fill in the previously valley-dose positions at the target plane, so that the target dose is uniform, while on the other hand, the complementary beam is angled slightly from the primary beam, so that the OAR still has the peak-valley dose pattern. Moreover, on top of VC, we also utilize sparsity regularization method using total variation and L1 sparsity (TVL1) to further jointly optimize PVDR and dose objectives, namely VC-TVL1. RESULTS VC and VC-TVL1 were validated in comparison with conventional proton GRID treatment planning method via IMPT ("CONV") and TVL1-based proton GRID treatment planning method without VC ("TVL1"), for a prostate case with single-beam (270° only) or two-beam (90° and 270°) scenarios. As shown in the table, the results show that VC can indeed modulate spatial dose with higher PVDR than CONV or even TVL1. VC had higher spatial modulation frequency with smaller peak-to-peak distance than TVL1. Moreover, VC+TVL1, as the synergy of VC and TVL1, further improved PVDR from VC or TVL1 alone. CONCLUSION A new way to deliver proton GRID therapy without a physical collimator is developed using the VC method. The VC method can be synergized with TVL1 optimization algorithm to further jointly optimize PVDR and dose objectives.
Collapse
|
57
|
Zhang Y, Hu D, Li W, Zhang W, Chen RC, Chen Y, Gao H. 2V-CBCT: Two-Orthogonal-Projection Based CBCT Reconstruction and Dose Calculation from Real CBCT Projection Data. Int J Radiat Oncol Biol Phys 2023; 117:e748. [PMID: 37786167 DOI: 10.1016/j.ijrobp.2023.06.2289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
PURPOSE/OBJECTIVE(S) Not all radiation therapy (RT) treatments/fractions have CBCT acquired, but two orthogonal projections (i.e., KV radiography) are always available. This work demonstrates the feasibility of two-orthogonal-projection-based CBCT (2V-CBCT) reconstruction and dose calculation for RT from real CBCT projection data, which is the first 2V-CBCT feasibility study using real projection data, to the best of our knowledge. MATERIALS/METHODS 2V-CBCT is a severely ill-posed inverse problem for which we propose a coarse-to-fine learning strategy. First, a 3D deep neural network that can extract and exploit the inter-slice and intra-slice information is adopted to predict the initial 3D volumes. Then, a 2D deep neural network is utilized to fine-tune the initial 3D volumes slice-by-slice. During the fine-tuning stage, a perceptual loss based on multi-frequency features is employed to enhance the image reconstruction. Dose calculation results from both photon and proton RT demonstrate that 2V-CBCT provides comparable accuracy with full-view CBCT based on real projection data. RESULTS The proposed method was evaluated on real HN data acquired from on-board CBCT scanners rather than the low-resolution simulated data or down-sampled data. Both visual assessment and quantitative analysis demonstrate that the proposed coarse-to-fine learning strategy has the potential to produce satisfactory volumetric images from two orthogonal projections. Furthermore, we assessed the utility of 2V-CBCT in RT. The results show that the dose distribution maps, dose-volume histograms, and dose parameters calculated using 2V-CBCT have comparable accuracy with the counterparts calculated using the corresponding full-view CBCT for both photon and proton RT. In the table, the methods under comparison are pCT (planning CT), FV-CBCT (CBCT reconstructed with full-view projection data), and 2V-CBCT (CBCT reconstructed with two orthogonal projections). CONCLUSION A new effective 2V-CBCT reconstruction method is proposed and validated using real CBCT projection data, which can potentially provide comparable dose calculation accuracy for both photon and proton RT.
Collapse
|
58
|
Zhang G, Shen H, Long Y, Lin Y, Chen RC, Gao H. A New Treatment Planning Method for Efficient Proton ARC Therapy with Direct Minimization of Number of Energy Jumps. Int J Radiat Oncol Biol Phys 2023; 117:e716. [PMID: 37786092 DOI: 10.1016/j.ijrobp.2023.06.2220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
PURPOSE/OBJECTIVE(S) The optimization of energy layer distributions is crucial for efficient proton ARC therapy: on one hand, a sufficient number of energy layers is needed to ensure the plan quality; on the other hand, an excess number of energy jumps can substantially slow down the treatment delivery. This work will develop a new treatment plan optimization method with direct minimization of number of energy jumps (NEJ), which will be shown to outperform state-of-the-art methods in both plan quality and delivery efficiency. MATERIALS/METHODS The proposed method jointly optimizes the plan quality and minimizes the NEJ. To minimize NEJ, (1) the proton spots x is summed per energy layer to form the energy vector y; (2) y is binarized via sigmoid transform into y1; (3) y1 is multiplied with a predefined energy order vector via dot product into y2; (4) y2 is filtered through the finite-differencing kernel into y3 in order to identify NEJ; (5) only the NEJ of y3 is penalized, while x is optimized for plan quality. The solution algorithm to this new method is based on iterative convex relaxation. RESULTS The new method is validated in comparison with state-of-the-art methods called energy sequencing (ES) method and energy matrix (EM) method. In terms of delivery efficiency, the new method had fewer NEJ, less energy switching time, and generally less total delivery time. In terms of plan quality, the new method had smaller optimization objective values, lower normal tissue dose, and generally better target coverage. A head-and-neck case is provided in the table with the following dosimetric parameters: planning objective value F; conformity index CI; homogeneity index HI; mean dose of larynx DOAR; mean body dose Dbody; the unit of dose is Gy. CONCLUSION We have developed a new treatment plan optimization method with direct minimization of NEJ, and demonstrated that this new method outperformed state-of-the-art methods (ES and EM) in both plan quality and delivery efficiency.
Collapse
|
59
|
Zhang W, Lin Y, Wang F, Badkul RK, Chen RC, Gao H. Vertex Position Optimization for LATTICE Therapy. Int J Radiat Oncol Biol Phys 2023; 117:e747. [PMID: 37786165 DOI: 10.1016/j.ijrobp.2023.06.2288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
PURPOSE/OBJECTIVE(S) LATTICE radiation therapy (RT) aims to deliver 3D heterogenous dose of high peak-to-valley dose ratio (PVDR) to the tumor target, with peak dose at lattice vertices inside the target and valley dose for the rest of the target. In current clinical practice the lattice vertex positions are constant during treatment planning. This work proposes a new LATTICE plan optimization method that can optimize lattice vertex positions as plan variables, which is the first lattice vertex position optimization study to the best of our knowledge. MATERIALS/METHODS The new LATTICE treatment planning method optimizes lattice vertex positions as well as other plan variables (e.g., photon fluences or proton spot weights), with optimization objectives for target PVDR and organs-at-risk (OAR) sparing. To satisfy mathematical differentiability, the lattice vertices are approximated in sigmoid functions. For geometric feasibility, proper geometry constraints are enforced onto the lattice vertex positions. The lattice vertex position optimization problem is solved by iterative convex relaxation method, where lattice vertex positions and photon/proton plan variables are jointly updated via the Quasi-Newton method. RESULTS Both photon and proton LATTICE RT were considered, and the optimal lattice vertex positions in terms of plan objectives were found by solving all possible combinations on given discrete positions via heuristic searching based on standard IMRT/IMPT, which served as the ground truth for validating the new LATTICE method ("NEW"). That is, the plan with the smallest optimization objective ("BEST"), the plan with the median optimization objective ("MID"), and the plan with the largest optimization objective ("WORST") were selected as the reference plans to be compared with NEW. The table was for an abdomen case with the large bowel as the OAR, where the parameters are total optimization objective f, the mean valley dose of target Dvalley, the mean peak dose of target Dpeak, PVDR = Dpeak/Dvalley, and the mean dose of large bowel Dbowel. The unit of doses is Gy. The results in the table show that the new method indeed provided the optimal lattice vertex positions with the smallest optimization objective, the largest target PVDR, and the best OAR sparing. CONCLUSION A new LATTICE treatment planning method is proposed and validated that can optimize lattice vertex positions as well as other photon or proton plan variables for improving target PVDR and OAR sparing.
