51
|
Krug D, Dunst J. [Whole- or partial-breast radiotherapy after 5 years from a patient perspective: longitudinal analysis of the IMPORT LOW (CRUK/06/003) phase III trial]. Strahlenther Onkol 2020; 195:767-768. [PMID: 31001645 DOI: 10.1007/s00066-019-01472-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
52
|
Duma MN, Baumann R, Budach W, Dunst J, Feyer P, Fietkau R, Haase W, Harms W, Hehr T, Krug D, Piroth MD, Sedlmayer F, Souchon R, Sauer R. Heart-sparing radiotherapy techniques in breast cancer patients: a recommendation of the breast cancer expert panel of the German society of radiation oncology (DEGRO). Strahlenther Onkol 2019; 195:861-871. [PMID: 31321461 DOI: 10.1007/s00066-019-01495-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 02/08/2023]
Abstract
PURPOSE The aim of this review was to analyze the respective efficacy of various heart-sparing radiotherapy techniques. MATERIAL AND METHODS Heart-sparing can be performed in three different ways in breast cancer radiotherapy: by seeking to keep the heart out of treated volumes (i.e. by prone position or specific breathing techniques such as deep inspiration breath-hold [DIBH] and/or gating), by solely irradiating a small volume around the lumpectomy cavity (partial breast irradiation, PBI), or by using modern radiation techniques like intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT) or protons. This overview presents the available data on these three approaches. RESULTS Studies on prone position are heterogeneous and most trials only refer to patients with large breasts; therefore, no definitive conclusion can be drawn for clinical routine. Nonetheless, there seems to be a trend toward better sparing of the left anterior descending artery in supine position even for these selected patients. The data on the use of DIBH for heart-sparing in breast cancer patients is consistent and the benefit compared to free-breathing is supported by several studies. In comparison with whole breast irradiation (WBI), PBI has an advantage in reducing the heart dose. Of note, DIBH and PBI with multicatheter brachytherapy are similar with regard to the dose reduction to heart structures. WBI by IMRT/VMAT techniques without DIBH is not an effective strategy for heart-sparing in breast cancer patients with "standard" anatomy. A combination of DIBH and IMRT may be used for internal mammary radiotherapy. CONCLUSION Based on the available findings, the DEGRO breast cancer expert panel recommends the use of DIBH as the best heart-sparing technique. Nonetheless, depending on the treatment volume and localization, other techniques may be employed or combined with DIBH when appropriate.
Collapse
|
53
|
Krug D, Blanck O, Boda-Heggemann J, Dunst J. [Stereotactic Body Radiation Therapy for Liver Metastases]. Zentralbl Chir 2019; 144:242-251. [PMID: 31167267 DOI: 10.1055/a-0883-6583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this review, the current state of stereotactic body radiation therapy (SBRT) is presented as a local therapy for patients with oligometastatic, oligoprogressive and oligorecurrent liver metastases - focusing on recent publications from German-speaking countries. In addition to precise imaging, modern SBRT techniques also use gating and tracking techniques that have made local therapy of liver metastases more effective. In combination with optimisation of central tumour dose, local control rates of up to 90% have been achieved with minimal side effects in less than 1% of patients and 5-year survival rates of more than 30% in selected (inoperable) patient populations. In future, hybrid ultrasound or MRI irradiation systems can overcome fiducial marker implantation. Due to the current outcome data, SBRT is a valuable addition to the therapeutic armamentarium for patients with liver metastases and is a true alternative to minimally invasive ablative procedures or can be used in combination with other local or systemic treatments in an interdisciplinary context.
Collapse
|
54
|
Jiang P, Dunst J. [Stereotactic body radiation therapy is superior to sorafenib in terms of survival in patients with hepatocellular carcinoma]. Strahlenther Onkol 2018; 195:188-189. [PMID: 30552450 DOI: 10.1007/s00066-018-1408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
55
|
Krause F, Risske F, Bohn S, Delaperriere M, Dunst J, Siebert FA. End-to-end test for computed tomography-based high-dose-rate brachytherapy. J Contemp Brachytherapy 2018; 10:551-558. [PMID: 30662478 PMCID: PMC6335556 DOI: 10.5114/jcb.2018.81026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/19/2018] [Indexed: 11/29/2022] Open
Abstract
PURPOSE One of the important developments in brachytherapy in recent years has been the clinical implementation of complex modern technical procedures. Today, 3D-imaging has become the standard procedure and it is used for contouring and precise position determination and reconstruction of used brachytherapy applicators. Treatment planning is performed on the basis of these imaging methods, followed by data transfer to the afterloading device. Therefore, checking the entire treatment chain is of high importance. In this work, we describe an end-to-end test for computed tomography (CT)-based brachytherapy with an high-dose-rate (HDR) afterloading device, which fulfills the recommendation of the German radiation-protection-commission. MATERIAL AND METHODS The treatment chain consists of a SOMATOM S64 CT scanner (Siemens Medical), the treatment planning system (TPS) BrachyVision v.13.7 (VMS), which utilizes the calculation formalism TG-43 and the Acuros algorithm v. 1.5.0 (VMS) as well as GammaMedplus HDR afterloader (VMS) using an Ir-192 source. Measurement setups for common brachytherapy applicators are defined in a water phantom, and the required PMMA applicator holders are developed. These setups are scanned with the CT and the data is imported into the TPS. Computed TPS reference dose values for significant points located on the side of the applicator are compared with dose measurements performed with a PinPoint 3D chamber 31016 (PTW Freiburg). RESULTS The deviations for the end-to-end test between computed and measured values are shown to be ≤ 5%, when using an implant needle or vaginal cylinder. Furthermore, it can be demonstrated that the test procedure provides reproducible results, while repositioning the applicators without carrying out a new CT-scan. CONCLUSIONS The end-to-end test presented allows a practice-oriented realization for checking the whole treatment chain for HDR afterloading technique and CT-imaging. The presented phantom seems feasible for performing periodic system checks as well as to verify newly introduced brachytherapy techniques with sufficient accuracy.
