1
|
Reiners JJ, Caruso JA, Mathieu P, Chelladurai B, Yin XM, Kessel D. Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage. Cell Death Differ 2002; 9:934-44. [PMID: 12181744 PMCID: PMC4569095 DOI: 10.1038/sj.cdd.4401048] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2001] [Revised: 01/25/2002] [Accepted: 02/11/2002] [Indexed: 01/07/2023] Open
Abstract
Photodynamic therapy (PDT) protocols employing lysosomal sensitizers induce apoptosis via a mechanism that causes cytochrome c release prior to loss of mitochondrial membrane potential (DeltaPsi(m)). The current study was designed to determine how lysosomal photodamage initiates mitochondrial-mediated apoptosis in murine hepatoma 1c1c7 cells. Fluorescence microscopy demonstrated that the photosensitizer N-aspartyl chlorin e6 (NPe6) localized to the lysosomes. Irradiation of cultures preloaded with NPe6 induced the rapid destruction of lysosomes, and subsequent cleavage/activation of Bid, pro-caspases-9 and -3. Pro-caspase-8 was not activated. Release of cytochrome c occurred at about the time of Bid cleavage and preceded the loss of DeltaPsi(m). Extracts of purified lysosomes catalyzed the in vitro cleavage of cytosolic Bid, but not pro-caspase-3 activation. Pharmacological inhibition of cathepsin B, L and D activities did not suppress Bid cleavage or pro-caspases-9 and -3 activation. These studies demonstrate that photodamaged lysosomes trigger the mitochondrial apoptotic pathway by releasing proteases that activate Bid.
Collapse
|
research-article |
23 |
244 |
2
|
Subramanian Vignesh K, Landero Figueroa JA, Porollo A, Caruso JA, Deepe GS. Granulocyte macrophage-colony stimulating factor induced Zn sequestration enhances macrophage superoxide and limits intracellular pathogen survival. Immunity 2013; 39:697-710. [PMID: 24138881 DOI: 10.1016/j.immuni.2013.09.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/23/2013] [Indexed: 11/29/2022]
Abstract
Macrophages possess numerous mechanisms to combat microbial invasion, including sequestration of essential nutrients, like zinc (Zn). The pleiotropic cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) enhances antimicrobial defenses against intracellular pathogens such as Histoplasma capsulatum, but its mode of action remains elusive. We have found that GM-CSF-activated infected macrophages sequestered labile Zn by inducing binding to metallothioneins (MTs) in a STAT3 and STAT5 transcription-factor-dependent manner. GM-CSF upregulated expression of Zn exporters, Slc30a4 and Slc30a7; the metal was shuttled away from phagosomes and into the Golgi apparatus. This distinctive Zn sequestration strategy elevated phagosomal H⁺ channel function and triggered reactive oxygen species generation by NADPH oxidase. Consequently, H. capsulatum was selectively deprived of Zn, thereby halting replication and fostering fungal clearance. GM-CSF mediated Zn sequestration via MTs in vitro and in vivo in mice and in human macrophages. These findings illuminate a GM-CSF-induced Zn-sequestration network that drives phagocyte antimicrobial effector function.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
180 |
3
|
B'Hymer C, Caruso JA. Arsenic and its speciation analysis using high-performance liquid chromatography and inductively coupled plasma mass spectrometry. J Chromatogr A 2005; 1045:1-13. [PMID: 15378873 DOI: 10.1016/j.chroma.2004.06.016] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is known that arsenic has different toxicological properties dependent upon both its oxidation state for inorganic compounds, as well as the different toxicity levels exhibited for organic arsenic compounds. The field of arsenic speciation analysis has grown rapidly in recent years, especially with the utilization of high-performance liquid chromatography (HPLC) coupled to inductively coupled plasma mass spectrometry (ICP-MS), a highly sensitive and robust detector system. Complete characterization of arsenic compounds is necessary to understand intake, accumulation, transport, storage, detoxification and activation of this element in the natural environment and living systems. This review describes the essential background and toxicity of arsenic in the environment, and more importantly, some currently used chromatographic applications and sample handling procedures necessary to accurately detect and quantify arsenic in its various chemical forms. Applications and work using only HPLC-ICP-MS for arsenic speciation of environmental and biological samples are presented in this review.