Collapse
|
60
|
Zhu YN, Zhang X, Lin Y, Lominska C, Gao H. An Effective Dose Rate Optimization Algorithm for Efficient Conventional-Dose-Rate Proton Therapy and Ultra-High-Dose-Rate FLASH Proton Therapy. Int J Radiat Oncol Biol Phys 2023; 117:S37-S38. [PMID: 37784486 DOI: 10.1016/j.ijrobp.2023.06.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
PURPOSE/OBJECTIVE(S) The treatment delivery with high dose rate is desirable for efficient conventional-dose-rate proton therapy (IMPT and proton ARC) and essential for achieving biological sparing effect to normal tissues for ultra-high-dose-rate FLASH proton therapy. The minimum-monitor-unit (MMU) problem is mathematically fundamental to these high-dose-rate proton therapy problems, since the dose rate is proportionally associated with the MMU threshold. However, the MMU problem is nonconvex and larger MMU threshold that leads to higher dose rate makes the nonconvex problem more difficult to solve, for which the conventional optimization methods (e.g., alternating direction method of multipliers (ADMM) or proximal gradient descent (PGD) usually cannot satisfactorily solve. This work will develop an effective dose rate optimization algorithm for the MMU problem. MATERIALS/METHODS The new method is based on orthogonal matching pursuit (OMP), and consists of two essential components. First, the iterative convex relaxation method is used to determine the active sets for dose-volume planning constraints and decouple the MMU constraint from the rest. Second, a modified OMP optimization algorithm is used to handle the MMU constraint: the non-zero spots are greedily selected via OMP to form the solution set to be optimized, and then a convex constrained subproblem is formed and can be conveniently solved to optimize the spot weights restricted to this solution set via OMP. During this iterative process, the new non-zero spots localized via OMP will be adaptively added to or removed from the optimization objective. RESULTS The new method via OMP is validated in comparison with conventional methods (ADMM and PGD) and a recently proposed new method (called stochastic coordinate descent (SCD) method) for high-dose-rate IMPT, ARC, and FLASH problems of large MMU thresholds, and the results suggest that OMP substantially improved the plan quality from PGD, ADMM and SCD in terms of both target dose conformality (e.g., quantified by max target dose and conformity index) and normal tissue sparing (e.g., mean and max dose). A brain case is provided in the table: compared to PGD/ADMM/SCD, OMP improved the conformity index from 0.42/0.52/0.33 to 0.65 for IMPT and 0.46/0.60/0.61 to 0.83 for ARC. CONCLUSION A new dose rate optimization algorithm via OMP is developed to solve the MMU problem with large MMU thresholds, and validated using examples of IMPT, ARC, and FLASH with substantially improved plan quality from conventional methods (ADMM and PGD) and a recently proposed new method SCD.
Collapse
|
61
|
Wang X, Qi XL, Wang ML, Su M, Li SX, Shi WY, Gao H. [Application of intraoperative optical coherence tomography in deep lamellar keratoplasty]. [ZHONGHUA YAN KE ZA ZHI] CHINESE JOURNAL OF OPHTHALMOLOGY 2023; 59:723-729. [PMID: 37670655 DOI: 10.3760/cma.j.cn112142-20230130-00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Objective: To evaluate the clinical application value of intraoperative optical coherence tomography (iOCT) in deep anterior lamellar keratoplasty (DALK) using the big-bubble technique to bare Descemet's membrane. Methods: Retrospective case series. Clinical data of 92 patients (92 eyes) with monocular stromal corneal diseases who underwent big-bubble DALK in the Eye Hospital of Shandong First Medical University from January 2020 to August 2021 were collected. There were 53 males and 39 females. The average age was (53.2±16.0) years old. All patients underwent iOCT scanning to determine the location and depth of the injection needle after initial removal of the corneal lesion, to observe the integrity of the recipient bed, Descemet's membrane, after complete lesion removal, and to observe the adhesion between the corneal graft and the recipient bed and check folds on the recipient bed after suturing of the corneal graft. The intraoperative perforation of Descemet's membrane, postoperative thickness of the cornea and the recipient bed, visual acuity, and corneal astigmatism were recorded. Results: By iOCT, the thickness of the recipient bed was found to be about 1/2 of the corneal thickness and relatively uniform in all directions in 62 eyes (67.4%), so the sterile air was injected from the center of the recipient bed to separate it from the stromal layer. In 30 eyes (32.6%) with an uneven thickness of the recipient bed, the sterile air was injected from the paracentral area of the recipient bed. Under the guidance of iOCT scanning, 89 eyes (96.7%) did not experience any perforation of Descemet's membrane during surgery. The Descemet's membrane folds in the central 5-mm area of the recipient bed was observed and flattened in 20 eyes with the assistance of iOCT scanning. The postoperative corneal thickness was (578.95±108.26) μm, and the recipient bed thickness was (36.06±23.11) μm. The best corrected visual acuity of all patients at 6 months after surgery was 0.57±0.25 logMAR, which was significantly better than that before surgery (1.61±1.27 logMAR; P<0.001). The average corneal astigmatism at 6 months after surgery was (2.72±2.44) diopters. Conclusions: The application of iOCT scanning in DALK surgery assisted by the big-bubble method can provide safe guidance for surgeons to adopt correct surgical procedures, decrease the risk of Descemet's membrane perforation, reduce the recipient bed folds, and facilitate corneal interlayer adhesion, thereby improving the visual prognosis.
Collapse
|
62
|
Qu C, Qi SY, Li X, Gao H. [Predictive value of low-density lipoprotein cholesterol/remnant cholesterol coordination on cardiovascular and cerebrovascular events in elderly patients with hypertension]. ZHONGHUA XIN XUE GUAN BING ZA ZHI 2023; 51:844-850. [PMID: 37583333 DOI: 10.3760/cma.j.cn112148-20230107-00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Objective: To explore the predictive value of serum low-density lipoprotein cholesterol/residual cholesterol (LDL-C/RC) coordination on major adverse cardiovascular events (MACE) in elderly hypertensive patients. Methods: This is a prospective cohort study. Elderly hypertensive patients hospitalized in Beijing Anzhen Hospital from June 2018 to June 2020 were prospectively enrolled. According to the coordination of baseline LDL-C/RC, patients were divided into four groups: low LDL-C and low RC (LDL-C<2.6 mmol/L, and RC<0.62 mmol/L), low LDL-C and high RC (LDL-C<2.6 mmol/L, and RC≥0.62 mmol/L), high LDL-C and low RC (LDL-C≥2.6 mmol/L, and RC<0.62 mmol/L), and high LDL-C and high RC (LDL-C≥2.6 mmol/L, and RC≥0.62 mmol/L). Patients were followed up until June 2022. The primary outcome was MACE, including non-fatal acute coronary syndrome, non-fatal acute heart failure, non-fatal stroke and death. Kaplan-Meier survival analysis was used to evaluate MACE among the four groups, and Cox regression analysis was performed to evaluate the related factors of MACE. Results: A total of 847 hypertensive patients were enrolled. There were 453 males (53.5%), mean age was (72.4±8.8) years. There were 207, 162, 263, 215 patients in the low LDL-C and low RC, low LDL-C and high RC, high LDL-C and low RC and high LDL-C and high RC group, respectively. During a median follow-up of 37 months, 196 patients (23.1%) had MACE, including 77 cases (9.1%) of ACS, 56 cases (6.6%) of acute heart failure, 34 cases (4.0%)of non-fatal stroke, 29 cases(3.4%) of all-cause mortality, and 16 cases (1.9%) of cardiovascular death. Risk of MACE of the four groups was significantly different (log-rank P<0.001). Compared with low LDL-C and low RC groups, high LDL-C and high RC groups had the highest incidence of MACE (HR=2.237, 95%CI 1.328-3.783, P=0.004), followed by low LDL-C and high RC groups (HR=1.745, 95%CI 1.220-2.527, P=0.003) and high LDL-C and low RC groups (HR=1.393, 95%CI1.048-1.774, P=0.022). In addition, the risk of nonfatal ACS among the four groups was also statistically significant (P=0.037), while the risk of nonfatal acute heart failure, nonfatal stroke, all-cause mortality and cardiovascular death were similar (all P>0.05). Multivariate Cox regression analysis showed that age (HR=1.271), duration of hypertension (HR=1.339), diabetes (HR=1.415), hyperlipidemia (HR=1.348), serum creatinine (HR=1.263), N-terminal pro-B-type natriuretic peptide (HR=1.316), LDL-C (HR=1.205), RC (HR=1.302), low LDL-C and high RC (HR=1.745), high LDL-C and low RC (HR=1.393), high LDL-C and high RC (HR=2.237) were independently associated with the occurrence of MACE. Conclusion: The coordination of LDL-C/RC affects the risk of MACE in elderly hypertensive patients, and the risk of MACE is the highest in patients with high LDL-C and high RC.