Collapse
|
56
|
Schroeder C, Geiger F, Siebert FA, Baumann R, Bockelmann G, Schultze J, Kimmig B, Dunst J, Galalae R. Radical dose escalation by high-dose-rate brachytherapy for localized prostate cancer-Significance of prostate-specific antigen nadir level within 18 months as correlation for long-term biochemical control. Brachytherapy 2018; 18:8-12. [PMID: 30482622 DOI: 10.1016/j.brachy.2018.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE High-dose-rate brachytherapy (HDR-BT) for dose escalation in localized prostate cancer has been established as one standard treatment option. However, long-term results at followup (FU) ≥5 years are usually needed to ensure robustness of reported outcomes. Potential benefit of salvage therapy is, nevertheless, higher when relapse is diagnosed early. This study aimed to solve this dilemma by evaluating the prostate-specific antigen (PSA) nadir for early prediction of long-term biochemical control. METHODS AND MATERIALS Combined pelvis-external beam radiation/HDR-BT boost to EQD2 >100 Gy (α/β = 3) was performed in 459 consecutively treated patients. These patients with an FU ≥ 24 months were analyzed and stratified in PSA nadir (nPSA)-groups by PSA nadir within 18 months after radiotherapy (nPSA18). Kaplan-Meier/log-rank tests and Cox-regression models were used to compare the study endpoints. RESULTS The mean FU was 77 months. A PSA nadir within 18 months (nPSA18) <0.5 ng/mL was achieved in 222 patients with median time to reach nPSA18 of 7 months. The 5-year American Society of Therapeutic Radiology and Oncology (ASTRO) biochemical control (prostate-specific antigen disease-free survival) for the nPSA18 group <0.5 ng/mL was 89% and for the group ≥ 0.5 ng/mL, it was 78.6% (p = 0.011). nPSA18 was an independent predictor of cancer-specific survival, distant metastasis-free survival, and biochemical control (ASTRO) (p = 0.026, p = 0.020, and p = 0.01, respectively). CONCLUSIONS The present results suggest that the PSA nadir level within 18 months after radiotherapy may serve as an early parameter for long-term biochemical control according to ASTRO definitions following radical dose escalation by HDR-BT for prostate cancer. Excellent outcomes were associated with nPSA18 < 0.5 ng/mL.
Collapse
|
57
|
Wöckel A, Festl J, Stüber T, Brust K, Krockenberger M, Heuschmann PU, Jírů-Hillmann S, Albert US, Budach W, Follmann M, Janni W, Kopp I, Kreienberg R, Kühn T, Langer T, Nothacker M, Scharl A, Schreer I, Link H, Engel J, Fehm T, Weis J, Welt A, Steckelberg A, Feyer P, König K, Hahne A, Baumgartner T, Kreipe HH, Knoefel WT, Denkinger M, Brucker S, Lüftner D, Kubisch C, Gerlach C, Lebeau A, Siedentopf F, Petersen C, Bartsch HH, Schulz-Wendtland R, Hahn M, Hanf V, Müller-Schimpfle M, Henscher U, Roncarati R, Katalinic A, Heitmann C, Honegger C, Paradies K, Bjelic-Radisic V, Degenhardt F, Wenz F, Rick O, Hölzel D, Zaiss M, Kemper G, Budach V, Denkert C, Gerber B, Tesch H, Hirsmüller S, Sinn HP, Dunst J, Münstedt K, Bick U, Fallenberg E, Tholen R, Hung R, Baumann F, Beckmann MW, Blohmer J, Fasching P, Lux MP, Harbeck N, Hadji P, Hauner H, Heywang-Köbrunner S, Huober J, Hübner J, Jackisch C, Loibl S, Lück HJ, von Minckwitz G, Möbus V, Müller V, Nöthlings U, Schmidt M, Schmutzler R, Schneeweiss A, Schütz F, Stickeler E, Thomssen C, Untch M, Wesselmann S, Bücker A, Buck A, Stangl S. Interdisciplinary Screening, Diagnosis, Therapy and Follow-up of Breast Cancer. Guideline of the DGGG and the DKG (S3-Level, AWMF Registry Number 032/045OL, December 2017) - Part 2 with Recommendations for the Therapy of Primary, Recurrent and Advanced Breast Cancer. Geburtshilfe Frauenheilkd 2018; 78:1056-1088. [PMID: 30581198 PMCID: PMC6261741 DOI: 10.1055/a-0646-4630] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/29/2022] Open
Abstract
Purpose The aim of this official guideline coordinated and published by the German Society for Gynecology and Obstetrics (DGGG) and the German Cancer Society (DKG) was to optimize the screening, diagnosis, therapy and follow-up care of breast cancer. Method The process of updating the S3 guideline published in 2012 was based on the adaptation of identified source guidelines. They were combined with reviews of evidence compiled using PICO (Patients/Interventions/Control/Outcome) questions and with the results of a systematic search of literature databases followed by the selection and evaluation of the identified literature. The interdisciplinary working groups took the identified materials as their starting point and used them to develop suggestions for recommendations and statements, which were then modified and graded in a structured consensus process procedure. Recommendations Part 2 of this short version of the guideline presents recommendations for the therapy of primary, recurrent and metastatic breast cancer. Loco-regional therapies are de-escalated in the current guideline. In addition to reducing the safety margins for surgical procedures, the guideline also recommends reducing the radicality of axillary surgery. The choice and extent of systemic therapy depends on the respective tumor biology. New substances are becoming available, particularly to treat metastatic breast cancer.