Collapse
|
Review |
20 |
127 |
4
|
Sutton K, Sutton RM, Caruso JA. Inductively coupled plasma mass spectrometric detection for chromatography and capillary electrophoresis. J Chromatogr A 1997; 789:85-126. [PMID: 9440286 DOI: 10.1016/s0021-9673(97)00970-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inductively coupled plasma mass spectrometry (ICP-MS) is now a well established detection technique for liquid chromatography, gas chromatography, supercritical fluid chromatography and capillary electrophoresis. A review of the literature with particular regard to ICP-MS as a chromatographic and capillary electrophoretic detector is presented. The various modes of chromatography and capillary electrophoresis are discussed and practical descriptions for hyphenating the techniques with the ICP mass spectrometer are given. Sample introduction systems and data acquisition methods are reviewed along with the numerous applications of ICP-MS as a chromatographic detector. In addition, alternative plasma sources, such as the atmospheric and reduced pressure helium microwave-induced plasmas for chromatographic detection are described.
Collapse
|
Comparative Study |
28 |
118 |
5
|
B'Hymer C, Caruso JA. Selenium speciation analysis using inductively coupled plasma-mass spectrometry. J Chromatogr A 2006; 1114:1-20. [PMID: 16551466 DOI: 10.1016/j.chroma.2006.02.063] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 02/14/2006] [Accepted: 02/21/2006] [Indexed: 10/24/2022]
Abstract
Selenium exists in several oxidation states and a variety of inorganic and organic compounds, and the chemistry of selenium is complex in both the environment and living systems. Selenium is an essential element at trace levels and toxic at greater levels. Interest in speciation analysis for selenium has grown rapidly in this last decade, especially in the use of chromatographic separation coupled with inductively coupled plasma-mass spectrometry (ICP-MS). Complete characterization of selenium compounds is necessary to understand selenium's significance in metabolic processes, clinical chemistry, biology, toxicology, nutrition and the environment. This review describes some of the essential background of selenium, and more importantly, some of the currently used separation methodologies, both chromatographic and electrophoretic, with emphasis on applications of selenium speciation analysis using ICP-MS detection.
Collapse
|
|
19 |
114 |
6
|
Qin Z, Caruso JA, Lai B, Matusch A, Becker JS. Trace metal imaging with high spatial resolution: applications in biomedicine. Metallomics 2010; 3:28-37. [PMID: 21140012 DOI: 10.1039/c0mt00048e] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
New generations of analytical techniques for imaging of metals are pushing hitherto boundaries of spatial resolution and quantitative analysis in biology. Because of this, the application of these imaging techniques described herein to the study of the organization and dynamics of metal cations and metal-containing biomolecules in biological cell and tissue is becoming an important issue in biomedical research. In the current review, three common metal imaging techniques in biomedical research are introduced, including synchrotron X-ray fluorescence (SXRF) microscopy, secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). These are exemplified by a demonstration of the dopamine-Fe complexes, by assessment of boron distribution in a boron neutron capture therapy cell model, by mapping Cu and Zn in human brain cancer and a rat brain tumor model, and by the analysis of metal topography within neuromelanin. These studies have provided solid evidence that demonstrates that the sensitivity, spatial resolution, specificity, and quantification ability of metal imaging techniques is suitable and highly desirable for biomedical research. Moreover, these novel studies on the nanometre scale (e.g., of individual single cells or cell organelles) will lead to a better understanding of metal processes in cells and tissues.