Collapse
|
63
|
Hu H, Lin X, Fan L, Fang L, Zhou J, Gao H. Acupuncture treatment for COVID-19-associated sensorineural hearing loss and tinnitus. QJM 2023; 116:605-607. [PMID: 36882180 DOI: 10.1093/qjmed/hcad028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/16/2023] [Indexed: 03/09/2023] Open
|
64
|
Ablikim M, Achasov MN, Adlarson P, Aliberti R, Amoroso A, An MR, An Q, Bai Y, Bakina O, Balossino I, Ban Y, Batozskaya V, Begzsuren K, Berger N, Berlowski M, Bertani M, Bettoni D, Bianchi F, Bianco E, Bloms J, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang TT, Chang WL, Che GR, Chelkov G, Chen C, Chen C, Chen G, Chen HS, Chen ML, Chen SJ, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen YQ, Chen ZJ, Cheng WS, Choi SK, Chu X, Cibinetto G, Coen SC, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding B, Ding XX, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du SX, Duan ZH, Egorov P, Fan YL, Fang J, Fang SS, Fang WX, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fischer K, Fritsch M, Fritzsch C, Fu CD, Fu JL, Fu YW, Gao H, Gao YN, Gao Y, Garbolino S, Garzia I, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Gramigna S, Greco M, Gu MH, Gu YT, Guan CY, Guan ZL, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, H XT, Han TT, Han WY, Hao XQ, Harris FA, He KK, He KL, Heinsius FHH, Heinz CH, Heng YK, Herold C, Holtmann T, Hong PC, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Hussain T, Hüsken N, Imoehl W, Irshad M, Jackson J, Jaeger S, Janchiv S, Jeong JH, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jia ZK, Jiang PC, Jiang SS, Jiang TJ, Jiang XS, Jiang Y, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, K X, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Khoukaz A, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuessner MK, Kupsc A, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei TT, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li HB, Li HJ, Li HN, Li H, Li JR, Li JS, Li JW, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li SX, Li T, Li WD, Li WG, Li XH, Li XL, Li X, Li YG, Li ZJ, Li ZX, Li ZY, Liang C, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin DX, Lin T, Liu BJ, Liu BX, Liu C, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LC, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma HL, Ma JL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XY, Ma Y, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Muchnoi NY, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pei YP, Pelizaeus M, Peng HP, Peters K, Ping JL, Ping RG, Plura S, Pogodin S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qin JJ, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Redmer CF, Ren KJ, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Ruan SN, Salone N, Sarantsev A, Schelhaas Y, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi HC, Shi JL, Shi JY, Shi QQ, Shi RS, Shi X, Song JJ, Song TZ, Song WM, Song YJ, Song YX, Sosio S, Spataro S, Stieler F, Su YJ, Sun GB, Sun GX, Sun H, Sun HK, Sun JF, Sun K, Sun L, Sun SS, Sun T, Sun WY, Sun Y, Sun YJ, Sun YZ, Sun ZT, Tan YX, Tang CJ, Tang GY, Tang J, Tang YA, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian WH, Tian Y, Tian ZF, Uman I, Wang B, Wang BL, Wang B, Wang CW, Wang DY, Wang F, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang M, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XJ, Wang XL, Wang Y, Wang YD, Wang YF, Wang YH, Wang YN, Wang YQ, Wang Y, Wang Y, Wang Z, Wang ZL, Wang ZY, Wang Z, Wei D, Wei DH, Weidner F, Wen SP, Wenzel CW, Wiedner UW, Wilkinson G, Wolke M, Wollenberg L, Wu C, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YJ, Wu Z, Xia L, Xian XM, Xiang T, Xiao D, Xiao GY, Xiao H, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu QJ, Xu QN, Xu W, Xu WL, Xu XP, Xu YC, Xu ZP, Xu ZS, Yan F, Yan L, Yan WB, Yan WC, Yan XQ, Yang HJ, Yang HL, Yang HX, Yang T, Yang Y, Yang YF, Yang YX, Yang Y, Yang ZW, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu T, Yu XD, Yuan CZ, Yuan L, Yuan SC, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng X, Zeng Y, Zeng YJ, Zhai XY, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang HH, Zhang HH, Zhang HQ, Zhang HY, Zhang JJ, Zhang JL, Zhang JQ, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang P, Zhang QY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang XY, Zhang Y, Zhang Y, Zhang YT, Zhang YH, Zhang Y, Zhang Y, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong X, Zhou H, Zhou LP, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu L, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WJ, Zhu YC, Zhu ZA, Zou JH, Zu J. First Study of Reaction Ξ^{0}n→Ξ^{-}p Using Ξ^{0}-Nucleus Scattering at an Electron-Positron Collider. PHYSICAL REVIEW LETTERS 2023; 130:251902. [PMID: 37418739 DOI: 10.1103/physrevlett.130.251902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 07/09/2023]
Abstract
Using (1.0087±0.0044)×10^{10} J/ψ events collected with the BESIII detector at the BEPCII storage ring, the process Ξ^{0}n→Ξ^{-}p is studied, where the Ξ^{0} baryon is produced in the process J/ψ→Ξ^{0}Ξ[over ¯]^{0} and the neutron is a component of the ^{9}Be, ^{12}C, and ^{197}Au nuclei in the beam pipe. A clear signal is observed with a statistical significance of 7.1σ. The cross section of the reaction Ξ^{0}+^{9}Be→Ξ^{-}+p+^{8}Be is determined to be σ(Ξ^{0}+^{9}Be→Ξ^{-}+p+^{8}Be)=(22.1±5.3_{stat}±4.5_{sys}) mb at the Ξ^{0} momentum of 0.818 GeV/c, where the first uncertainty is statistical and the second is systematic. No significant H-dibaryon signal is observed in the Ξ^{-}p final state. This is the first study of hyperon-nucleon interactions in electron-positron collisions and opens up a new direction for such research.