Collapse
|
58
|
Piroth MD, Baumann R, Budach W, Dunst J, Feyer P, Fietkau R, Haase W, Harms W, Hehr T, Krug D, Röser A, Sedlmayer F, Souchon R, Wenz F, Sauer R. Heart toxicity from breast cancer radiotherapy : Current findings, assessment, and prevention. Strahlenther Onkol 2018; 195:1-12. [PMID: 30310926 PMCID: PMC6329735 DOI: 10.1007/s00066-018-1378-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022]
Abstract
Background Late cardiac toxicities caused by (particularly left-sided) breast radiotherapy (RT) are now recognized as rare but relevant sequelae, which has prompted research on risk structure identification and definition of threshold doses to heart subvolumes. The aim of the present review was to critically discuss the clinical evidence on late cardiac reactions based on dose-dependent outcome reports for mean heart doses as well as doses to cardiac substructures. Methods A literature review was performed to examine clinical evidence on radiation-induced heart toxicities. Mean heart doses and doses to cardiac substructures were focused upon based on dose-dependent outcome reports. Furthermore, an overview of radiation techniques for heart protection is given and non-radiotherapeutic aspects of cardiotoxicity in the multimodal setting of breast cancer treatment are discussed. Results Based on available findings, the DEGRO breast cancer expert panel recommends the following constraints: mean heart dose <2.5 Gy; DmeanLV (mean dose left ventricle) < 3 Gy; V5LV (volume of LV receiving ≥5 Gy) < 17%; V23LV (volume of LV receiving ≥23 Gy) < 5%; DmeanLAD (mean dose left descending artery) < 10 Gy; V30LAD (volume of LAD receiving ≥30 Gy) < 2%; V40LAD (volume of LAD receiving ≥40 Gy) < 1%. Conclusion In addition to mean heart dose, breast cancer RT treatment planning should also include constraints for cardiac subvolumes such as LV and LAD. The given constraints serve as a clinicians’ aid for ensuring adequate heart protection. The individual decision between sufficient protection of cardiac structures versus optimal target volume coverage remains in the physician’s hand. The risk of breast cancer-specific mortality and a patient’s cardiac risk factors must be individually weighed up against the risk of radiation-induced cardiotoxicity.
Collapse
|
59
|
Wöckel A, Festl J, Stüber T, Brust K, Stangl S, Heuschmann PU, Albert US, Budach W, Follmann M, Janni W, Kopp I, Kreienberg R, Kühn T, Langer T, Nothacker M, Scharl A, Schreer I, Link H, Engel J, Fehm T, Weis J, Welt A, Steckelberg A, Feyer P, König K, Hahne A, Kreipe HH, Knoefel WT, Denkinger M, Brucker S, Lüftner D, Kubisch C, Gerlach C, Lebeau A, Siedentopf F, Petersen C, Bartsch HH, Schulz-Wendtland R, Hahn M, Hanf V, Müller-Schimpfle M, Henscher U, Roncarati R, Katalinic A, Heitmann C, Honegger C, Paradies K, Bjelic-Radisic V, Degenhardt F, Wenz F, Rick O, Hölzel D, Zaiss M, Kemper G, Budach V, Denkert C, Gerber B, Tesch H, Hirsmüller S, Sinn HP, Dunst J, Münstedt K, Bick U, Fallenberg E, Tholen R, Hung R, Baumann F, Beckmann MW, Blohmer J, Fasching PA, Lux MP, Harbeck N, Hadji P, Hauner H, Heywang-Köbrunner S, Huober J, Hübner J, Jackisch C, Loibl S, Lück HJ, von Minckwitz G, Möbus V, Müller V, Nöthlings U, Schmidt M, Schmutzler R, Schneeweiss A, Schütz F, Stickeler E, Thomssen C, Untch M, Wesselmann S, Bücker A, Krockenberger M. Interdisciplinary Screening, Diagnosis, Therapy and Follow-up of Breast Cancer. Guideline of the DGGG and the DKG (S3-Level, AWMF Registry Number 032/045OL, December 2017) - Part 1 with Recommendations for the Screening, Diagnosis and Therapy of Breast Cancer. Geburtshilfe Frauenheilkd 2018; 78:927-948. [PMID: 30369626 PMCID: PMC6202580 DOI: 10.1055/a-0646-4522] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 01/04/2023] Open
Abstract
Purpose The aim of this official guideline coordinated and published by the German Society for Gynecology and Obstetrics (DGGG) and the German Cancer Society (DKG) was to optimize the screening, diagnosis, therapy and follow-up care of breast cancer. Methods The process of updating the S3 guideline dating from 2012 was based on the adaptation of identified source guidelines which were combined with reviews of evidence compiled using PICO (Patients/Interventions/Control/Outcome) questions and the results of a systematic search of literature databases and the selection and evaluation of the identified literature. The interdisciplinary working groups took the identified materials as their starting point to develop recommendations and statements which were modified and graded in a structured consensus procedure. Recommendations Part 1 of this short version of the guideline presents recommendations for the screening, diagnosis and follow-up care of breast cancer. The importance of mammography for screening is confirmed in this updated version of the guideline and forms the basis for all screening. In addition to the conventional methods used to diagnose breast cancer, computed tomography (CT) is recommended for staging in women with a higher risk of recurrence. The follow-up concept includes suggested intervals between physical, ultrasound and mammography examinations, additional high-tech diagnostic procedures, and the determination of tumor markers for the evaluation of metastatic disease.