Collapse
|
Review |
15 |
108 |
7
|
|
|
27 |
100 |
8
|
Sheppard BS, Caruso JA, Heitkemper DT, Wolnik KA. Arsenic speciation by ion chromatography with inductively coupled plasma mass spectrometric detection. Analyst 1992; 117:971-5. [PMID: 1503234 DOI: 10.1039/an9921700971] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Four As compounds were successfully separated and detected by single-column ion chromatography with inductively coupled plasma (ICP) mass spectrometric detection. The mass spectral interferent ArCl+ was reduced by chromatographically resolving chloride from the negatively charged arsenic species. Determination of four As species was investigated in urine, club soda and wine. Detection limits of 0.16 ng of As(III), 0.26 ng of As(v), 0.073 ng of dimethylarsinic acid (DMA) and 0.18 ng of methylarsonic acid (MMA) in wine were obtained. Sensitivity was further improved by using an He-Ar mixed gas ICP as the ionization source. However, the intensity of the ArCl+ interference was also increased using this plasma. Detection limits of 0.063 ng of As(III), 0.037 ng of As(v), 0.032 ng of DMA and 0.080 ng of MMA in club soda were achieved using the He-Ar plasma source. Similar limits of detection were found in urine and wine.
Collapse
|
|
33 |
98 |
9
|
Montes-Bayón M, DeNicola K, Caruso JA. Liquid chromatography-inductively coupled plasma mass spectrometry. J Chromatogr A 2003; 1000:457-76. [PMID: 12877184 DOI: 10.1016/s0021-9673(03)00527-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is known that while many elements are considered essential to human health, many others can be toxic. However, because the intake, accumulation, transport, storage and interaction of these different metals and metalloids in nature is strongly influenced by their specific elemental form, complete characterization of the element is essential when assessing its benefits and/or risk. Consequently, interest has grown rapidly in determining oxidation state, chemical ligand association, and complex forms of a many different elements. Elemental speciation, or the analyses that lead to determining the distribution of an element's particular chemical species in a sample, typically involves the coupling of a separation technique and an element specific detector. A large number of methods have been developed which utilize a multitude of different separation mechanisms and detection instruments. Yet, because of its versatility, robustness, sensitivity and multi-elemental capabilities, the coupling of liquid chromatography to inductively coupled plasma mass spectrometry (LC-ICP-MS) has become one of the most popular techniques for elemental speciation studies. This review focuses on the basic principles of LC-ICP-MS, its historical development and the many ways in which this technique can be applied. Different liquid chromatography separations are discussed as well as the factors that must be considered when coupling each to ICP-MS. Recent applications of LC-ICP-MS to the speciation of environmental, biological and clinical samples are also presented.
Collapse
|
Review |
22 |
98 |
10
|
Kannamkumarath SS, Wrobel K, Wrobel K, B'Hymer C, Caruso JA. Capillary electrophoresis-inductively coupled plasma-mass spectrometry: an attractive complementary technique for elemental speciation analysis. J Chromatogr A 2002; 975:245-66. [PMID: 12456080 DOI: 10.1016/s0021-9673(02)01218-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Some basic and practical aspects of interfacing capillary electrophoresis to inductively coupled plasma-mass spectrometry (CE-ICP-MS) are reviewed in this article with emphasis on the use of this hyphenated technique for elemental speciation analysis. The principles behind the techniques of both CE and ICP-MS are introduced. The interfacing of CE to ICP-MS is discussed including several devices and nebulizers reported in literature. A brief account of their advantages and limitations is given. The various CE-ICP-MS applications for elemental speciation analysis are also reviewed. Some issues concerning the future of CE-ICP-MS for the elemental speciation analyses are discussed.
Collapse
|
Review |
23 |
88 |
11
|
Montes-Bayón M, Yanes EG, Ponce de León C, Jayasimhulu K, Stalcup A, Shann J, Caruso JA. Initial studies of selenium speciation in Brassica juncea by LC with ICPMS and ES-MS detection: an approach for phytoremediation studies. Anal Chem 2002; 74:107-13. [PMID: 11795777 DOI: 10.1021/ac0106804] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Various Brassica species accumulate Se into the thousands of ppm. This suggests some of them as candidates for Se phytoremediation. Brassica juncea (Indian mustard) was used to accumulate selenium by growing with sodium selenite as the selenium source under hydroponic conditions resulting in Se accumulation of up to hundreds of ppm in various parts of the plant. To date, few selenium speciation studies have been done in plants, with most studies reporting total selenium concentration in various parts of the plant. Se species extraction was evaluated by several digestion/extraction procedures, including the use of HCl, Tris-HCl buffer, and enzymatic hydrolysis (using proteinase K and protease XIV). The best extraction was obtained with proteinase K (extracting approximately 75% of the total Se present in the plant). Some of the species produced by the plant, such as selenomethionine, can be identified at ppb levels by RP-HPLC-ICPMS, since standards are readily available. Others needed to be further characterized by ES-MS. Enzymatic hydrolysis releases mostly Se-methionine from juncea leaves, although other Se-containing species can also be observed by HPLC-ICPMS. In this initial study, the possible identification (by ES-MS) of a small chromatographic peak containing a Se-S bridged seleno amino acid with a structure similar to cystine is suggested.