Collapse
|
65
|
Abdullah H, Gao H, Tatomir A, Sauter M. A steady-state kinetic interface-sensitive tracer (KIS-SST) method to measure capillary associated interfacial area in a simultaneous co-flow condition. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 257:104217. [PMID: 37379622 DOI: 10.1016/j.jconhyd.2023.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/30/2023]
Abstract
We propose a novel method to measure the specific capillary-associated interfacial area (awn) between non-wetting and wetting fluids by applying kinetic interface-sensitive (KIS) tracers under steady-state two-phase co-flow conditions. Seven column experiments were conducted with a column filled with glass beads (diameter d50 = 170 μm), serving as the solid grain network of a porous granular material. The experiments were performed for two flow scenarios, i.e., five experiments were performed for drainage conditions (increasing non-wetting saturation) and two experiments for imbibition conditions (increasing wetting saturation). To obtain different saturation levels in the column and, consequently, different capillarity-induced interfacial areas between the fluids, the experiments were performed for different fractional flow ratios (i.e., the ratio between injection rate of the wetting phase and total injection rate). The concentrations of the KIS tracer reaction by-product were recorded at each saturation level and the corresponding interfacial area was calculated. As a result of the fractional flow condition a wide range of wetting phase saturation is created (0.3 < Sw < 0.8). The measured awn increases with decreasing wetting phase saturation for the range 0.55 < Sw < 0.8, and then is followed by a drop in wetting phase saturation of 0.3 < Sw < 0.55. A good fit for our calculated awn is obtained (RMSE <0.16) using a polynomial model. Additionally, the results of the proposed method are compared to published experimental data and the method's main advantages and limitations are discussed.
Collapse
|
66
|
Ablikim M, Achasov MN, Adlarson P, Albrecht M, Aliberti R, Amoroso A, An MR, An Q, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Batozskaya V, Becker D, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bianco E, Bloms J, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Che GR, Chelkov G, Chen C, Chen C, Chen G, Chen HS, Chen ML, Chen SJ, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen ZJ, Cheng WS, Choi SK, Chu X, Cibinetto G, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du SX, Duan ZH, Egorov P, Fan YL, Fang J, Fang SS, Fang WX, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fischer K, Fritsch M, Fritzsch C, Fu CD, Gao H, Gao XL, Gao YN, Gao Y, Garbolino S, Garzia I, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han WY, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Huang Z, Hussain T, Hüsken N, Imoehl W, Irshad M, Jackson J, Jaeger S, Janchiv S, Jang E, Jeong JH, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jia ZK, Jiang PC, Jiang SS, Jiang XS, Jiang Y, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei TT, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li H, Li HB, Li HJ, Li HN, Li JQ, Li JS, Li JW, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li SX, Li SY, Li T, Li WD, Li WG, Li XH, Li XL, Li X, Li YG, Li ZX, Li ZY, Liang C, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin CX, Lin DX, Lin T, Liu BJ, Liu C, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XY, Ma Y, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Muchnoi NY, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pei YP, Pelizaeus M, Peng HP, Peters K, Ping JL, Ping RG, Plura S, Pogodin S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin JJ, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Redmer CF, Ren KJ, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Ruan SN, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi HC, Shi JY, Shi QQ, Shi RS, Shi X, Song JJ, Song WM, Song YX, Sosio S, Spataro S, Stieler F, Su PP, Su YJ, Sun GX, Sun H, Sun HK, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun YJ, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian Y, Uman I, Wang B, Wang B, Wang BL, Wang CW, Wang DY, Wang F, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang YD, Wang YF, Wang YH, Wang YQ, Wang Y, Wang Z, Wang ZY, Wang Z, Wei DH, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YJ, Wu Z, Xia L, Xiang T, Xiao D, Xiao GY, Xiao H, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu QJ, Xu XP, Xu YC, Xu ZP, Yan F, Yan L, Yan WB, Yan WC, Yang HJ, Yang HL, Yang HX, Yang T, Yang YF, Yang YX, Yang Y, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu T, Yu XD, Yuan CZ, Yuan L, Yuan SC, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng X, Zeng Y, Zhai XY, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang HH, Zhang HH, Zhang HQ, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang P, Zhang QY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang Y, Zhang Y, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng YH, Zhong B, Zhong C, Zhong X, Zhou H, Zhou LP, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WJ, Zhu YC, Zhu ZA, Zou JH, Zu J. Measurements of Normalized Differential Cross Sections of Inclusive π^{0} and K_{S}^{0} Production in e^{+}e^{-} Annihilation at Energies from 2.2324 to 3.6710 GeV. PHYSICAL REVIEW LETTERS 2023; 130:231901. [PMID: 37354421 DOI: 10.1103/physrevlett.130.231901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 06/26/2023]
Abstract
Based on electron positron collision data collected with the BESIII detector operating at the BEPCII storage rings, the differential cross sections of inclusive π^{0} and K_{S}^{0} production as a function of hadron momentum, normalized by the total cross section of the e^{+}e^{-}→hadrons process, are measured at six center-of-mass energies from 2.2324 to 3.6710 GeV. Our results, which cover a relative hadron energy range from 0.1 to 0.9, significantly deviate from several theoretical calculations based on existing fragmentation functions.
Collapse
|
67
|
Ablikim M, Achasov MN, Adlarson P, Aliberti R, Amoroso A, An MR, An Q, Bai Y, Bakina O, Balossino I, Ban Y, Batozskaya V, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bianco E, Bloms J, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang TT, Chang WL, Che GR, Chelkov G, Chen C, Chen C, Chen G, Chen HS, Chen ML, Chen SJ, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen YQ, Chen ZJ, Cheng WS, Choi SK, Chu X, Cibinetto G, Coen SC, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding B, Ding XX, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du SX, Duan ZH, Egorov P, Fan YL, Fang J, Fang SS, Fang WX, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fischer K, Fritsch M, Fritzsch C, Fu CD, Fu YW, Gao H, Gao YN, Gao Y, Garbolino S, Garzia I, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Gramigna S, Greco M, Gu MH, Gu YT, Guan CY, Guan ZL, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, H XT, Han WY, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Holtmann T, Hong PC, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Hussain T, Hüsken N, Imoehl W, Irshad M, Jackson J, Jaeger S, Janchiv S, Jeong JH, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jia ZK, Jiang PC, Jiang SS, Jiang TJ, Jiang XS, Jiang Y, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, K X, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Khoukaz A, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuessner M, Kupsc A, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei TT, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li HB, Li HJ, Li HN, Li H, Li JR, Li JS, Li JW, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li SX, Li T, Li WD, Li WG, Li XH, Li XL, Li X, Li YG, Li ZJ, Li ZX, Li ZY, Liang C, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin DX, Lin T, Liu BJ, Liu BX, Liu C, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LC, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma HL, Ma JL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XY, Ma Y, Maas FE, Maggiora M, Maldaner S, Malde S, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Muchnoi NY, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pei YP, Pelizaeus M, Peng HP, Peters K, Ping JL, Ping RG, Plura S, Pogodin S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qin JJ, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Redmer CF, Ren KJ, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Ruan SN, Salone N, Sarantsev A, Schelhaas Y, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi HC, Shi JY, Shi QQ, Shi RS, Shi X, Song JJ, Song TZ, Song WM, Song YX, Sosio S, Spataro S, Stieler F, Su YJ, Sun GB, Sun GX, Sun H, Sun HK, Sun JF, Sun K, Sun L, Sun SS, Sun T, Sun WY, Sun Y, Sun YJ, Sun YZ, Sun ZT, Tan YX, Tang CJ, Tang GY, Tang J, Tang YA, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian WH, Tian Y, Tian ZF, Uman I, Wang B, Wang BL, Wang B, Wang CW, Wang DY, Wang F, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang M, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XJ, Wang XL, Wang Y, Wang YD, Wang YF, Wang YH, Wang YN, Wang YQ, Wang Y, Wang Y, Wang Z, Wang ZL, Wang ZY, Wang Z, Wei D, Wei DH, Weidner F, Wen SP, Wenzel CW, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu C, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YJ, Wu Z, Xia L, Xian XM, Xiang T, Xiao D, Xiao GY, Xiao H, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu QJ, Xu WL, Xu XP, Xu YC, Xu ZP, Yan F, Yan L, Yan WB, Yan WC, Yan XQ, Yang HJ, Yang HL, Yang HX, Yang T, Yang Y, Yang YF, Yang YX, Yang Y, Yang ZW, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu T, Yu XD, Yuan CZ, Yuan L, Yuan SC, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng X, Zeng Y, Zeng YJ, Zhai XY, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang HH, Zhang HH, Zhang HQ, Zhang HY, Zhang JJ, Zhang JL, Zhang JQ, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang P, Zhang QY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang Y, Zhang Y, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong X, Zhou H, Zhou LP, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu L, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WJ, Zhu YC, Zhu ZA, Zou JH, Zu J. Precision Measurement of the Decay Σ^{+}→pγ in the Process J/ψ→Σ^{+}Σ[over ¯]^{-}. PHYSICAL REVIEW LETTERS 2023; 130:211901. [PMID: 37295102 DOI: 10.1103/physrevlett.130.211901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 05/08/2023] [Indexed: 06/12/2023]
Abstract
Using (10 087±44)×10^{6} J/ψ events collected with the BESIII detector, the radiative hyperon decay Σ^{+}→pγ is studied at an electron-positron collider experiment for the first time. The absolute branching fraction is measured to be (0.996±0.021_{stat}±0.018_{syst})×10^{-3}, which is lower than its world average value by 4.2 standard deviations. Its decay asymmetry parameter is determined to be -0.652±0.056_{stat}±0.020_{syst}. The branching fraction and decay asymmetry parameter are the most precise to date, and the accuracies are improved by 78% and 34%, respectively.