Collapse
|
60
|
Dunst J, Hildebrandt G, Becker-Schiebe M, Kuhnt T, Weykamp F, Martucci F, Vordermark D, Pless M, Hofmann D, Bühler V, Rothschild S. Can concomitant diseases predict the compliance with cisplatin plus RT in patients with LA SCCHN? An exploratory endpoint analysis of the COMPLY trial. Ann Oncol 2018. [DOI: 10.1093/annonc/mdy287.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
61
|
Moustakis C, Chan MKH, Kim J, Nilsson J, Bergman A, Bichay TJ, Palazon Cano I, Cilla S, Deodato F, Doro R, Dunst J, Eich HT, Fau P, Fong M, Haverkamp U, Heinze S, Hildebrandt G, Imhoff D, de Klerck E, Köhn J, Lambrecht U, Loutfi-Krauss B, Ebrahimi F, Masi L, Mayville AH, Mestrovic A, Milder M, Morganti AG, Rades D, Ramm U, Rödel C, Siebert FA, den Toom W, Wang L, Wurster S, Schweikard A, Soltys SG, Ryu S, Blanck O. Treatment planning for spinal radiosurgery : A competitive multiplatform benchmark challenge. Strahlenther Onkol 2018; 194:843-854. [PMID: 29802435 DOI: 10.1007/s00066-018-1314-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/08/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate the quality of treatment plans of spinal radiosurgery derived from different planning and delivery systems. The comparisons include robotic delivery and intensity modulated arc therapy (IMAT) approaches. Multiple centers with equal systems were used to reduce a bias based on individual's planning abilities. The study used a series of three complex spine lesions to maximize the difference in plan quality among the various approaches. METHODS Internationally recognized experts in the field of treatment planning and spinal radiosurgery from 12 centers with various treatment planning systems participated. For a complex spinal lesion, the results were compared against a previously published benchmark plan derived for CyberKnife radiosurgery (CKRS) using circular cones only. For two additional cases, one with multiple small lesions infiltrating three vertebrae and a single vertebra lesion treated with integrated boost, the results were compared against a benchmark plan generated using a best practice guideline for CKRS. All plans were rated based on a previously established ranking system. RESULTS All 12 centers could reach equality (n = 4) or outperform (n = 8) the benchmark plan. For the multiple lesions and the single vertebra lesion plan only 5 and 3 of the 12 centers, respectively, reached equality or outperformed the best practice benchmark plan. However, the absolute differences in target and critical structure dosimetry were small and strongly planner-dependent rather than system-dependent. Overall, gantry-based IMAT with simple planning techniques (two coplanar arcs) produced faster treatments and significantly outperformed static gantry intensity modulated radiation therapy (IMRT) and multileaf collimator (MLC) or non-MLC CKRS treatment plan quality regardless of the system (mean rank out of 4 was 1.2 vs. 3.1, p = 0.002). CONCLUSIONS High plan quality for complex spinal radiosurgery was achieved among all systems and all participating centers in this planning challenge. This study concludes that simple IMAT techniques can generate significantly better plan quality compared to previous established CKRS benchmarks.
Collapse
|
62
|
Baumann R, Chan MKH, Pyschny F, Stera S, Malzkuhn B, Wurster S, Huttenlocher S, Szücs M, Imhoff D, Keller C, Balermpas P, Rades D, Rödel C, Dunst J, Hildebrandt G, Blanck O. Clinical Results of Mean GTV Dose Optimized Robotic-Guided Stereotactic Body Radiation Therapy for Lung Tumors. Front Oncol 2018; 8:171. [PMID: 29868486 PMCID: PMC5966546 DOI: 10.3389/fonc.2018.00171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/01/2018] [Indexed: 12/24/2022] Open
Abstract
Introduction We retrospectively evaluated the efficacy and toxicity of gross tumor volume (GTV) mean dose optimized stereotactic body radiation therapy (SBRT) for primary and secondary lung tumors with and without robotic real-time motion compensation. Materials and methods Between 2011 and 2017, 208 patients were treated with SBRT for 111 primary lung tumors and 163 lung metastases with a median GTV of 8.2 cc (0.3–174.0 cc). Monte Carlo dose optimization was performed prioritizing GTV mean dose at the potential cost of planning target volume (PTV) coverage reduction while adhering to safe normal tissue constraints. The median GTV mean biological effective dose (BED)10 was 162.0 Gy10 (34.2–253.6 Gy10) and the prescribed PTV BED10 ranged 23.6–151.2 Gy10 (median, 100.8 Gy10). Motion compensation was realized through direct tracking (44.9%), fiducial tracking (4.4%), and internal target volume (ITV) concepts with small (≤5 mm, 33.2%) or large (>5 mm, 17.5%) motion. The local control (LC), progression-free survival (PFS), overall survival (OS), and toxicity were analyzed. Results Median follow-up was 14.5 months (1–72 months). The 2-year actuarial LC, PFS, and OS rates were 93.1, 43.2, and 62.4%, and the median PFS and OS were 18.0 and 39.8 months, respectively. In univariate analysis, prior local irradiation (hazard ratio (HR) 0.18, confidence interval (CI) 0.05–0.63, p = 0.01), GTV/PTV (HR 1.01–1.02, CI 1.01–1.04, p < 0.02), and PTV prescription, mean GTV, and maximum plan BED10 (HR 0.97–0.99, CI 0.96–0.99, p < 0.01) were predictive for LC while the tracking method was not (p = 0.97). For PFS and OS, multivariate analysis showed Karnofsky Index (p < 0.01) and tumor stage (p ≤ 0.02) to be significant factors for outcome prediction. Late radiation pneumonitis or chronic rip fractures grade 1–2 were observed in 5.3% of the patients. Grade ≥3 side effects did not occur. Conclusion Robotic SBRT is a safe and effective treatment for lung tumors. Reducing the PTV prescription and keeping high GTV mean doses allowed the reduction of toxicity while maintaining high local tumor control. The use of real-time motion compensation is strongly advised, however, well-performed ITV motion compensation may be used alternatively when direct tracking is not feasible.