Collapse
|
|
23 |
87 |
12
|
Robbins WB, Caruso JA. Development of hydride generation methods for atomic spectroscopic analysis. Anal Chem 2008. [DOI: 10.1021/ac50044a002] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
17 |
85 |
13
|
Sanders MA, Madoux F, Mladenovic L, Zhang H, Ye X, Angrish M, Mottillo EP, Caruso JA, Halvorsen G, Roush WR, Chase P, Hodder P, Granneman JG. Endogenous and Synthetic ABHD5 Ligands Regulate ABHD5-Perilipin Interactions and Lipolysis in Fat and Muscle. Cell Metab 2015; 22:851-60. [PMID: 26411340 PMCID: PMC4862007 DOI: 10.1016/j.cmet.2015.08.023] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 06/15/2015] [Accepted: 08/27/2015] [Indexed: 12/18/2022]
Abstract
Fat and muscle lipolysis involves functional interactions of adipose triglyceride lipase (ATGL), α-β hydrolase domain-containing protein 5 (ABHD5), and tissue-specific perilipins 1 and 5 (PLIN1 and PLIN5). ABHD5 potently activates ATGL, but this lipase-promoting activity is suppressed when ABHD5 is bound to PLIN proteins on lipid droplets. In adipocytes, protein kinase A (PKA) phosphorylation of PLIN1 rapidly releases ABHD5 to activate ATGL, but mechanisms for rapid regulation of PLIN5-ABHD5 interaction in muscle are unknown. Here, we identify synthetic ligands that release ABHD5 from PLIN1 or PLIN5 without PKA activation and rapidly activate adipocyte and muscle lipolysis. Molecular imaging and affinity probe labeling demonstrated that ABHD5 is directly targeted by these synthetic ligands and additionally revealed that ABHD5-PLIN interactions are regulated by endogenous ligands, including long-chain acyl-CoA. Our results reveal a new locus of lipolysis control and suggest ABHD5 ligands might be developed into novel therapeutics that directly promote fat catabolism.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
83 |
14
|
B'Hymer C, Montes-Bayon M, Caruso JA. Marfey's reagent: Past, present, and future uses of 1-fluoro-2,4-dinitrophenyl-5-L-alanine amide. J Sep Sci 2003. [DOI: 10.1002/jssc.200390019] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
22 |
81 |
15
|
|
|
13 |
81 |
16
|
Carey JM, Caruso JA. Electrothermal Vaporization for Sample Introduction in Plasma Source Spectrometry. Crit Rev Anal Chem 1992. [DOI: 10.1080/10408349208051652] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
|
33 |
80 |
17
|
Meija J, Montes-Bayón M, Le Duc DL, Terry N, Caruso JA. Simultaneous monitoring of volatile selenium and sulfur species from se accumulating plants (wild type and genetically modified) by GC/MS and GC/ICPMS using solid-phase microextraction for sample introduction. Anal Chem 2002; 74:5837-44. [PMID: 12463370 DOI: 10.1021/ac020285t] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A sensitive method for determining ultratrace volatile Se species produced from Brassica juncea seedlings is described. The use of a new commercially available GC/ ICPMS interface in conjunction with solid-phase micro-extraction is a promising way to perform these studies. The addition of optional gases (O2 and N2) to the argon discharge proved to increase the sensitivity for Se and S as well as for Xe, which as a trace contaminant gas, was used for ICPMS optimization studies. However, the optimization parameters differ when an optional gas is added. In the best conditions, limits of detection ranging from 1 to 10 ppt can be obtained depending on the Se compound and 30 to 300 ppt for the volatile S species. The use of GC/MS with similar sample introduction permits the characterization of several unknown species produced as artifacts from the standards. The method allows the virtually simultaneous monitoring of S and Se species from the headspace of several plants (e.g., onions, garlic, etc.) although the present work is focused on the B. juncea seedlings grown in closed vials and treated with Se. Dimethyl selenide and dimethyl diselenide were detected as the primary volatile Se components in the headspace. Sulfur species also were present as allyl (2-propenyl) isothiocyanate and 3-butenyl isothiocyanate as characterized by GC/MS.