Collapse
|
68
|
Zhai GY, Sun TN, Li X, Ye M, Wang CG, Zu XL, Yang D, Fu H, Qi SY, Zhou YJ, Gao H. [A prospective study on the safety and efficacy of excimer laser coronary angioplasty for the treatment of degenerated great saphenous vein graft]. ZHONGHUA XIN XUE GUAN BING ZA ZHI 2023; 51:490-496. [PMID: 37198120 DOI: 10.3760/cma.j.cn112148-20220815-00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Objective: To explore the safety and efficacy of excimer laser coronary angioplasty (ELCA) for the treatment of degenerated great saphenous vein graft (SVG). Methods: This is a single-center, prospective, single-arm study. Patients, who were admitted to the Geriatric Cardiovascular Center of Beijing Anzhen Hospital from January 2022 to June 2022, were consecutively enrolled. Inclusion criteria were recurrent chest pain after coronary artery bypass surgery (CABG), and coronary angiography confirmed that the SVG stenosis was more than 70% but not completely occluded, and interventional treatment for SVG lesions was planned. Before balloon dilation and stent placement, ELCA was used to pretreat the lesions. Optical coherence tomography (OCT) examination was performed and postoperative index of microcirculation resistance (IMR) were assessed after stent implantation. The technique success rate and operation success rate were calculated. The technique success was defined as the successful passage of the ELCA system through the lesion. Operation success was defined as the successful placement of a stent at the lesion. The primary evaluation index of the study was IMR immediately after PCI. Secondary evaluation indexes included thrombolysis in myocardial infarction (TIMI) flow grade, corrected TIMI frame count (cTFC), minimal stent area and stent expansion measured by OCT after PCI, and procedural complications (Ⅳa myocardial infarction, no reflow, perforation). Results: A total of 19 patients aged (66.0±5.6) years were enrolled, including 18 males (94.7%). The age of SVG was 8 (6, 11) years. The length of the lesions was greater than 20 mm, and they were all SVG body lesions. The median stenosis degree was 95% (80%, 99%), and the length of the implanted stent was (41.7±16.3)mm. The operation time was 119 (101, 166) minutes, and the cumulative dose was 2 089 (1 378, 3 011)mGy. The diameter of the laser catheter was 1.4 mm, the maximum energy was 60 mJ, and the maximum frequency was 40 Hz. The technique success and the operation success rate were both 100% (19/19). The IMR after stent implantation was 29.22±5.95. The TIMI flow grade of patients after ELCA and stent implantation was significantly improved (all P>0.05), and the TIMI flow grade of all patients after stent implantation was Grade Ⅲ. The cTFC decreased significantly after ELCA (33.2±7.8) and after stent placement (22.8±7.1) than preoperative level (49.7±13.0) (both P<0.001). The minimum stent area was (5.53±1.36)mm2, and the stent expansion rate was (90.0±4.3)%. Perforation, no reflow, type Ⅳa myocardial infarction and other complications were not observed. However, postoperative high-sensitivity troponin level was significantly increased ((67.937±33.839)ng/L vs. (5.316±3.105)ng/L, P<0.001). Conclusion: ELCA is safe and effective in the treatment of SVG lesions and could improve microcirculation and ensure full expansion of stent.
Collapse
|
69
|
Ablikim M, Achasov MN, Adlarson P, Aliberti R, Amoroso A, An MR, An Q, Bai Y, Bakina O, Balossino I, Ban Y, Batozskaya V, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bianco E, Bloms J, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang TT, Chang WL, Che GR, Chelkov G, Chen C, Chen C, Chen G, Chen HS, Chen ML, Chen SJ, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen YQ, Chen ZJ, Cheng WS, Choi SK, Chu X, Cibinetto G, Coen SC, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding B, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du SX, Duan ZH, Egorov P, Fan YL, Fang J, Fang SS, Fang WX, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fischer K, Fritsch M, Fritzsch C, Fu CD, Fu YW, Gao H, Gao YN, Gao Y, Garbolino S, Garzia I, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Gramigna S, Greco M, Gu MH, Gu YT, Guan CY, Guan ZL, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, H XT, Han WY, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Holtmann T, Hong PC, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Hussain T, Hüsken N, Imoehl W, Irshad M, Jackson J, Jaeger S, Janchiv S, Jeong JH, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jia ZK, Jiang PC, Jiang SS, Jiang TJ, Jiang XS, Jiang Y, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, K X, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Khoukaz A, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuessner M, Kupsc A, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei TT, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li HB, Li HJ, Li HN, Li H, Li JR, Li JS, Li JW, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li SX, Li T, Li WD, Li WG, Li XH, Li XL, Li X, Li YG, Li ZJ, Li ZX, Li ZY, Liang C, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin DX, Lin T, Liu BX, Liu BJ, Liu C, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LC, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma HL, Ma JL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XY, Ma Y, Maas FE, Maggiora M, Maldaner S, Malde S, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Muchnoi NY, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pei YP, Pelizaeus M, Peng HP, Peters K, Ping JL, Ping RG, Plura S, Pogodin S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qin JJ, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Redmer CF, Ren KJ, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Ruan SN, Sarantsev A, Schelhaas Y, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi HC, Shi JY, Shi QQ, Shi RS, Shi X, Song JJ, Song TZ, Song WM, Song YX, Sosio S, Spataro S, Stieler F, Su YJ, Sun GB, Sun GX, Sun H, Sun HK, Sun JF, Sun K, Sun L, Sun SS, Sun T, Sun WY, Sun Y, Sun YJ, Sun YZ, Sun ZT, Tan YX, Tang CJ, Tang GY, Tang J, Tang YA, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian WH, Tian Y, Tian ZF, Uman I, Wang B, Wang BL, Wang B, Wang CW, Wang DY, Wang F, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang M, Wang S, Wang T, Wang TJ, Wang W, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XJ, Wang XL, Wang Y, Wang YD, Wang YF, Wang YH, Wang YN, Wang YQ, Wang Y, Wang Y, Wang Z, Wang ZL, Wang ZY, Wang Z, Wei D, Wei DH, Weidner F, Wen SP, Wenzel CW, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu C, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YJ, Wu Z, Xia L, Xian XM, Xiang T, Xiao D, Xiao GY, Xiao H, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu QJ, Xu WL, Xu XP, Xu YC, Xu ZP, Yan F, Yan L, Yan WB, Yan WC, Yan XQ, Yang HJ, Yang HL, Yang HX, Yang T, Yang Y, Yang YF, Yang YX, Yang Y, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu T, Yu XD, Yuan CZ, Yuan L, Yuan SC, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng X, Zeng Y, Zeng YJ, Zhai XY, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang HH, Zhang HH, Zhang HQ, Zhang HY, Zhang JJ, Zhang JL, Zhang JQ, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang P, Zhang QY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang Y, Zhang Y, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong X, Zhou H, Zhou LP, Zhou X, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu L, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WJ, Zhu YC, Zhu ZA, Zou JH, Zu J. Measurements of the Electric and Magnetic Form Factors of the Neutron for Timelike Momentum Transfer. PHYSICAL REVIEW LETTERS 2023; 130:151905. [PMID: 37115883 DOI: 10.1103/physrevlett.130.151905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/27/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
We present the first measurements of the electric and magnetic form factors of the neutron in the timelike (positive q^{2}) region as function of four-momentum transfer. We explored the differential cross sections of the reaction e^{+}e^{-}→n[over ¯]n with data collected with the BESIII detector at the BEPCII accelerator, corresponding to an integrated luminosity of 354.6 pb^{-1} in total at twelve center-of-mass energies between sqrt[s]=2.0-2.95 GeV. A relative uncertainty of 18% and 12% for the electric and magnetic form factors, respectively, is achieved at sqrt[s]=2.3935 GeV. Our results are comparable in accuracy to those from electron scattering in the comparable spacelike region of four-momentum transfer. The electromagnetic form factor ratio R_{em}≡|G_{E}|/|G_{M}| is within the uncertainties close to unity. We compare our result on |G_{E}| and |G_{M}| to recent model predictions, and the measurements in the spacelike region to test the analyticity of electromagnetic form factors.