Collapse
|
63
|
Schäfer R, Strnad V, Polgár C, Uter W, Hildebrandt G, Ott OJ, Kauer-Dorner D, Knauerhase H, Major T, Lyczek J, Guinot JL, Dunst J, Miguelez CG, Slampa P, Allgäuer M, Lössl K, Kovács G, Fischedick AR, Fietkau R, Resch A, Kulik A, Arribas L, Niehoff P, Guedea F, Schlamann A, Gall C, Polat B. Quality-of-life results for accelerated partial breast irradiation with interstitial brachytherapy versus whole-breast irradiation in early breast cancer after breast-conserving surgery (GEC-ESTRO): 5-year results of a randomised, phase 3 trial. Lancet Oncol 2018; 19:834-844. [PMID: 29695348 DOI: 10.1016/s1470-2045(18)30195-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Previous results from the GEC-ESTRO trial showed that accelerated partial breast irradiation (APBI) using multicatheter brachytherapy in the treatment of early breast cancer after breast-conserving surgery was non-inferior to whole-breast irradiation in terms of local control and overall survival. Here, we present 5-year results of patient-reported quality of life. METHODS We did this randomised controlled phase 3 trial at 16 hospitals and medical centres in seven European countries. Patients aged 40 years or older with 0-IIA breast cancer were randomly assigned (1:1) after breast-conserving surgery (resection margins ≥2 mm) to receive either whole-breast irradiation of 50 Gy with a boost of 10 Gy or APBI using multicatheter brachytherapy. Randomisation was stratified by study centre, tumour type, and menopausal status, with a block size of ten and an automated dynamic algorithm. There was no masking of patients or investigators. The primary endpoint of the trial was ipsilateral local recurrence. Here, we present 5-year results of quality of life (a prespecified secondary endpoint). Quality-of-life questionnaires (European Organisation for Research and Treatment of Cancer QLQ-C30, breast cancer module QLQ-BR23) were completed before radiotherapy (baseline 1), immediately after radiotherapy (baseline 2), and during follow-up. We analysed the data according to treatment received (as-treated population). Recruitment was completed in 2009, and long-term follow-up is continuing. The trial is registered at ClinicalTrials.gov, number NCT00402519. FINDINGS Between April 20, 2004, and July 30, 2009, 633 patients had accelerated partial breast irradiation and 551 patients had whole-breast irradiation. Quality-of-life questionnaires at baseline 1 were available for 334 (53%) of 663 patients in the APBI group and 314 (57%) of 551 patients in the whole-breast irradiation group; the response rate was similar during follow-up. Global health status (range 0-100) was stable in both groups: at baseline 1, APBI group mean score 65·5 (SD 20·6) versus whole-breast irradiation group 64·6 (19·6), p=0·37; at 5 years, APBI group 66·2 (22·2) versus whole-breast irradiation group 66·0 (21·8), p=0·94. The only moderate, significant difference (difference of 10-20 points) between the groups was found in the breast symptoms scale. Breast symptom scores were significantly higher (ie, worse) after whole-breast irradiation than after APBI at baseline 2 (difference of means 13·6, 95% CI 9·7-17·5; p<0·0001) and at 3-month follow-up (difference of means 12·7, 95% CI 9·8-15·6; p<0·0001). INTERPRETATION APBI with multicatheter brachytherapy was not associated with worse quality of life compared with whole-breast irradiation. This finding supports APBI as an alternative treatment option after breast-conserving surgery for patients with early breast cancer. FUNDING German Cancer Aid.