Collapse
|
|
23 |
78 |
18
|
Mester Z, Willie S, Yang L, Sturgeon R, Caruso JA, Fernández ML, Fodor P, Goldschmidt RJ, Goenaga-Infante H, Lobinski R, Maxwell P, McSheehy S, Polatajko A, Sadi BBM, Sanz-Medel A, Scriver C, Szpunar J, Wahlen R, Wolf W. Certification of a new selenized yeast reference material (SELM-1) for methionine, selenomethinone and total selenium content and its use in an intercomparison exercise for quantifying these analytes. Anal Bioanal Chem 2006; 385:168-80. [PMID: 16596401 DOI: 10.1007/s00216-006-0338-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 01/24/2006] [Accepted: 01/26/2006] [Indexed: 11/28/2022]
Abstract
A new selenized yeast reference material (SELM-1) produced by the Institute for National Measurement Standards, National Research Council of Canada (INMS, NRC) certified for total selenium (2,059+/-64 mg kg(-1)), methionine (Met, 5,758+/-277 mg kg(-1)) and selenomethionine (SeMet, 3,431+/-157 mg kg(-1)) content is described. The +/-value represents an expanded uncertainty with a coverage factor of 2. SeMet and Met amount contents were established following a methanesulfonic acid digestion of the yeast using GC-MS and LC-MS quantitation. Isotope dilution (ID) calibration was used for both compounds, using 13C-labelled SeMet and Met. Total Se was determined after complete microwave acid digestion based on ID ICP-MS using a 82Se spike or ICP-OES spectrometry using external calibration. An international intercomparison exercise was piloted by NRC to assess the state-of-the-art of measurement of selenomethione in SELM-1. Determination of total Se and methionine was also attempted. Seven laboratories submitted results (2 National Metrology Institutes (NMIs) and 5 university/government laboratories). For SeMet, ten independent mean values were generated. Various acid digestion and enzymatic procedures followed by LC ICP-MS, LC AFS or GC-MS quantitation were used. Four values were based on species-specific ID calibration, one on non-species-specific ID with the remainder using standard addition (SA) or external calibration (EC). For total selenium, laboratories employed various acid digestion procedures followed by ICP-MS, AFS or GC-MS quantitation. Four laboratories employed ID calibration, the remaining used SA or EC. A total of seven independent results were submitted. Results for methionine were reported by only three laboratories, all of which used various acid digestion protocols combined with determination by GC-MS and LC UV. The majority of participants submitted values within the certified range for SeMet and total Se, whereas the intercomparison was judged unsuccessful for Met because only two external laboratories provided values, both of which were outside the certified range.
Collapse
|
|
19 |
78 |
19
|
Abstract
The technique of coupling liquid chromatography to inductively plasma mass spectrometry (ICP-MS) is reviewed. A brief introduction to the ICP-MS instrument is given as well as methods to couple the two analytical instruments together. The various types of LC that have been used with ICP-MS detection are discussed and advantages over traditional methods of detection are highlighted, such as the improvements in sensitivity and selectivity. Several applications that have been described in the literature are reviewed. An outlook for the future of LC-ICP-MS, particularly with regard to elemental speciation is given.