Collapse
|
70
|
Ablikim M, Achasov MN, Adlarson P, Albrecht M, Aliberti R, Amoroso A, An MR, An Q, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Batozskaya V, Becker D, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bianco E, Bloms J, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Che GR, Chelkov G, Chen C, Chen C, Chen G, Chen HS, Chen ML, Chen SJ, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen ZJ, Cheng WS, Choi SK, Chu X, Cibinetto G, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du SX, Duan ZH, Egorov P, Fan YL, Fang J, Fang SS, Fang WX, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fischer K, Fritsch M, Fritzsch C, Fu CD, Gao H, Gao YN, Gao Y, Garbolino S, Garzia I, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han WY, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Huang Z, Hussain T, Hüsken N, Imoehl W, Irshad M, Jackson J, Jaeger S, Janchiv S, Jang E, Jeong JH, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jia ZK, Jiang PC, Jiang SS, Jiang XS, Jiang Y, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei TT, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li H, Li HB, Li HJ, Li HN, Li JQ, Li JS, Li JW, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li SX, Li SY, Li T, Li WD, Li WG, Li XH, Li XL, Li X, Li YG, Li ZX, Li ZY, Liang C, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin CX, Lin DX, Lin T, Liu BJ, Liu C, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XY, Ma Y, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Muchnoi NY, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pei YP, Pelizaeus M, Peng HP, Peters K, Ping JL, Ping RG, Plura S, Pogodin S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin JJ, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Redmer CF, Ren KJ, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Ruan SN, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi HC, Shi JY, Shi QQ, Shi RS, Shi X, Song JJ, Song WM, Song YX, Sosio S, Spataro S, Stieler F, Su PP, Su YJ, Sun GX, Sun H, Sun HK, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun YJ, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian Y, Uman I, Wang B, Wang B, Wang BL, Wang CW, Wang DY, Wang F, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang S, Wang S, Wang T, Wang TJ, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang YD, Wang YF, Wang YH, Wang YQ, Wang Y, Wang Z, Wang ZY, Wang Z, Wei DH, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YJ, Wu Z, Xia L, Xiang T, Xiao D, Xiao GY, Xiao H, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu QJ, Xu XP, Xu YC, Xu ZP, Yan F, Yan L, Yan WB, Yan WC, Yang HJ, Yang HL, Yang HX, Yang T, Yang YF, Yang YX, Yang Y, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu T, Yu XD, Yuan CZ, Yuan L, Yuan SC, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng X, Zeng Y, Zhai XY, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang HH, Zhang HH, Zhang HQ, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang P, Zhang QY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang Y, Zhang Y, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng YH, Zhong B, Zhong C, Zhong X, Zhou H, Zhou LP, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WJ, Zhu YC, Zhu ZA, Zou JH, Zu J. Observation of a New X(3872) Production Process e^{+}e^{-}→ωX(3872). PHYSICAL REVIEW LETTERS 2023; 130:151904. [PMID: 37115900 DOI: 10.1103/physrevlett.130.151904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Using 4.7 fb^{-1} of e^{+}e^{-} collision data at center-of-mass energies from 4.661 to 4.951 GeV collected by the BESIII detector at the BEPCII collider, we observe the X(3872) production process e^{+}e^{-}→ωX(3872) for the first time. The significance is 7.8σ, including both the statistical and systematic uncertainties. The e^{+}e^{-}→ωX(3872) Born cross section and the corresponding upper limit at 90% confidence level at each energy point are reported. The line shape of the cross section indicates that the ωX(3872) signals may be from the decays of some nontrivial structures.
Collapse
|
71
|
Zhang T, Wang LL, Gu JJ, Xu JJ, Chen W, Huang YF, Hong JX, Wang T, Li SX, Gao H, Wang JT, Shi WY. [A multicenter clinical trial of collar-button type keratoprosthesis implantation for the treatment of corneal blindness in high-risk transplantation]. [ZHONGHUA YAN KE ZA ZHI] CHINESE JOURNAL OF OPHTHALMOLOGY 2023; 59:262-271. [PMID: 37012589 DOI: 10.3760/cma.j.cn112142-20221103-00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Objective: To evaluate the efficiency and safety of collar-button type keratoprosthesis (c-bKPro) implantation for corneal blindness in high-risk transplantation in China. Methods: It was a case series study. High-risk corneal blind patients who planned to undergo c-bKPro implantation were prospectively and continuously enrolled in the Eye Hospital of Shandong First Medical University, Ophthalmology Division of Chinese PLA General Hospital, Zhongshan Ophthalmic Center, Department of Ophthalmology in Eye & ENT Hospital of Fudan University, and Eye Hospital of Wenzhou Medical University from July 2019 to January 2020. The cure for blindness and surgical success were assessed based on visual acuity (VA)≥0.05. The complications and keratoprosthesis retention rate were recorded to determine the safety of the surgery. Results: Thirty-seven subjects (eyes) were included, of which 32 were male and 5 were female, aged 27 to 72 years old. The indications of c-bKPro implantation were corneal graft failure (21 eyes, 56.8%), chemical injury (8 eyes, 21.6%), thermal burn (5 eyes, 13.5%), unexplained corneal opacity (2 eyes, 5.4%), and corneal perforation (1 eye, 2.7%). Two patients withdrew from the clinical trial at 3 months postoperatively. Thirty-five patients were followed up for 6 months, and 31 were followed up for 12 months. The VA was ≥0.05 in 83.8% of eyes at 6 months and in 81.8% of eyes at 12 months. Among the 11 eyes diagnosed with concurrent glaucoma, 6 eyes achieved a VA of ≥0.05. At 12 months, the c-bKPro retention rate was 100%. The surgical complications included retroprosthetic membrane formation (5 eyes, 16.1%), persistent corneal epithelial defects (5 eyes, 16.1%), macular edema (4 eyes, 12.9%), new-onset glaucoma (4 eyes, 12.5%; including one eye withdrawn from the study at 3 months), sterile corneal melting (2 eyes, 6.5%), sterile vitritis (1 eye, 3.2%), and infectious keratitis (1 eye, 3.2%). Conclusions: C-bKPro implantation is an effective and safe option for treating corneal blindness in high-risk transplantation in China. Improved visual outcomes could be achieved in most cases, with a relatively low incidence of postoperative complications.