Collapse
|
64
|
Schäfer R, Strnad V, Polgár C, Uter W, Hildebrandt G, Ott O, Kauer-Dorner D, Knauerhase H, Major T, Lyczek J, Guinot J, Dunst J, Gutierrez Miguelez C, Slampa P, Allgäuer M, Lössl K, Kovacs G, Fietkau R, Resch A, Kulik A, Arribas L, Niehoff P, Guedea F, Gall C, Polat B. OC-0326: QOL After APBI (Multicatheter Brachytherapy) Versus WBI: 5-Year Results, Phase 3 GEC-ESTRO Trial. Radiother Oncol 2018. [DOI: 10.1016/s0167-8140(18)30636-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
65
|
Dunst J, Baumann R. [Local metastasis treatment in oligometastatic disease : Also relevant for prostate cancer]. Strahlenther Onkol 2018; 194:465-467. [PMID: 29508002 DOI: 10.1007/s00066-018-1284-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
66
|
Krug D, Baumann R, Budach W, Dunst J, Feyer P, Fietkau R, Haase W, Harms W, Hehr T, Piroth MD, Sedlmayer F, Souchon R, Wenz F, Sauer R. Individualization of post-mastectomy radiotherapy and regional nodal irradiation based on treatment response after neoadjuvant chemotherapy for breast cancer. Strahlenther Onkol 2018; 194:607-618. [DOI: 10.1007/s00066-018-1270-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 01/08/2023]
|
67
|
Bembenek A, Büchels H, Decker T, Dunst J, Müllerleile U, Munz DL, Ostertag H, Sautter-Bihl ML, Schirrmeister H, Tulusan AH, Untch M, Winzer KJ, Wittekind C, Kühn T. Sentinel node biopsy in breast cancer. Nuklearmedizin 2018. [DOI: 10.1055/s-0038-1623907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
SummaryThe international consensus conference from St. Gallen concerning the treatment of early breast cancer concluded in 2003, that sentinel node biopsy was now accepted as method allowing axillary staging in breast cancer. This procedure may avoid complete lymph node dissection in appropriate cases. Since numerous questions associated with the technique are still not defined and the procedure itself is not yet standardized, the German Society of Senology defined the conditions for the routine clinical use of sentinel node biopsy in an interdisciplinary consensus meeting.
Collapse
|
68
|
Rades D, Cacicedo J, Conde-Moreno AJ, Doemer C, Dunst J, Lomidze D, Segedin B, Olbrich D, Holländer NH. High-precision radiotherapy of motor deficits due to metastatic spinal cord compression (PRE-MODE): a multicenter phase 2 study. BMC Cancer 2017; 17:818. [PMID: 29202720 PMCID: PMC5715981 DOI: 10.1186/s12885-017-3844-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/24/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND For metastatic spinal cord compression (MSCC), conventional radiotherapy with 10 × 3 Gy in 2 weeks results in better local progression-free survival (LPFS) than 5 × 4 Gy in 1 week. Since patients with MSCC are often significantly impaired, an overall treatment time of 1 week would be preferable if resulting in similar outcomes as longer programs. This may be achieved with 5 × 5 Gy in 1 week, since the biologically effective dose is similar to 10 × 3 Gy. It can be expected that 5 × 5 Gy (like 10 × 3) Gy results in better LPFS than 5 × 4 Gy in 1 week. METHODS/DESIGN This phase 2 study investigates LPFS after high-precision RT with 5 × 5 Gy in 1 week. LPFS is defined as freedom from both progression of motor deficits during RT and new or progressive motor deficits dur to an in-field recurrence of MSCC following RT. Considering the tolerance dose of the spinal cord, 5 × 5 Gy can be safely administered with high-precision radiotherapy such as volumetric modulated arc therapy (VMAT) or stereotactic body radiotherapy (SBRT). Maximum dose to the spinal cord should not exceed 101.5% of the prescribed dose to keep the risk of radiation myelopathy below 0.03%. Primary endpoint is LPFS at 6 months following radiotherapy; secondary endpoints include motor function/ability to walk, sensory function, sphincter dysfunction, LPFS directly and 1 and 3 months following radiotherapy, overall survival, pain relief, quality of life and toxicity. Follow-up visits will be performed directly and at 1, 3 and 6 months following radiotherapy. After completion of this phase 2 study, patients will be compared to a historical control group receiving conventional radiotherapy with 5 × 4 Gy in 1 week. Forty-four patients will be included assuming 5 × 5 Gy will provide the same benefit in LPFS when compared to 5 × 4 Gy as reported for 10 × 3 Gy. DISCUSSION If superiority regarding LPFS is shown for high-precision radiotherapy with 5 × 5 Gy when compared to conventional radiotherapy with 5 × 4 Gy, patients with MSCC would benefit from 5 × 5 Gy, since high LPFS rates could be achieved with 1 week of radiotherapy instead of 2 weeks (10 × 3 Gy). TRIAL REGISTRATION clinicaltrials.gov NCT03070431 . Registered 27 February 2017.
Collapse
|
69
|
Stera S, Balermpas P, Chan MKH, Huttenlocher S, Wurster S, Keller C, Imhoff D, Rades D, Dunst J, Rödel C, Hildebrandt G, Blanck O. Breathing-motion-compensated robotic guided stereotactic body radiation therapy : Patterns of failure analysis. Strahlenther Onkol 2017; 194:143-155. [PMID: 28875297 DOI: 10.1007/s00066-017-1204-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/16/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE We retrospectively evaluated the patterns of failure for robotic guided real-time breathing-motion-compensated (BMC) stereotactic body radiation therapy (SBRT) in the treatment of tumors in moving organs. PATIENTS AND METHODS Between 2011 and 2016, a total of 198 patients with 280 lung, liver, and abdominal tumors were treated with BMC-SBRT. The median gross tumor volume (GTV) was 12.3 cc (0.1-372.0 cc). Medians of mean GTV BEDα/β =10 Gy (BED = biological effective dose) was 148.5 Gy10 (31.5-233.3 Gy10) and prescribed planning target volume (PTV) BEDα/β =10 Gy was 89.7 Gy10 (28.8-151.2 Gy10), respectively. We analyzed overall survival (OS) and local control (LC) based on various factors, including BEDs with α/β ratios of 15 Gy (lung metastases), 21 Gy (primary lung tumors), and 27 Gy (liver metastases). RESULTS Median follow-up was 10.4 months (2.0-59.0 months). The 2‑year actuarial LC was 100 and 86.4% for primary early and advanced stage lung tumors, respectively, 100% for lung metastases, 82.2% for liver metastases, and 90% for extrapulmonary extrahepatic metastases. The 2‑year OS rate was 47.9% for all patients. In uni- and multivariate analysis, comparatively lower PTV prescription dose (equivalence of 3 × 12-13 Gy) and higher average GTV dose (equivalence of 3 × 18 Gy) to current practice were significantly associated with LC. For OS, Karnofsky performance score (100%), gender (female), and SBRT without simultaneous chemotherapy were significant prognostic factors. Grade 3 side effects were rare (0.5%). CONCLUSIONS Robotic guided BMC-SBRT can be considered a safe and effective treatment for solid tumors in moving organs. To reach sufficient local control rates, high average GTV doses are necessary. Further prospective studies are warranted to evaluate these points.