Collapse
|
Review |
26 |
77 |
20
|
Vonderheide AP, Wrobel K, Kannamkumarath SS, B'Hymer C, Montes-Bayón M, Ponce De León C, Caruso JA. Characterization of selenium species in Brazil nuts by HPLC-ICP-MS and ES-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:5722-5728. [PMID: 12236705 DOI: 10.1021/jf0256541] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Brazil nuts have been classified as the foodstuffs that contain the highest level of unadulterated selenium, an essential trace element that appears to prevent cancer. To date, characterization of the selenium species in brazil nuts has not yet been investigated. In this work, various sample preparation approaches, including microwave extractions and enzymatic treatments, are examined with the goal of species preservation and subsequent selenium speciation; of these approaches, an enzymatic treatment with Proteinase K proved most effective. High-performance liquid chromatography (HPLC) separation strategies and inductively coupled plasma mass spectrometry (ICP-MS) detection schemes will also be presented. Extracts are evaluated against available standards for the commercially obtainable seleno-amino acids, selenomethionine (SeMet), selenoethionine (SeEt), and selenocystine (SeCys); selenomethionine was demonstrated to be the most abundant of these seleno-amino acids. Further characterization of unidentified selenium-containing peaks is attempted by the employment of several procedures, including electrospray-mass spectrometry (ES-MS). A peptide structure was identified; however, this was considered a tentative proposal due to the large background produced by the extremely complicated brazil nut matrix.
Collapse
|
|
23 |
75 |
21
|
Gbatu TP, Ceylan O, Sutton KL, Rubinson JF, Caruso JA, Mark Jr HB. Electrochemical control of solid phase micro-extraction using unique conducting polymer coated fibers. ACTA ACUST UNITED AC 1999. [DOI: 10.1039/a901991j] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
|
26 |
68 |
22
|
Becker JS, Breuer U, Hsieh HF, Osterholt T, Kumtabtim U, Wu B, Matusch A, Caruso JA, Qin Z. Bioimaging of metals and biomolecules in mouse heart by laser ablation inductively coupled plasma mass spectrometry and secondary ion mass spectrometry. Anal Chem 2010; 82:9528-33. [PMID: 20977196 DOI: 10.1021/ac102256q] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioimaging mass spectrometric techniques allow direct mapping of metal and biomolecule distributions with high spatial resolution in biological tissue. In this study laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) was used for imaging of transition metals (Fe, Cu, Zn, Mn, and Ti), alkali and alkaline-earth metals (Na, K, Mg, and Ca, respectively), and selected nonmetals (such as C, P, and S) in native cryosections of mouse heart. The metal and nonmetal images clearly illustrated the shape and the anatomy of the samples. Zinc and copper were inhomogeneously distributed with average concentrations of 26 and 11 μg g(-1), respectively. Titanium and manganese were detected at concentrations reaching 1 and 2 μg g(-1), respectively. The highest regional metal concentration of 360 μg g(-1)was observed for iron in blood present in the lumen of the aorta. Secondary ion mass spectrometry (SIMS) as an elemental and biomolecular mass spectrometric technique was employed for imaging of Na, K, and selected biomolecules (e.g., phosphocholine, choline, cholesterol) in adjacent sections. Here, two different bioimaging techniques, LA-ICPMS and SIMS, were combined for the first time, yielding novel information on both elemental and biomolecular distributions.
Collapse
|
Journal Article |
15 |
66 |
23
|
Kannamkumarath SS, Wrobel K, Wrobel K, Vonderheide A, Caruso JA. HPLC-ICP-MS determination of selenium distribution and speciation in different types of nut. Anal Bioanal Chem 2002; 373:454-60. [PMID: 12172680 DOI: 10.1007/s00216-002-1354-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2002] [Revised: 05/15/2002] [Accepted: 05/16/2002] [Indexed: 11/27/2022]
Abstract
In addition to determination of total selenium in nuts, the element distribution among different fractions (lipid extract, low molecular weight, and protein fractions), and speciation analysis were studied. Improved precision for total selenium determination was observed after elimination of lipids. Because selenium was not detected in any of the lipid extracts obtained from the different types of nuts (ICP-MS), in each determination and/or speciation procedure used in this work lipids were extracted (chloroform-methanol, 2:1) and discarded before analysis. In agreement with previously reported data, high selenium levels were found in Brazil nuts (those purchased without shells contained approximately a quarter the content than those purchased with shells) and significantly lower levels in walnuts, cashews, and pecans nuts. Low-molecular-weight compounds were extracted with perchloric acid (0.4 mol L(-1)) to furnish a fraction containing 3 to 15% of the total selenium in different types of nuts. The proteins were isolated from nut samples by dissolution in 0.1 mol L(-1) sodium hydroxide and subsequent precipitation with acetone. They were then dissolved in phosphate buffer pH 7.5. Analysis of protein fractions focused on selenium in two possible states - weakly and firmly bound to proteins. Results obtained for Brazil nuts by size-exclusion chromatography with on-line ICP-MS detection, in the absence and in the presence of beta-mercaptoethanol, showed that approximately 12% of total selenium was weakly bound to proteins. To obtain information about firmly bound selenium, the protein extracts were hydrolyzed enzymatically with proteinase K. Speciation was performed by means of ion-pairing HPLC-ICP-MS. The primary species found in all types of nuts was Se-methionine (19-25% of total selenium for different types of nuts).