Collapse
|
72
|
Liu MN, Li N, Tian G, Chen T, Lin Y, Li SX, Qi XL, Shi WY, Gao H. [Femtosecond laser-assisted minimally invasive lamellar keratoplasty for advanced keratoconus]. [ZHONGHUA YAN KE ZA ZHI] CHINESE JOURNAL OF OPHTHALMOLOGY 2023; 59:288-294. [PMID: 37012592 DOI: 10.3760/cma.j.cn112142-20220517-00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Objective: To evaluate the initial safety and efficacy of femtosecond laser-assisted minimally invasive lamellar keratoplasty (FL-MILK) for advanced keratoconus. Methods: It was a case series study. Patients with advanced keratoconus who underwent FL-MILK between August 2017 and April 2020 at Shandong Eye Hospital were prospectively included. The femtosecond laser was used to create an intrastromal pocket in the recipient cornea and a lamellar cornea in the donor. The lamellar cornea was then gently inserted into the intrastromal pocket through the incision and flattened. Clinical measurements included best-corrected visual acuity, 3-mm anterior corneal mean keratometry, anterior and posterior central corneal elevation, central corneal thickness, corneal biomechanics, and endothelial cell density. The follow-up was conducted at 1 month, 12 months, and 24 months after the operation. Results: There were 33 patients (35 eyes) in the study. Twenty-six patients were male and 7 patients were female. The mean age was (20.34±5.24) years old. All patients completed 12 months of follow-up, and 25 patients (27 eyes) completed 24 months of follow-up. No epithelial ingrowth, infection, or allogeneic rejection was observed. Compared with the preoperative data, the anterior central corneal elevation significantly decreased (P<0.001), the mean keratometry significantly decreased (P<0.05), and the central corneal thickness significantly increased (P<0.001). The corneal biomechanical strength was significantly improved, with the deformation amplitude ratio at 2.0 mm decreasing from 1.39±0.14 preoperatively to 1.21±0.10 at 24 months postoperatively (P<0.001) and the stiffness parameter at the first applanation increasing from 41.49±11.47 preoperatively to 88.41±18.17 at 24 months postoperatively (P<0.001). There were no significant changes in the mean best-corrected visual acuity, posterior corneal elevation, mean spherical equivalent, and endothelial cell density (all P>0.05). Conclusions: FL-MILK may be a feasible option for advanced keratoconus. This procedure may provide a new resolution for keratoconus.
Collapse
|
73
|
Ye M, Wang X, Sun Y, Huang J, Zeng YJ, Gao H. [Clinical observation of Qiliqiangxin capsule combined with recombinant human brain natriuretic peptide in patients with acute heart failure]. ZHONGHUA NEI KE ZA ZHI 2023; 62:422-426. [PMID: 37032138 DOI: 10.3760/cma.j.cn112138-20220420-00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Objective: To observe the clinical effect of Qiliqiangxin capsule combined with recombinant human brain natriuretic peptide in acute left heart failure patients 7 days after onset as well as the effects of plasma MDA and ET-1. Methods: In total, 240 hospitalized patients with acute left heart failure from October 2017 to May 2021 were selected from the Department of Emergency and Critical Care Center of Beijing Anzhen Hospital, Capital Medical University and the Department of Cardiology of the Jilin Provincial People's Hospital. They were randomly divided into routine treatment group and combined treatment group, with 120 cases in each group. The routine treatment group was treated with vasodilation, diuresis, cardiotonic and recombinant human brain natriuretic peptide. The combined treatment group was treated with Qiliqiangxin capsules based on the routine treatment group. One week later, the changes in clinical efficacy, ejection fraction, left ventricular commoid diameter, and plasma BNP, MDA, and ET-1 were compared between the two groups before and after treatment. SPSS 11.5 statistical software was used. The measurement data was expressed in x¯±s, the independent sample t-test was used for comparison between groups, and the paired t-test was used for comparison before and after treatment within groups. Counting data was expressed as case (%), and the rank sum test was used for inter-group comparison. Result: In terms of clinical efficacy, the total effective rate of the combined treatment group was significantly higher than that of the conventional treatment group, and the difference was statistically significant (P<0.05). Compared with the routine treatment group, the left ventricular ejection fraction in the combined treatment group was significantly increased (P<0.05). The levels of plasma BNP, MDA and ET-1 were significantly decreased (P<0.05). Conclusion: Qiliqiangxin capsule combined with rhBNP treatment can effectively improve the clinical symptoms of acute heart failure, as well as reduce the lipid peroxidation product MDA content and endothetin ET-1 level in blood. The clinical application value of the Qiliqiangxin capsule needs to be further confirmed by further trials.
Collapse
|
74
|
Ablikim M, Achasov MN, Adlarson P, Aliberti R, Amoroso A, An MR, An Q, Bai Y, Bakina O, Balossino I, Ban Y, Batozskaya V, Begzsuren K, Berger N, Bertani M, Bettoni D, Bianchi F, Bianco E, Bloms J, Bortone A, Boyko I, Briere RA, Brueggemann A, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang TT, Chang WL, Che GR, Chelkov G, Chen C, Chen C, Chen G, Chen HS, Chen ML, Chen SJ, Chen SM, Chen T, Chen XR, Chen XT, Chen YB, Chen YQ, Chen ZJ, Cheng WS, Choi SK, Chu X, Cibinetto G, Coen SC, Cossio F, Cui JJ, Dai HL, Dai JP, Dbeyssi A, de Boer RE, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding B, Ding XX, Ding Y, Ding Y, Dong J, Dong LY, Dong MY, Dong X, Du SX, Duan ZH, Egorov P, Fan YL, Fang J, Fang SS, Fang WX, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Feng JH, Fischer K, Fritsch M, Fritzsch C, Fu CD, Fu YW, Gao H, Gao YN, Gao Y, Garbolino S, Garzia I, Ge PT, Ge ZW, Geng C, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Gramigna S, Greco M, Gu MH, Gu YT, Guan CY, Guan ZL, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, H XT, Han WY, Hao XQ, Harris FA, He KK, He KL, Heinsius FH, Heinz CH, Heng YK, Herold C, Holtmann T, Hong PC, Hou GY, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang KX, Huang LQ, Huang XT, Huang YP, Hussain T, Hüsken N, Imoehl W, Irshad M, Jackson J, Jaeger S, Janchiv S, Jeong JH, Ji Q, Ji QP, Ji XB, Ji XL, Ji YY, Jia ZK, Jiang PC, Jiang SS, Jiang TJ, Jiang XS, Jiang Y, Jiao JB, Jiao Z, Jin S, Jin Y, Jing MQ, Johansson T, K X, Kabana S, Kalantar-Nayestanaki N, Kang XL, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Khoukaz A, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuessner M, Kupsc A, Kühn W, Lane JJ, Lange JS, Larin P, Lavania A, Lavezzi L, Lei TT, Lei ZH, Leithoff H, Lellmann M, Lenz T, Li