Collapse
|
70
|
Jiang P, Krockenberger K, Vonthein R, Tereszczuk J, Schreiber A, Liebau S, Huttenlocher S, Imhoff D, Balermpas P, Keller C, Dellas K, Baumann R, Rödel C, Hildebrandt G, Jünemann KP, Merseburger AS, Katz A, Ziegler A, Blanck O, Dunst J. Hypo-fractionated SBRT for localized prostate cancer: a German bi-center single treatment group feasibility trial. Radiat Oncol 2017; 12:138. [PMID: 28821268 PMCID: PMC5562995 DOI: 10.1186/s13014-017-0872-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND For prostate cancer treatment, treatment options with minimal side effects are desired. External beam radiation therapy (EBRT) is non-invasive, standard of care and delivered in either conventional fractionation over 8 weeks or with moderate hypo-fractionation over about 5 weeks. Recent advances in radiotherapy technology have made extreme hypo-fractionated stereotactic body radiation therapy (SBRT) of prostate cancer feasible, which has not yet been introduced as a standard treatment method in Germany. Initial results from other countries are promising, but long-term results are not yet available. The aim of this study is to investigate feasibility and effectiveness of SBRT for prostate cancer in Germany. METHODS/DESIGN This German bi-center single group trial (HYPOSTAT) is designed to evaluate feasibility and effectiveness, as measured by toxicity and PSA-response, respectively, of an extreme hypo-fractionated SBRT regimen with five fractions of 7 Gy in treatment of localized low and intermediate risk prostate cancer. The target volume includes the prostate with or without the base of seminal vesicles depending on risk stratification and uncertainty margins that are kept at 3-5 mm. SBRT treatment is delivered with the robotic CyberKnife system, which was recently introduced in Germany. Acute and late toxicity after one year will be evaluated according to Common Terminology Criteria for Adverse Events (CTCAE v. 4.0), Radiation Therapy Oncology Group (RTOG) and International Prostate Symptom Score (IPSS) Scores. The quality of life will be assessed before and after treatment with the EORTC QLQ C30 questionnaire. Hypothesizing that the proportion of patients with grade 2 side effects or higher is less or equal than 2.8%, thus markedly lower than the standard EBRT percentage (17.5%), the recruitment target is 85 patients. DISCUSSION The HYPOSTAT trial aims at demonstrating short term feasibility of extreme hypo-fractioned SBRT for the treatment of prostate cancer and might be used as the pilot study for a multi-center multi-platform or for randomized-controlled trials comparing conventional radiotherapy with SBRT for localized prostate cancer in the future. The study concept of patient enrollment, follow up and evaluation by multiple public university clinics and actual patient treatment in dedicated private radiosurgery practices with high-tech radiation equipment is unique for clinical trials. STUDY STATUS The study is ongoing and currently recruiting patients. TRIAL REGISTRATION Registration number: NCT02635256 ( clinicaltrials.gov ). Registered 8 December 2015.
Collapse
|
71
|
Kuhnt T, Schreiber A, Pirnasch A, Hautmann MG, Hass P, Sieker FP, Engenhart-Cabillic R, Richter M, Dellas K, Dunst J. Hyperfractionated accelerated radiation therapy plus cetuximab plus cisplatin chemotherapy in locally advanced inoperable squamous cell carcinoma of the head and neck. Strahlenther Onkol 2017; 193:733-741. [DOI: 10.1007/s00066-017-1145-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/21/2017] [Indexed: 11/30/2022]
|
72
|
Jiang P, Van der Horst C, Kimmig B, Zinsser F, Poppe B, Luetzen U, Juenemann K, Siebert F, Dunst J. OC-0172: interstitial salvage HDR-brachytherapy for recurrent prostate cancer after radiation therapy. Radiother Oncol 2017. [DOI: 10.1016/s0167-8140(17)30615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
73
|
Jiang P, Geenen M, Siebert F, Baumann R, Niehoff P, Druecke D, Dunst J. OC-0086: Perioperative interstitial high-dose-rate (HDR) brachytherapy for the treatment of recurrent keloids. Radiother Oncol 2017. [DOI: 10.1016/s0167-8140(17)30530-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
74
|
Krug D, Baumann R, Budach W, Dunst J, Feyer P, Fietkau R, Haase W, Harms W, Piroth MD, Sautter-Bihl ML, Sedlmayer F, Souchon R, Wenz F, Sauer R. Current controversies in radiotherapy for breast cancer. Radiat Oncol 2017; 12:25. [PMID: 28114948 PMCID: PMC5259946 DOI: 10.1186/s13014-017-0766-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/11/2017] [Indexed: 01/22/2023] Open
Abstract
Multimodal treatment approaches have substantially improved the outcome of breast cancer patients in the last decades. Radiotherapy is an integral component of multimodal treatment concepts used in curative and palliative intention in numerous clinical situations from precursor lesions such as ductal carcinoma in situ (DCIS) to advanced breast cancer. This review addresses current controversial topics in radiotherapy with special consideration of DCIS, accelerated partial breast irradiation (APBI) and regional nodal irradiation (RNI) and provides an update on the clinical practice guidelines of the Breast Cancer Expert Panel of the German Society of Radiation Oncology (DEGRO).