Collapse
|
|
23 |
64 |
24
|
Byrdy FA, Olson LK, Vela NP, Caruso JA. Chromium speciation by anion-exchange high-performance liquid chromatography with both inductively coupled plasma atomic emission spectroscopic and inductively coupled plasma mass spectrometric detection. J Chromatogr A 1995; 712:311-20. [PMID: 7581851 DOI: 10.1016/0021-9673(95)00528-u] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Development of a new method for the determination of Cr(III) and Cr(VI) is described. Anion-exchange high-performance liquid chromatography (HPLC) was used to separate Cr(III) and Cr(VI) with on-line detection by inductively coupled plasma atomic emission spectroscopy (ICP-AES) at 2766 A in preliminary studies, and inductively coupled plasma mass spectrometry (ICP-MS) with single-ion monitoring at m/z 52 and m/z 53 for final work. A mobile phase consisting of ammonium sulfate and ammonium hydroxide was used, and a simple chelation procedure with EDTA was followed to stabilize the Cr(III) species in standard solutions. ICP-MS results indicated the feasibility of using chromium isotope m/z 53 instead of the more abundant m/z 52 isotope due to a high mobile-phase background most significantly from the SO+ polyatomic interference. The absolute detection limits based on peak-height calculations were 40 pg for Cr(III) and 100 pg for Cr(VI) in aqueous media by HPLC-ICP-MS. The linear dynamic range extended from 5 ppb (ng/ml) to 1 ppm (micrograms/ml) for both species. By HPLC-ICP-AES, detection limits were 100 ng for Cr(III) and 200 ng for Cr(VI). Cr(III) was detected in NIST-SRM 1643c (National Institute of Standards and Technology-Standard Reference Material, Trace Elements in Water) by HPLC-ICP-MS at the 20 ppb level.
Collapse
|
|
30 |
64 |
25
|
Ding H, Wang J, Dorsey JG, Caruso JA. Arsenic speciation by micellar liquid chromatography with inductively coupled plasma mass spectrometric detection. J Chromatogr A 1995; 694:425-31. [PMID: 7535627 DOI: 10.1016/0021-9673(94)01085-s] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Four environmentally and biologically important arsenic species, dimethylarsenic acid (DMA), monomethylarsonic acid (MMA), As(III) and As(V) are separated by micellar liquid chromatography. Linear dynamic ranges for the four species are three orders of magnitude and detection limits are in the picogram range with inductively coupled plasma mass spectrometric (ICP-MS) detection. This paper discussed in detail the development of the chromatographic conditions. The micellar mobile phase, which consisted of 0.05 M cetyltrimethylammonium bromide, 10% propanol and 0.02 M borate buffer, showed good compatibility with ICP-MS. This method allowed direct injection of urine samples onto the chromatographic system without extensive pretreatment and presented no interference from chlorine in the matrix. Detection limits are comparable with other LC-ICP-MS studies. An SRM urine sample was used to demonstrate the applicability of this technique to "real-life" situations. Results indicated that DMA, MMA and As(V) were present in the urine sample.
Collapse
|
|
30 |
62 |