C, Li C, Li CH, Li C, Li DM, Li F, Li G, Li H, Li HB, Li HJ, Li HN, Li H, Li JR, Li JS, Li JW, Li K, Li LJ, Li LK, Li L, Li MH, Li PR, Li SX, Li T, Li WD, Li WG, Li XH, Li XL, Li X, Li YG, Li ZJ, Li ZX, Li ZY, Liang C, Liang H, Liang H, Liang H, Liang YF, Liang YT, Liao GR, Liao LZ, Libby J, Limphirat A, Lin DX, Lin T, Liu BX, Liu BJ, Liu C, Liu CX, Liu D, Liu FH, Liu F, Liu F, Liu GM, Liu H, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JL, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LC, Liu L, Liu MH, Liu PL, Liu Q, Liu SB, Liu T, Liu WK, Liu WM, Liu X, Liu Y, Liu YB, Liu ZA, Liu ZQ, Lou XC, Lu FX, Lu HJ, Lu JG, Lu XL, Lu Y, Lu YP, Lu ZH, Luo CL, Luo MX, Luo T, Luo XL, Lyu XR, Lyu YF, Ma FC, Ma HL, Ma JL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XY, Ma Y, Maas FE, Maggiora M, Maldaner S, Malde S, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Miao H, Min TJ, Mitchell RE, Mo XH, Muchnoi NY, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu Y, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Pei YP, Pelizaeus M, Peng HP, Peters K, Ping JL, Ping RG, Plura S, Pogodin S, Prasad V, Qi FZ, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qin JJ, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Redmer CF, Ren KJ, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Ruan SN, Salone N, Sarantsev A, Schelhaas Y, Schoenning K, Scodeggio M, Shan KY, Shan W, Shan XY, Shangguan JF, Shao LG, Shao M, Shen CP, Shen HF, Shen WH, Shen XY, Shi BA, Shi HC, Shi JY, Shi QQ, Shi RS, Shi X, Song JJ, Song TZ, Song WM, Song YX, Sosio S, Spataro S, Stieler F, Su YJ, Sun GB, Sun GX, Sun H, Sun HK, Sun JF, Sun K, Sun L, Sun SS, Sun T, Sun WY, Sun Y, Sun YJ, Sun YZ, Sun ZT, Tan YX, Tang CJ, Tang GY, Tang J, Tang YA, Tao LY, Tao QT, Tat M, Teng JX, Thoren V, Tian WH, Tian WH, Tian Y, Tian ZF, Uman I, Wang B, Wang BL, Wang B, Wang CW, Wang DY, Wang F, Wang HJ, Wang HP, Wang K, Wang LL, Wang M, Wang M, Wang S, Wang T, Wang TJ, Wang W, Wang W, Wang WH, Wang WP, Wang X, Wang XF, Wang XJ, Wang XL, Wang Y, Wang YD, Wang YF, Wang YH, Wang YN, Wang YQ, Wang Y, Wang Y, Wang Z, Wang ZL, Wang ZY, Wang Z, Wei D, Wei DH, Weidner F, Wen SP, Wenzel CW, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu C, Wu JF, Wu LH, Wu LJ, Wu X, Wu XH, Wu Y, Wu YJ, Wu Z, Xia L, Xian XM, Xiang T, Xiao D, Xiao GY, Xiao H, Xiao SY, Xiao YL, Xiao ZJ, Xie C, Xie XH, Xie Y, Xie YG, Xie YH, Xie ZP, Xing TY, Xu CF, Xu CJ, Xu GF, Xu HY, Xu QJ, Xu WL, Xu XP, Xu YC, Xu ZP, Xu ZS, Yan F, Yan L, Yan WB, Yan WC, Yan XQ, Yang HJ, Yang HL, Yang HX, Yang T, Yang Y, Yang YF, Yang YX, Yang Y, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu T, Yu XD, Yuan CZ, Yuan L, Yuan SC, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Zafar AA, Zeng FR, Zeng X, Zeng Y, Zeng YJ, Zhai XY, Zhan YH, Zhang AQ, Zhang BL, Zhang BX, Zhang DH, Zhang GY, Zhang H, Zhang HH, Zhang HH, Zhang HQ, Zhang HY, Zhang JJ, Zhang JL, Zhang JQ, Zhang JW, Zhang JX, Zhang JY, Zhang JZ, Zhang J, Zhang LM, Zhang LQ, Zhang L, Zhang P, Zhang QY, Zhang S, Zhang S, Zhang XD, Zhang XM, Zhang XY, Zhang XY, Zhang Y, Zhang YT, Zhang YH, Zhang Y, Zhang Y, Zhang ZH, Zhang ZL, Zhang ZY, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng WJ, Zheng YH, Zhong B, Zhong X, Zhou H, Zhou LP, Zhou X, Zhou XK, Zhou XR, Zhou XY, Zhou YZ, Zhu J, Zhu K, Zhu KJ, Zhu L, Zhu LX, Zhu SH, Zhu SQ, Zhu TJ, Zhu WJ, Zhu YC, Zhu ZA, Zou JH, Zu J. Observation of Three Charmoniumlike States with J^{PC}=1^{--} in e^{+}e^{-}→D^{*0}D^{*-}π^{+}. PHYSICAL REVIEW LETTERS 2023; 130:121901. [PMID: 37027853 DOI: 10.1103/physrevlett.130.121901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
The Born cross sections of the process e^{+}e^{-}→D^{*0}D^{*-}π^{+} at center-of-mass energies from 4.189 to 4.951 GeV are measured for the first time. The data samples used correspond to an integrated luminosity of 17.9 fb^{-1} and were collected by the BESIII detector operating at the BEPCII storage ring. Three enhancements around 4.20, 4.47, and 4.67 GeV are visible. The resonances have masses of 4209.6±4.7±5.9 MeV/c^{2}, 4469.1±26.2±3.6 MeV/c^{2}, and 4675.3±29.5±3.5 MeV/c^{2} and widths of 81.6±17.8±9.0 MeV, 246.3±36.7±9.4 MeV, and 218.3±72.9±9.3 MeV, respectively, where the first uncertainties are statistical and the second systematic. The first and third resonances are consistent with the ψ(4230) and ψ(4660) states, respectively, while the second one is compatible with the ψ(4500) observed in the e^{+}e^{-}→K^{+}K^{-}J/ψ process. These three charmoniumlike ψ states are observed in the e^{+}e^{-}→D^{*0}D^{*-}π^{+} process for the first time.
Collapse
|
75
|
Duran B, Meziani ZE, Joosten S, Jones MK, Prasad S, Peng C, Armstrong W, Atac H, Chudakov E, Bhatt H, Bhetuwal D, Boer M, Camsonne A, Chen JP, Dalton MM, Deokar N, Diefenthaler M, Dunne J, El Fassi L, Fuchey E, Gao H, Gaskell D, Hansen O, Hauenstein F, Higinbotham D, Jia S, Karki A, Keppel C, King P, Ko HS, Li X, Li R, Mack D, Malace S, McCaughan M, McClellan RE, Michaels R, Meekins D, Paolone M, Pentchev L, Pooser E, Puckett A, Radloff R, Rehfuss M, Reimer PE, Riordan S, Sawatzky B, Smith A, Sparveris N, Szumila-Vance H, Wood S, Xie J, Ye Z, Yero C, Zhao Z. Determining the gluonic gravitational form factors of the proton. Nature 2023; 615:813-816. [PMID: 36991189 DOI: 10.1038/s41586-023-05730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/13/2023] [Indexed: 03/31/2023]
Abstract
The proton is one of the main building blocks of all visible matter in the Universe1. Among its intrinsic properties are its electric charge, mass and spin2. These properties emerge from the complex dynamics of its fundamental constituents-quarks and gluons-described by the theory of quantum chromodynamics3-5. The electric charge and spin of protons, which are shared among the quarks, have been investigated previously using electron scattering2. An example is the highly precise measurement of the electric charge radius of the proton6. By contrast, little is known about the inner mass density of the proton, which is dominated by the energy carried by gluons. Gluons are hard to access using electron scattering because they do not carry an electromagnetic charge. Here we investigated the gravitational density of gluons using a small colour dipole, through the threshold photoproduction of the J/ψ particle. We determined the gluonic gravitational form factors of the proton7,8 from our measurement. We used a variety of models9-11 and determined, in all cases, a mass radius that is notably smaller than the electric charge radius. In some, but not all cases, depending on the model, the determined radius agrees well with first-principle predictions from lattice quantum chromodynamics12. This work paves the way for a deeper understanding of the salient role of gluons in providing gravitational mass to visible matter.
Collapse
|