Collapse
|
75
|
Polgár C, Ott OJ, Hildebrandt G, Kauer-Dorner D, Knauerhase H, Major T, Lyczek J, Guinot JL, Dunst J, Miguelez CG, Slampa P, Allgäuer M, Lössl K, Polat B, Kovács G, Fischedick AR, Fietkau R, Resch A, Kulik A, Arribas L, Niehoff P, Guedea F, Schlamann A, Pötter R, Gall C, Uter W, Strnad V. Late side-effects and cosmetic results of accelerated partial breast irradiation with interstitial brachytherapy versus whole-breast irradiation after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: 5-year results of a randomised, controlled, phase 3 trial. Lancet Oncol 2017; 18:259-268. [PMID: 28094198 DOI: 10.1016/s1470-2045(17)30011-6] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND We previously confirmed the non-inferiority of accelerated partial breast irradiation (APBI) with interstitial brachytherapy in terms of local control and overall survival compared with whole-breast irradiation for patients with early-stage breast cancer who underwent breast-conserving surgery in a phase 3 randomised trial. Here, we present the 5-year late side-effects and cosmetic results of the trial. METHODS We did this randomised, controlled, phase 3 trial at 16 centres in seven European countries. Women aged 40 years or older with stage 0-IIA breast cancer who underwent breast-conserving surgery with microscopically clear resection margins of at least 2 mm were randomly assigned 1:1, via an online interface, to receive either whole-breast irradiation of 50 Gy with a tumour-bed boost of 10 Gy or APBI with interstitial brachytherapy. Randomisation was stratified by study centre, menopausal status, and tumour type (invasive carcinoma vs ductal carcinoma in situ), with a block size of ten, according to an automated dynamic algorithm. Patients and investigators were not masked to treatment allocation. The primary endpoint of our initial analysis was ipsilateral local recurrence; here, we report the secondary endpoints of late side-effects and cosmesis. We analysed physician-scored late toxicities and patient-scored and physician-scored cosmetic results from the date of breast-conserving surgery to the date of onset of event. Analysis was done according to treatment received (as-treated population). This trial is registered with ClinicalTrials.gov, number NCT00402519. FINDINGS Between April 20, 2004, and July 30, 2009, we randomly assigned 1328 women to receive either whole-breast irradiation (n=673) or APBI with interstitial brachytherapy (n=655); 1184 patients comprised the as-treated population (551 in the whole-breast irradiation group and 633 in the APBI group). At a median follow-up of 6·6 years (IQR 5·8-7·6), no patients had any grade 4 toxities, and three (<1%) of 484 patients in the APBI group and seven (2%) of 393 in the whole-breast irradiation group had grade 3 late skin toxicity (p=0·16). No patients in the APBI group and two (<1%) in the whole-breast irradiation group developed grade 3 late subcutaneous tissue toxicity (p=0·10). The cumulative incidence of any late side-effect of grade 2 or worse at 5 years was 27·0% (95% CI 23·0-30·9) in the whole-breast irradiation group versus 23·3% (19·9-26·8) in the APBI group (p=0·12). The cumulative incidence of grade 2-3 late skin toxicity at 5 years was 10·7% (95% CI 8·0-13·4) in the whole-breast irradiation group versus 6·9% (4·8-9·0) in the APBI group (difference -3·8%, 95% CI -7·2 to 0·4; p=0·020). The cumulative risk of grade 2-3 late subcutaneous tissue side-effects at 5 years was 9·7% (95% CI 7·1-12·3) in the whole-breast irradiation group versus 12·0% (9·4-14·7) in the APBI group (difference 2·4%; 95% CI -1·4 to 6·1; p=0·28). The cumulative incidence of grade 2-3 breast pain was 11·9% (95% CI 9·0-14·7) after whole-breast irradiation versus 8·4% (6·1-10·6) after APBI (difference -3·5%; 95% CI -7·1 to 0·1; p=0·074). At 5 years' follow-up, according to the patients' view, 413 (91%) of 454 patients had excellent to good cosmetic results in the whole-breast irradiation group versus 498 (92%) of 541 patients in the APBI group (p=0·62); when judged by the physicians, 408 (90%) of 454 patients and 503 (93%) of 542 patients, respectively, had excellent to good cosmetic results (p=0·12). No treatment-related deaths occurred, but six (15%) of 41 patients (three in each group) died from breast cancer, and 35 (85%) deaths (21 in the whole-breast irradiation group and 14 in the APBI group) were unrelated. INTERPRETATION 5-year toxicity profiles and cosmetic results were similar in patients treated with breast-conserving surgery followed by either APBI with interstitial brachytherapy or conventional whole-breast irradiation, with significantly fewer grade 2-3 late skin side-effects after APBI with interstitial brachytherapy. These findings provide further clinical evidence for the routine use of interstitial multicatheter brachytherapy-based APBI in the treatment of patients with low-risk breast cancer who opt for breast conservation. FUNDING German Cancer Aid.
Collapse
|